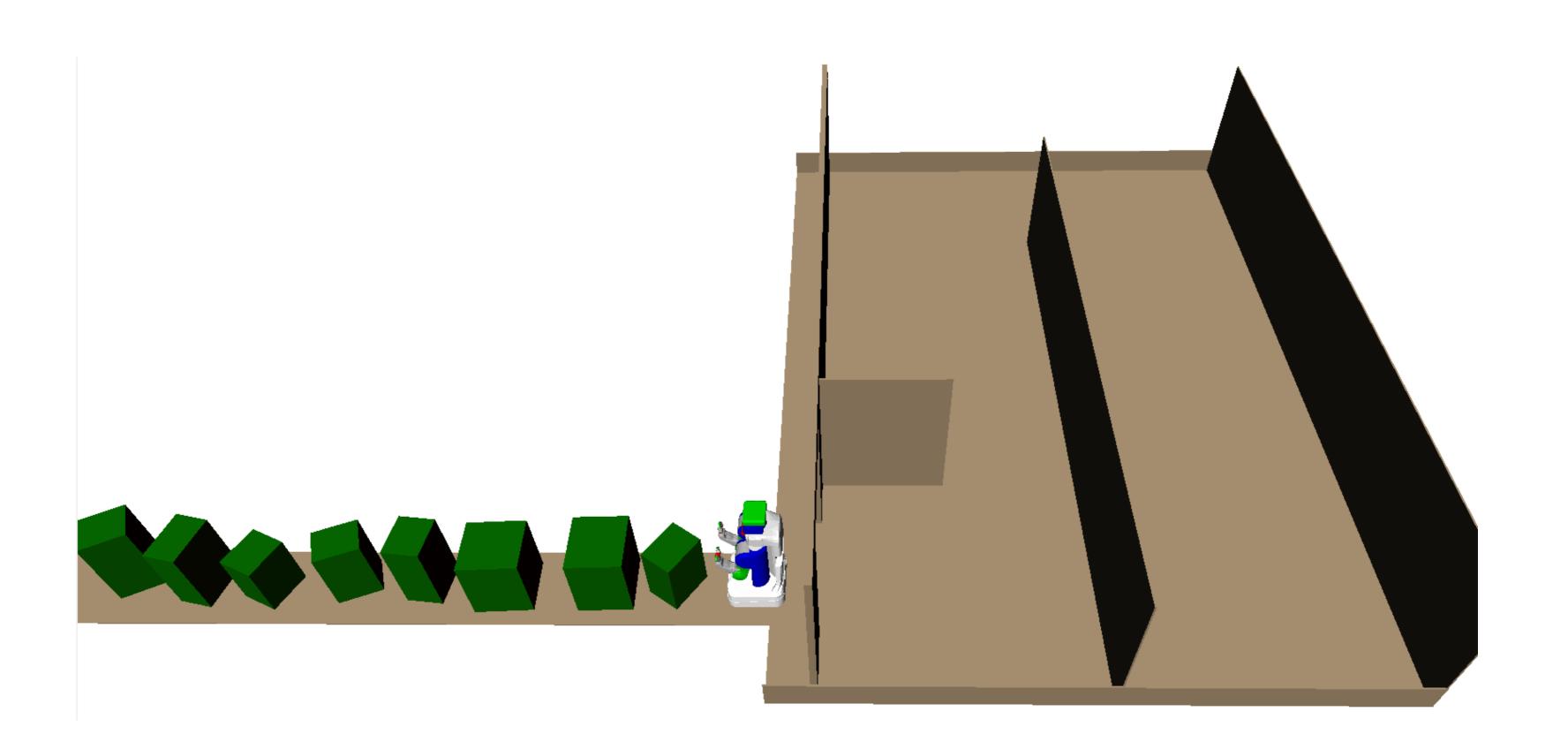
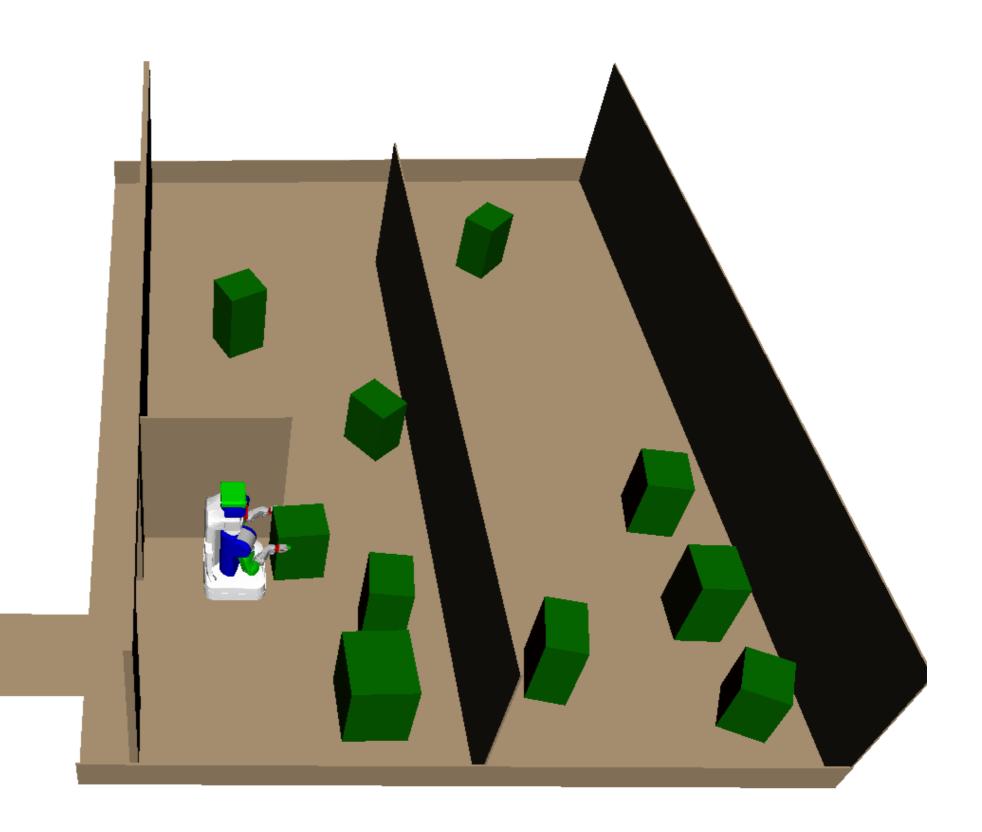
Monte Carlo Tree Search in continuous spaces using Voronoi optimistic optimization with regret bounds

Beomjoon Kim

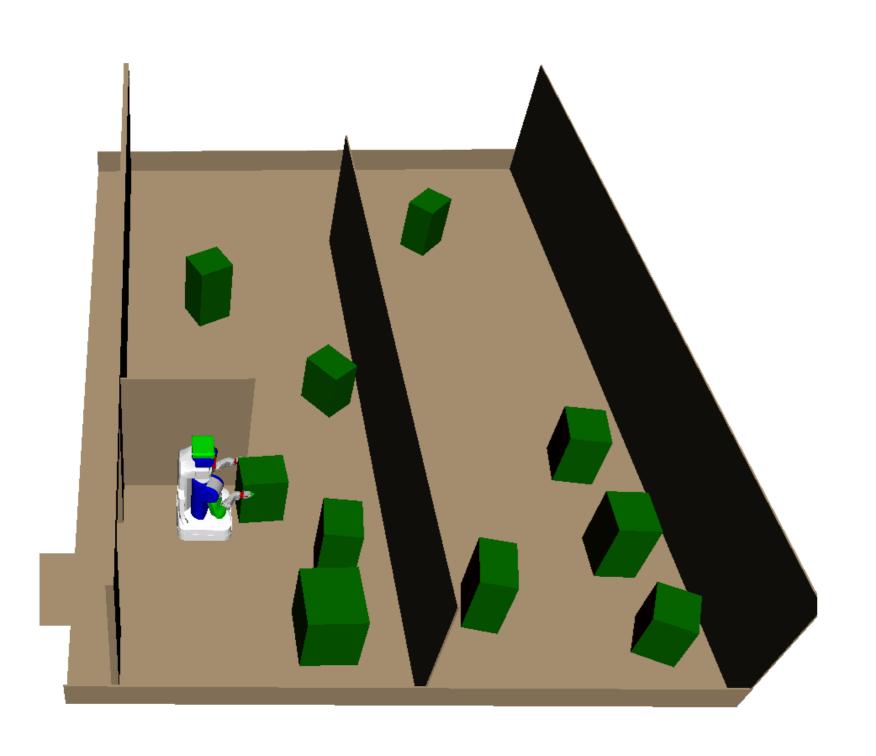
(with Kyungjae Lee, Sungbin Lim, Leslie Pack Kaelbling, Tomas Lozano-Perez)

Monte Carlo Tree Search in discrete action spaces

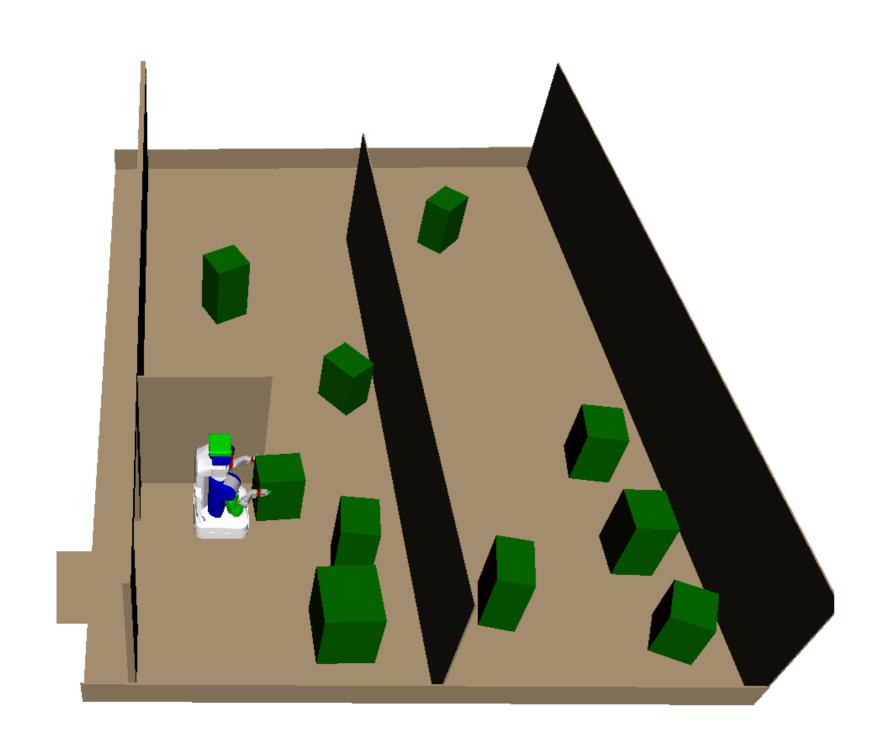




Characteristics of robotics problems



Characteristics of robotics problems



Continuous and high-dimensional action spaces

Main question addressed in our paper

How can we extend MCTS to high-dimensional continuous action space problems?

Assume planning horizon is 1

- Assume planning horizon is 1
- The problem is reduced to a budgeted-blackbox-function optimization (BBFO) problem

- Assume planning horizon is 1
- The problem is reduced to a budgeted-blackbox-function optimization (BBFO) problem

$$\max_{a \in \mathcal{A}} R(a)$$

- Assume planning horizon is 1
- The problem is reduced to a budgeted-blackbox-function optimization (BBFO) problem

 $\max_{a \in \mathcal{A}} R(a)$ within n number of evaluations

BBFO: general problem formulation

BBFO: general problem formulation

- Given:
 - Budget n
 - ullet Bounded search space ${\mathcal X}$
 - ullet Objective function f

BBFO problem formulation

• Goal: minimize the *simple regret*

$$f(x_{\star}) - \max_{t \in [n]} f(x_t)$$

A class of BBFO methods

Bayesian Optimization (BO)

```
El (Mockus, 1974)
Pl (Kushner, 1964)
GP-UCB(Srinivas et al., 2010)
ES (Hennig & Schuler, 2012)
PES (Hernandez-Lobato et al., 2014)
EST (Wang et al., 2016)
```

Drawback in high-dimensional search spaces

Requires global optimization of the acquisition function

- PI (Kushner, 1964)
- GP-UCB(Auer, 2002; Srinivas et al., 2010)
- ES (Hennig & Schuler, 2012)
- PES (Hernandez-Lobato et al., 2014)
- EST (Wang et al., 2016

Another class of BBFO methods

Requires global optimization of the acquisition function

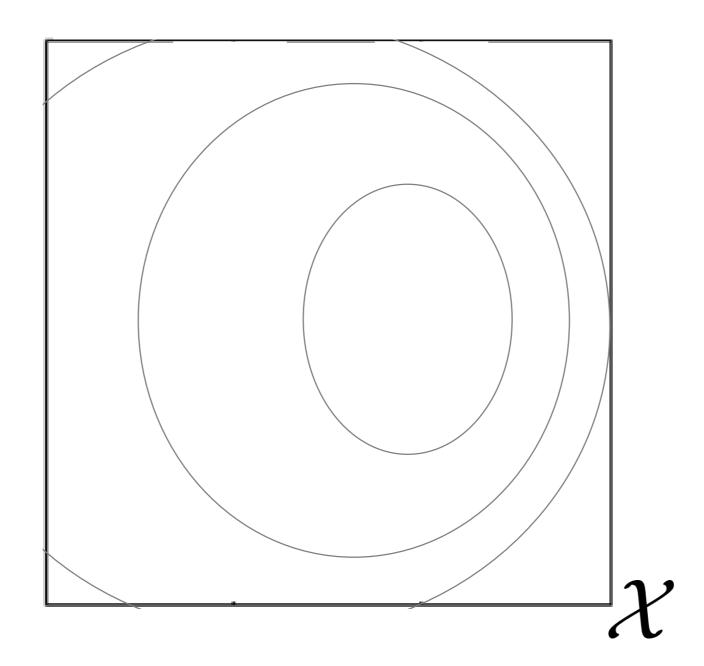
- PI (Kushner, 1964)
- GP-UCB(Auer, 2002; Srinivas al., 2010)
- ES (Hennig & Schuler, 2012
- PES (Hernandez-Lobato et al., 2014)
- EST (Wang et al., 2016

```
Hierarchical Partitioning (HP)
```

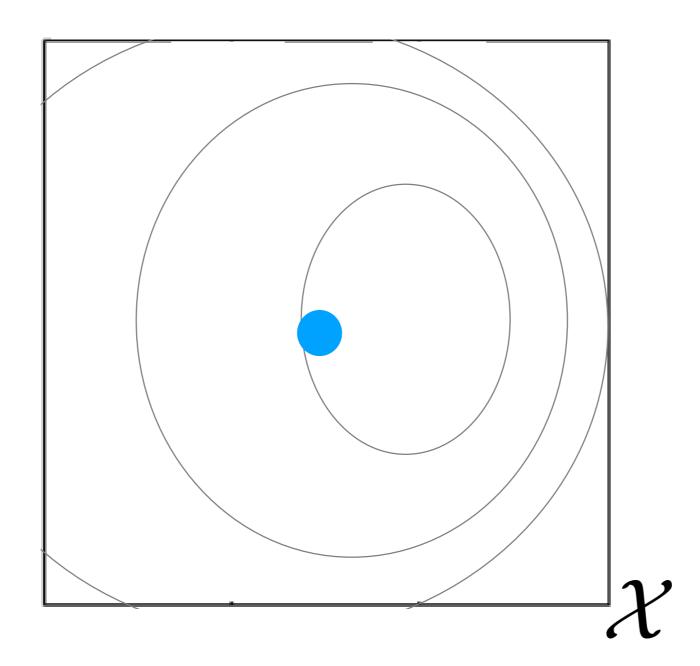
```
DOO(Munos, 2011)
SOO(Valko et al., 2013)
HOO(Bubeck et al., 2010)
```

Consecutively partitioning the search space

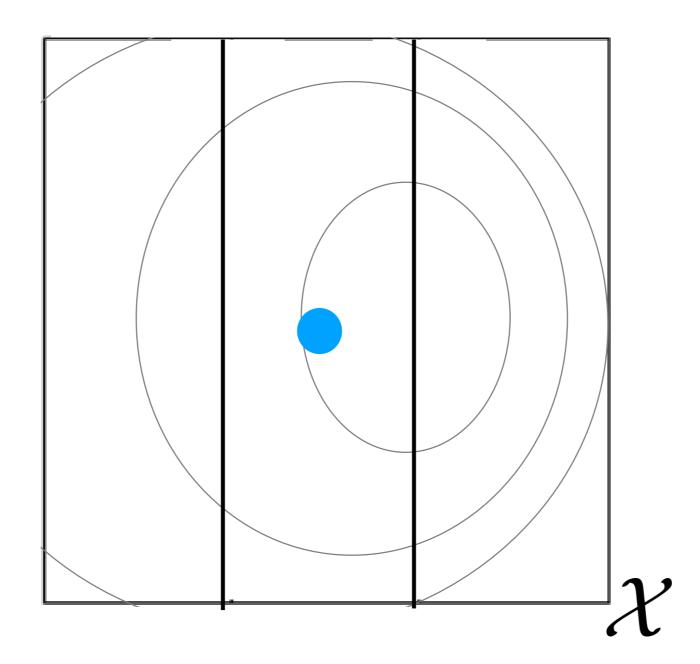
Consecutively partitioning the search space



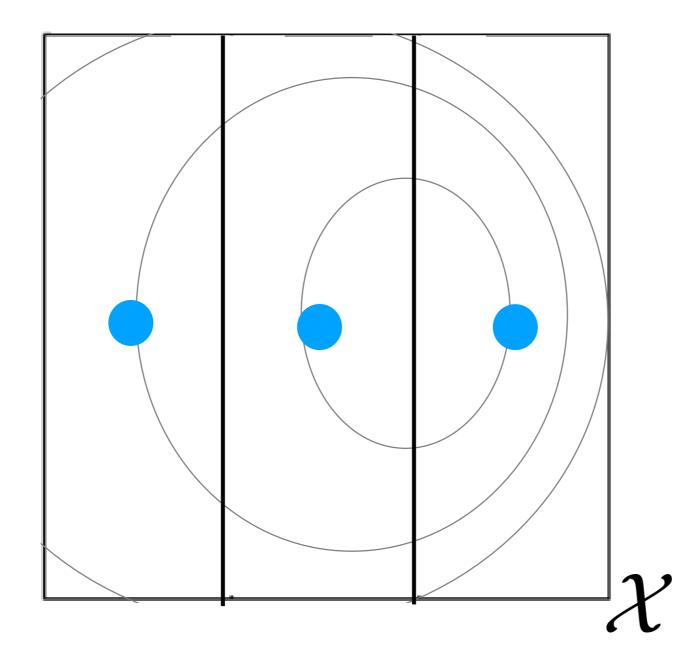
First evaluated point



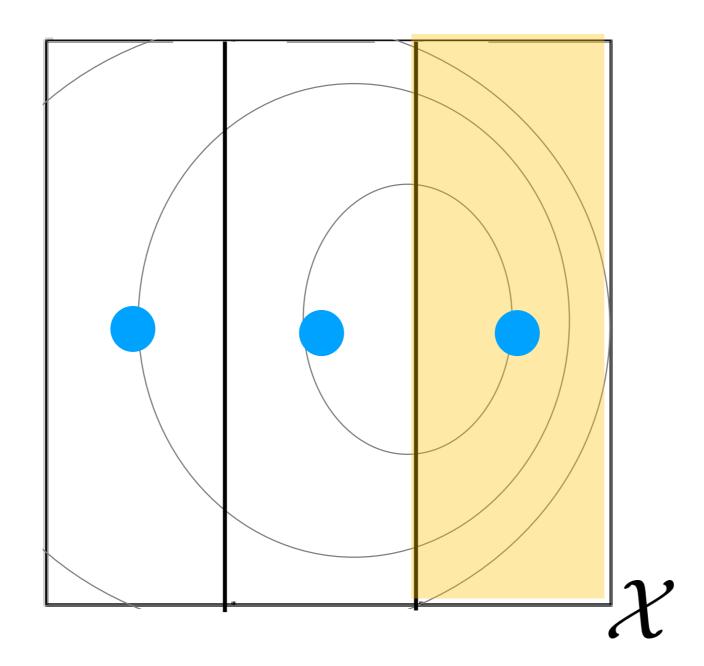
Partition space by constructing K cells. Let's say K = 3



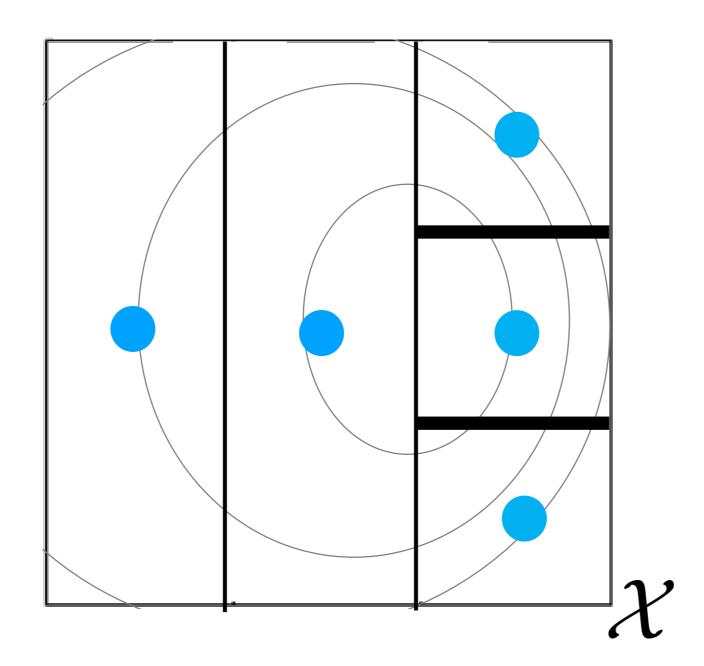
Evaluate points in the new cells



Choose the most promising cell



Construct a new partition, and evaluate points



How to select the most promising cell?

• Deterministic Optimistic Optimization [Munos 2011]

- Deterministic Optimistic Optimization [Munos 2011]
- Compute the b-value of each cell, where

$$b(x_i)$$

- Deterministic Optimistic Optimization [Munos 2011]
- Compute the b-value of each cell, where

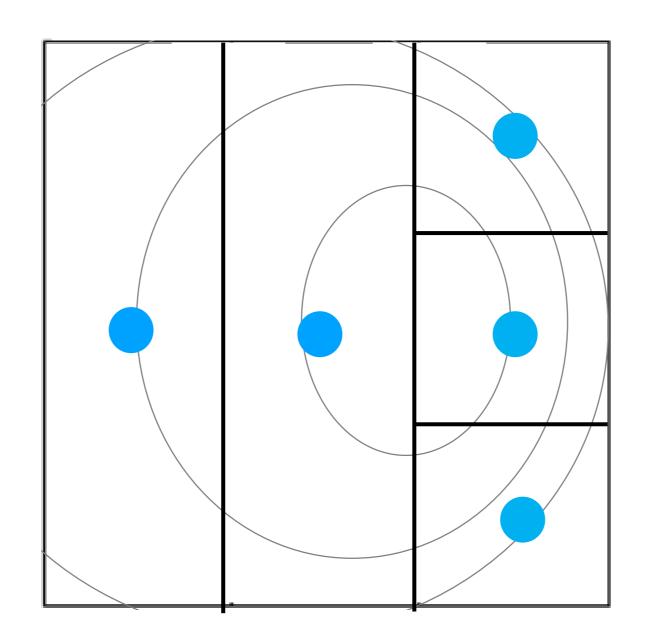
$$b(x_i) = f(x_i)$$

- Deterministic Optimistic Optimization [Munos 2011]
- Compute the b-value of each cell, where

$$b(x_i) = f(x_i) + \delta(i)$$
 Prefers larger cells

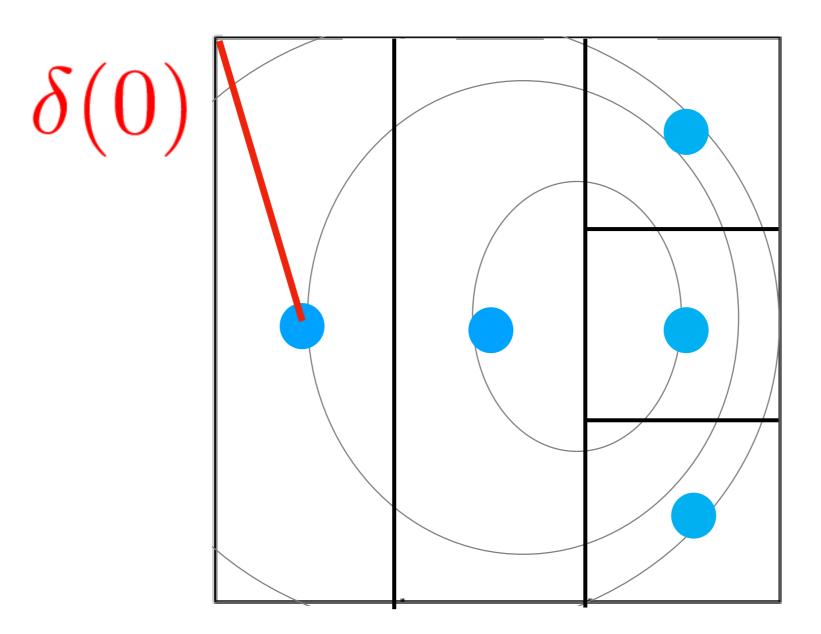
Diameter of a cell

$$b(x_i) = f(x_i) + \delta(i)$$



Diameter of a cell

$$b(x_i) = f(x_i) + \delta(i)$$



Diameter of a cell

$$b(x_i) = f(x_i) + \delta(i)$$

$$\delta(0) \qquad \qquad \delta(1)$$

DOO: Choose the cell with the highest b-value

$$arg max_i f(x_i) + \delta(i)$$

DOO: exploration vs. exploitation

$$arg max_i f(x_i) + \delta(i)$$

DOO: exploration vs. exploitation

Exploitation of current function knowledge prefer cells that have high function values

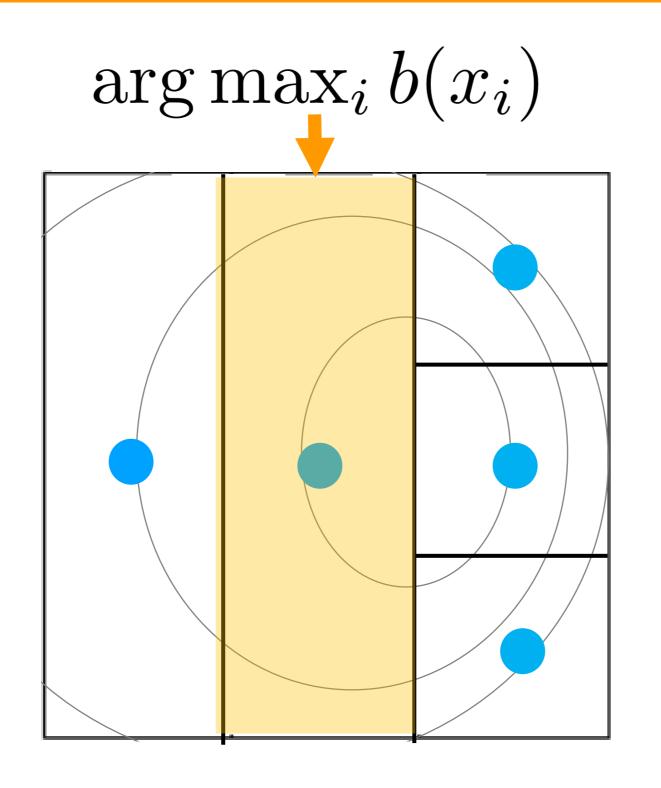
$$arg max_i f(x_i) + \delta(i)$$

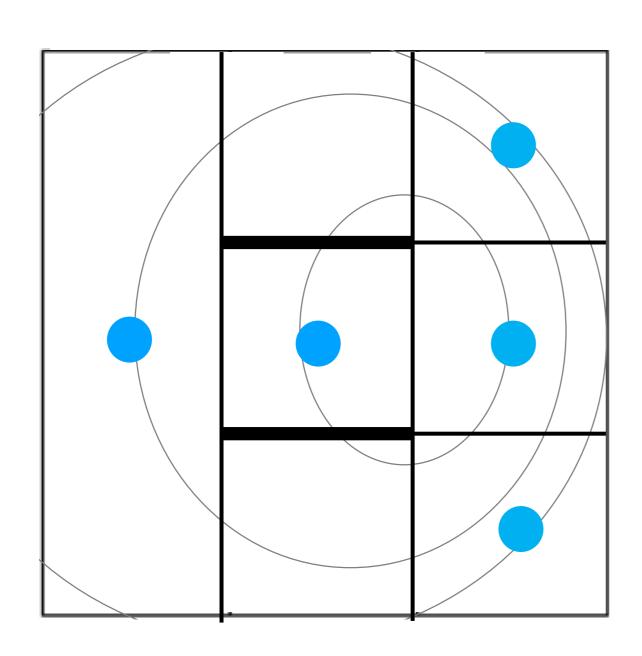
DOO: exploration vs. exploitation

Exploitation of current function knowledge prefer cells that have high function values

$$arg max_i f(x_i) + \delta(i)$$

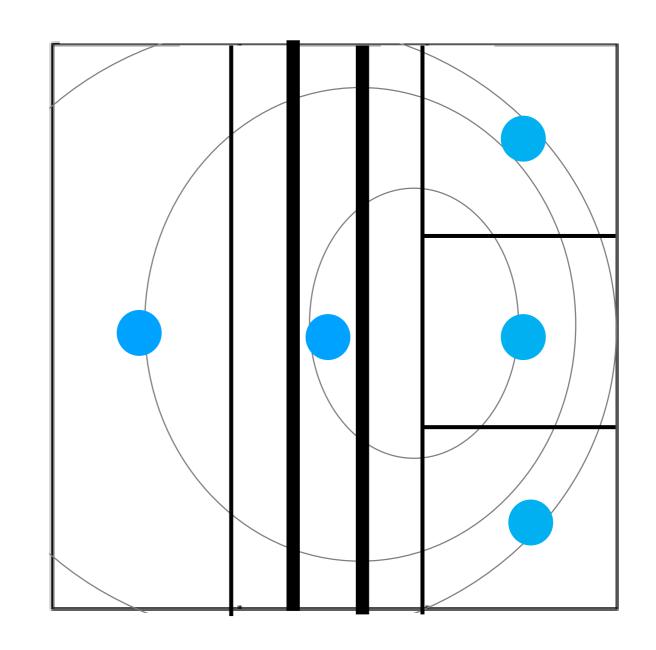
Exploration of the search space prefer cells with large diameters







VS.



In D-dimensional search space, you have D^n number of choices

In D-dimensional search space, you have D^n number of choices

Finding the optimal sequence of dimensions to cut is not trivial

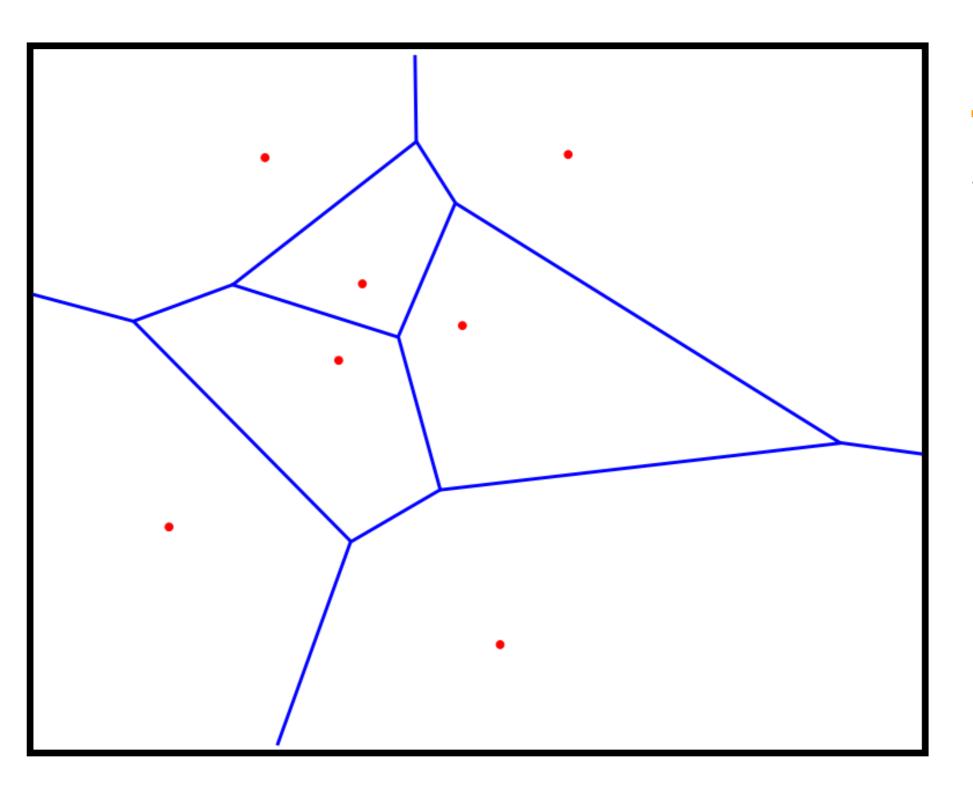
DOO's intuitive idea

- DOO idea:
 - The larger the cell, the more the exploration bonus
 - The larger the value of the cell, the more the exploitation bonus

Our main question

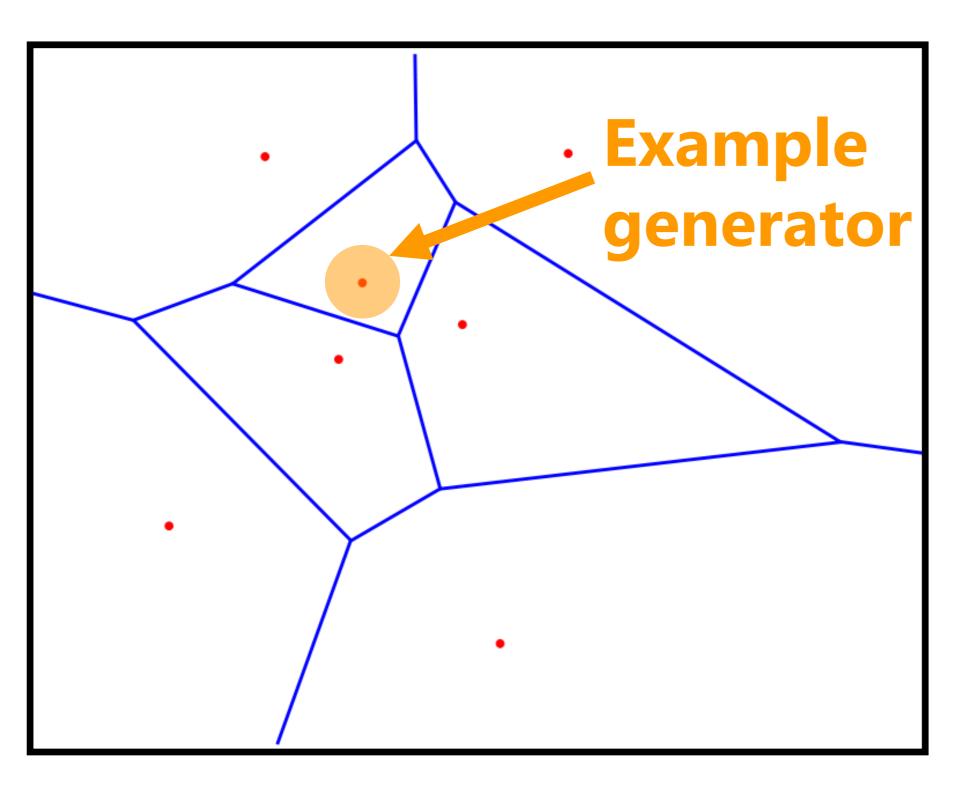
How can we use this idea without cell constructions?

The larger the value of the cell, the more the exploitation bonus



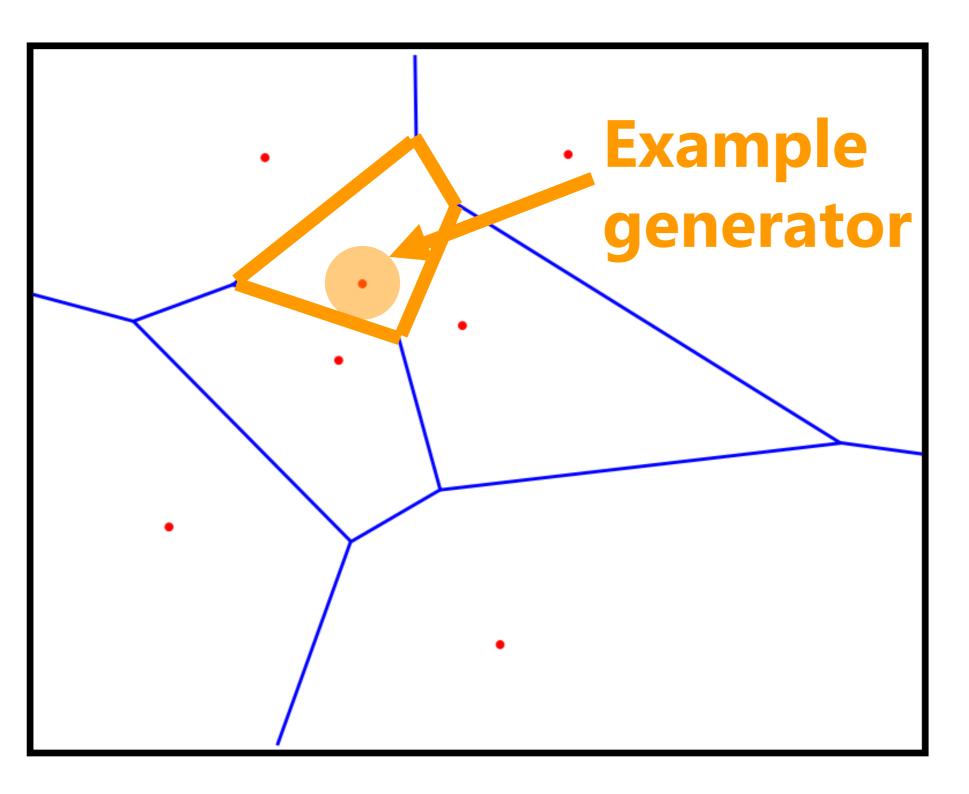
Voronoi cell:

A set of points closer to its generator than all the other generators



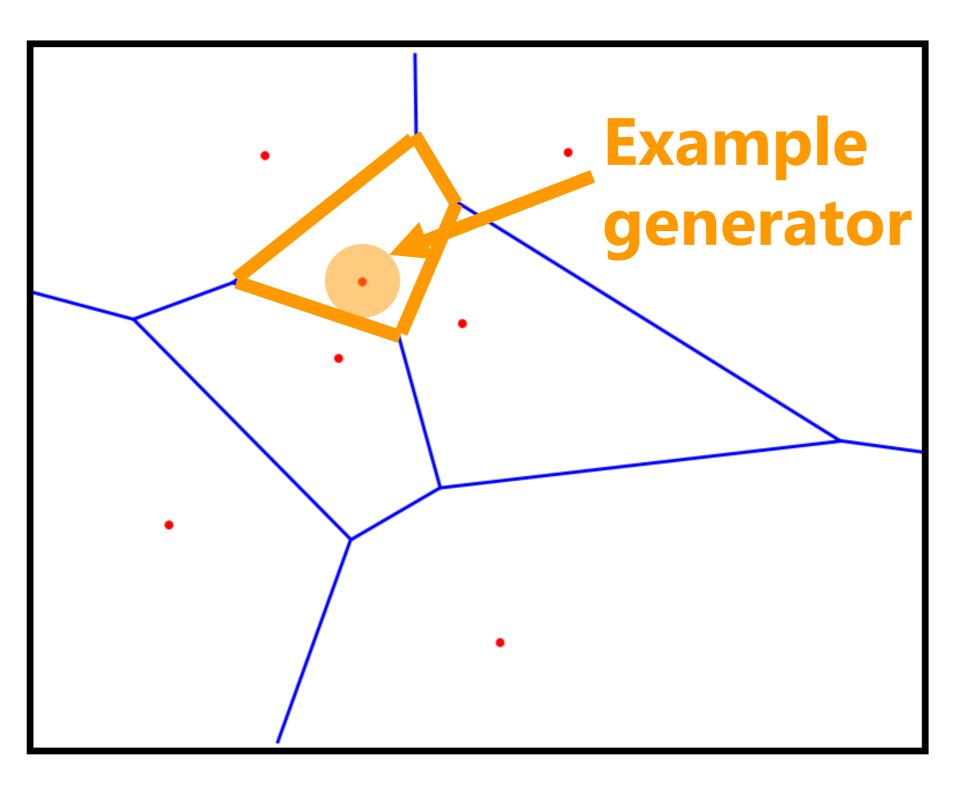
Voronoi cell:

A set of points closer to its generator than all the other generators



Voronoi cell:

A set of points closer to its generator than all the other generators



Voronoi cell:

A set of points closer to its generator than all the other generators

Evaluated points represent generators

Exploration

How do you prefer the larger cells without constructing Voronoi cells?

Exploration

How do you prefer the larger cells without constructing Voronoi cells?

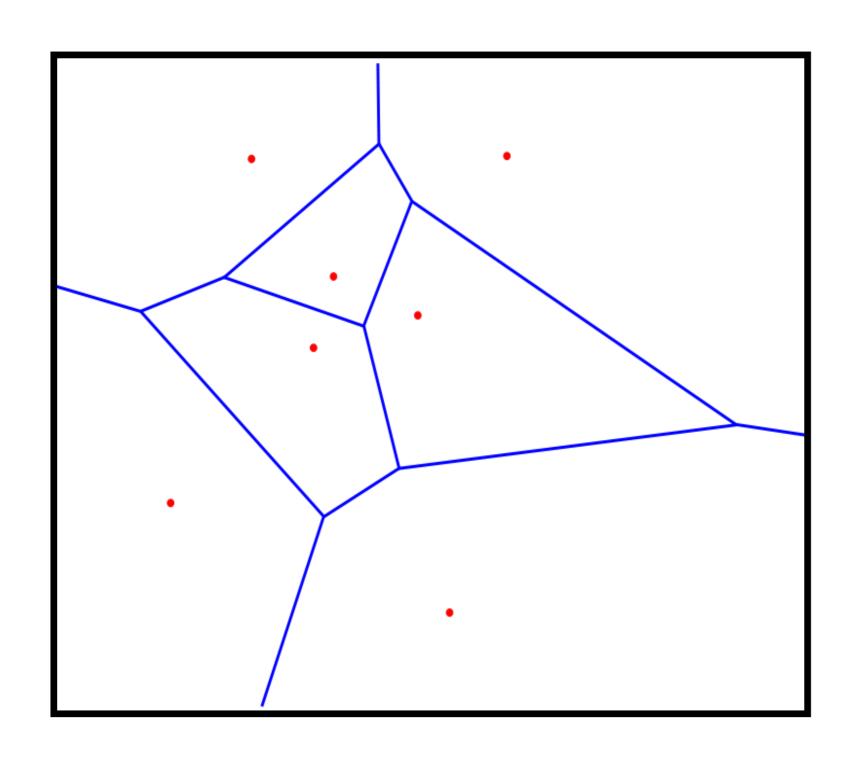
Use Voronoi bias

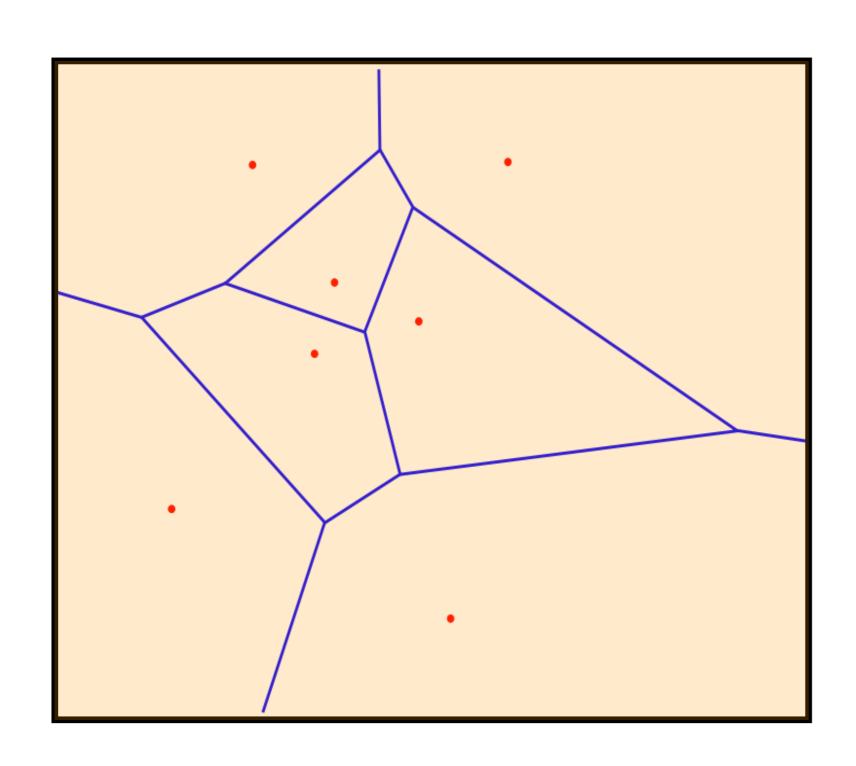
$$x_{t+1} \sim \text{Unif}(\mathcal{X}) \longrightarrow P(x_{t+1} \in C) = \frac{\mu(C)}{\mu(\mathcal{X})}$$

Volume of a cell

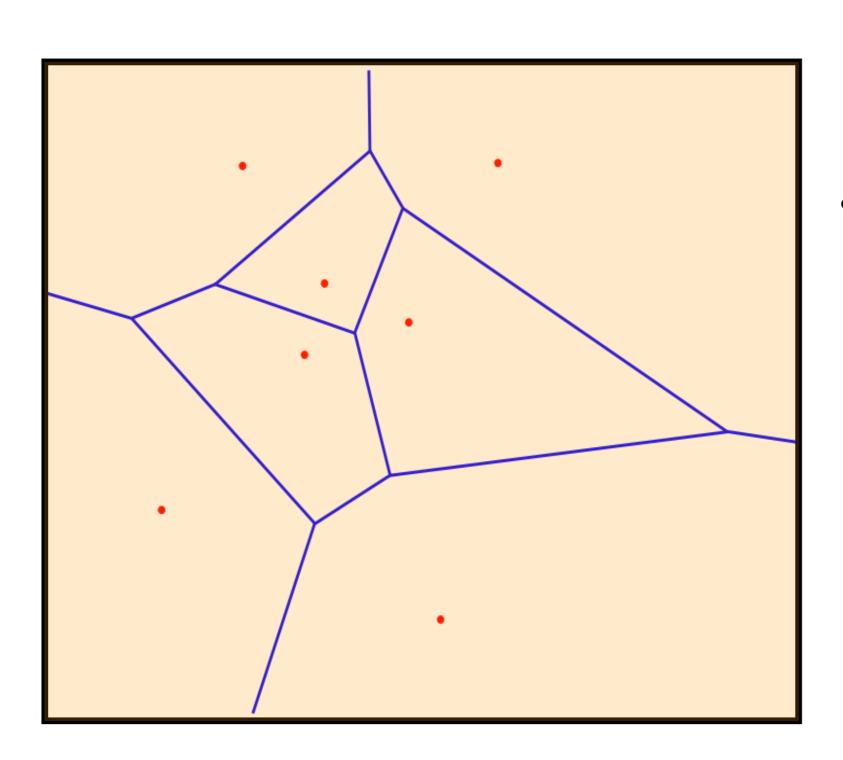
$$x_{t+1} \sim \text{Unif}(\mathcal{X}) \longrightarrow P(x_{t+1} \in C) = \frac{\mu(C)}{\mu(\mathcal{X})}$$

Volume of the search space

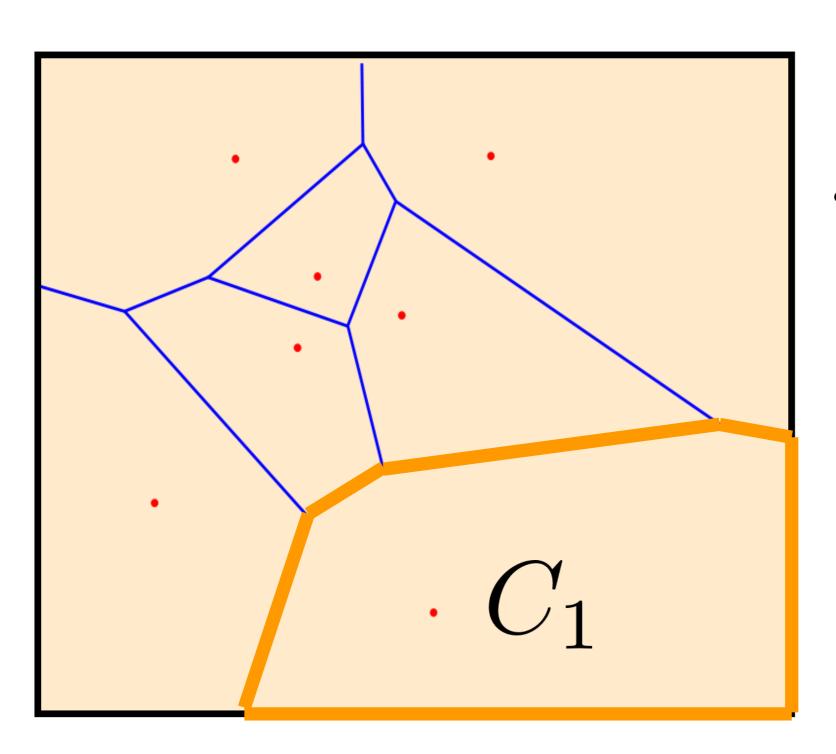




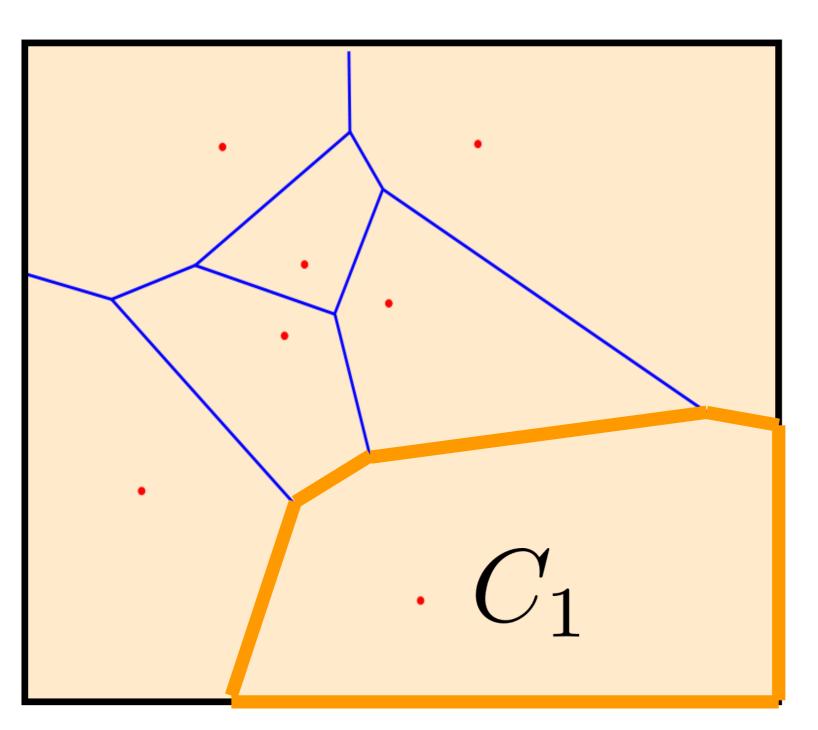
Unif(X)



$$x_{t+1} \sim \text{Unif}(\mathcal{X})$$



$$x_{t+1} \sim \mathrm{Unif}(\mathcal{X})$$



$$x_{t+1} \sim \mathrm{Unif}(\mathcal{X})$$

$$P(x_{t+1} \in C_1) = \frac{\operatorname{Area}(C_1)}{\operatorname{Area}(\mathcal{X})}$$

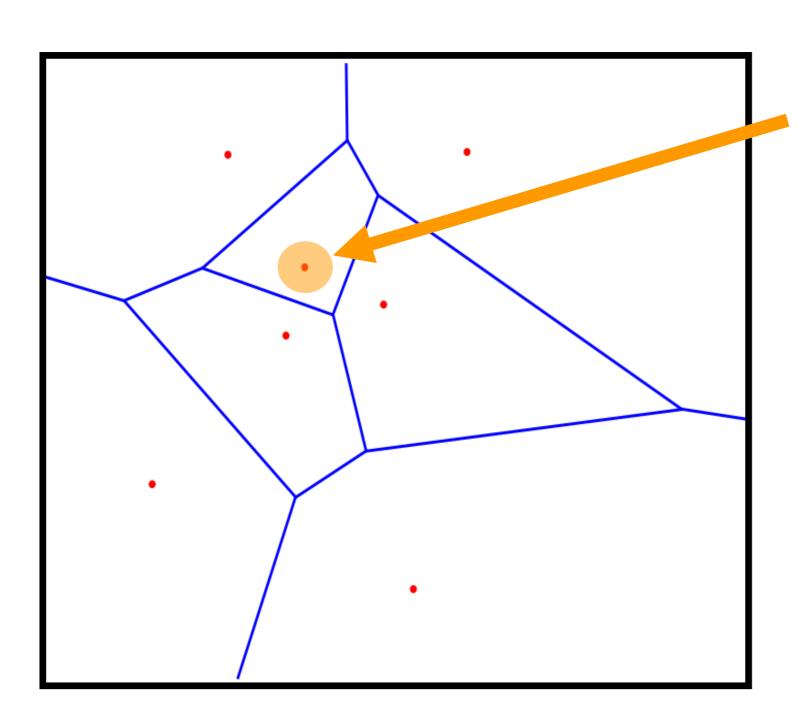
Exploitation

How do you select the cell with the highest value without constructing Voronoi cells?

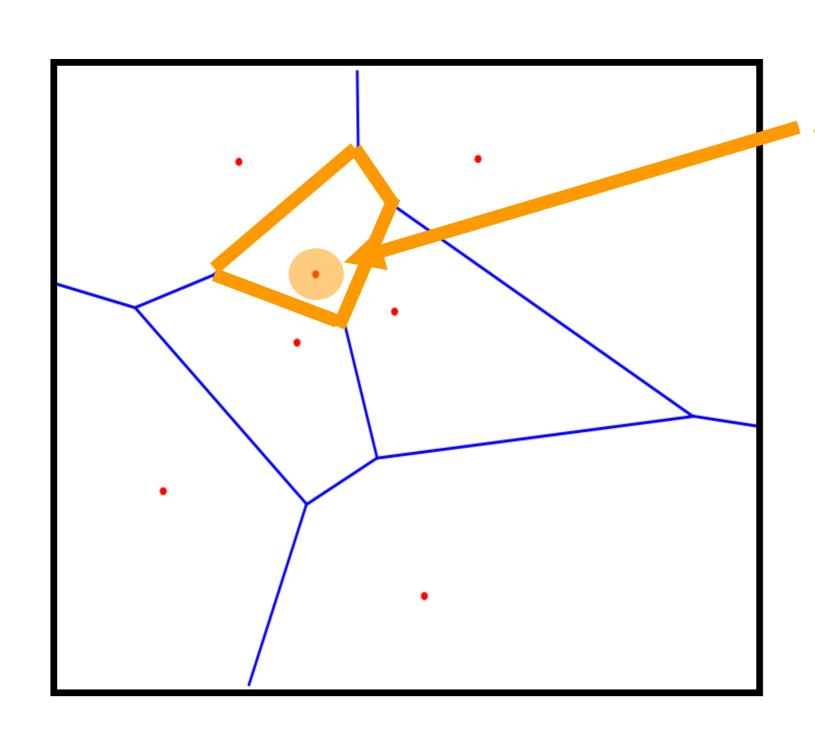
Exploitation

How do you select the cell with the highest value without constructing Voronoi cells?

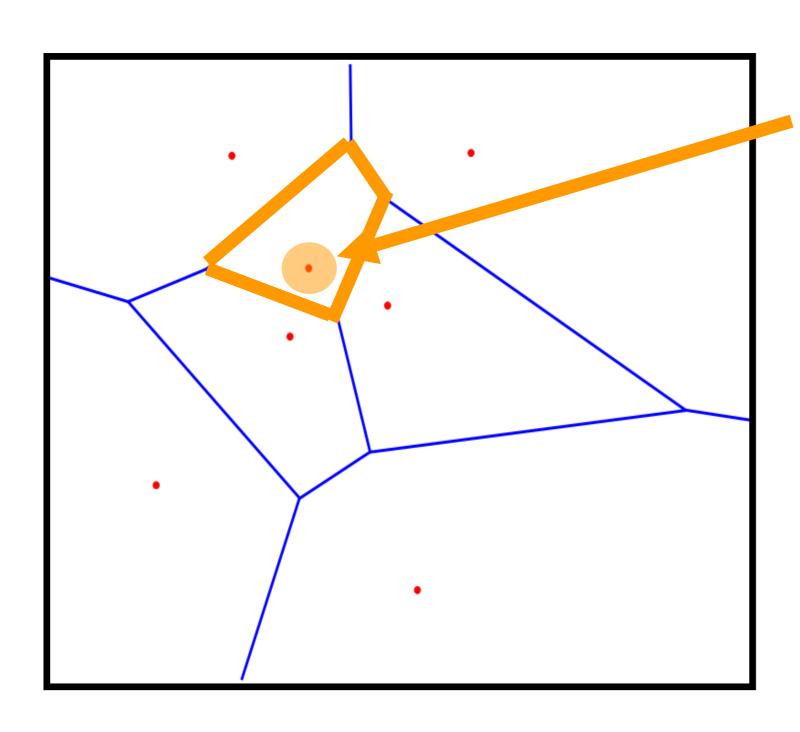
Use rejection sampling



Assume best point found so far



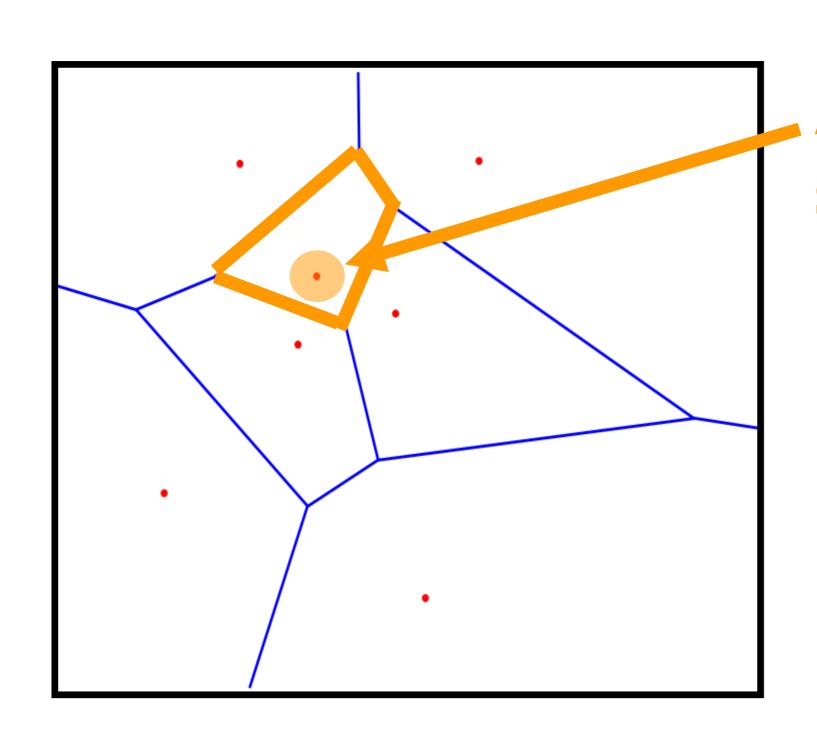
Assume best point found so far



Assume best point found so far

Randomly Sample:

$$x_{t+1} \sim P(\mathcal{X})$$



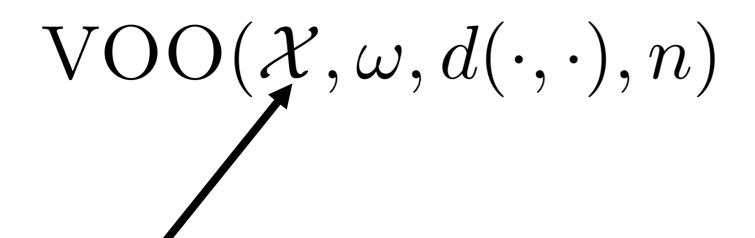
Assume best point found so far

Randomly Sample:

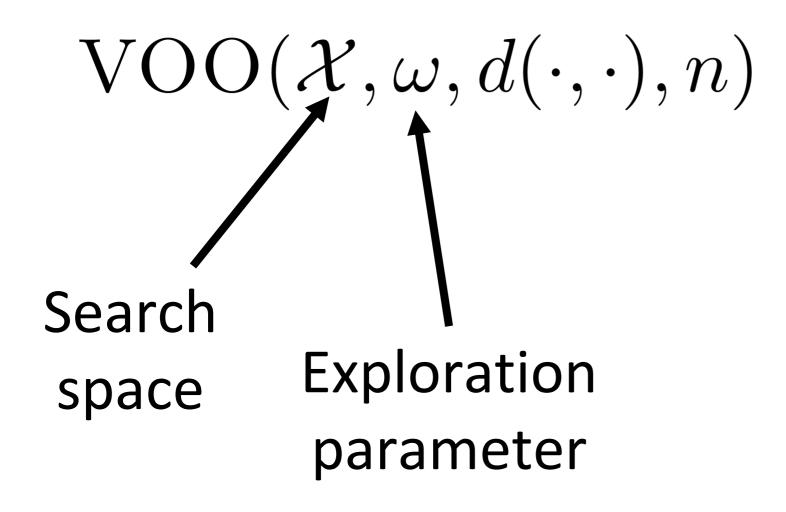
$$x_{t+1} \sim P(\mathcal{X})$$

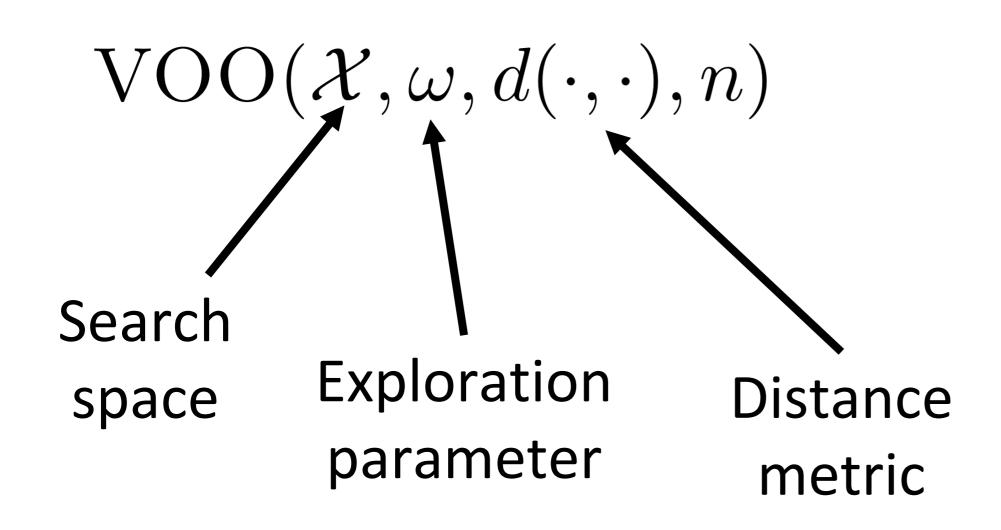
Reject until the sampled point is closest to the best point

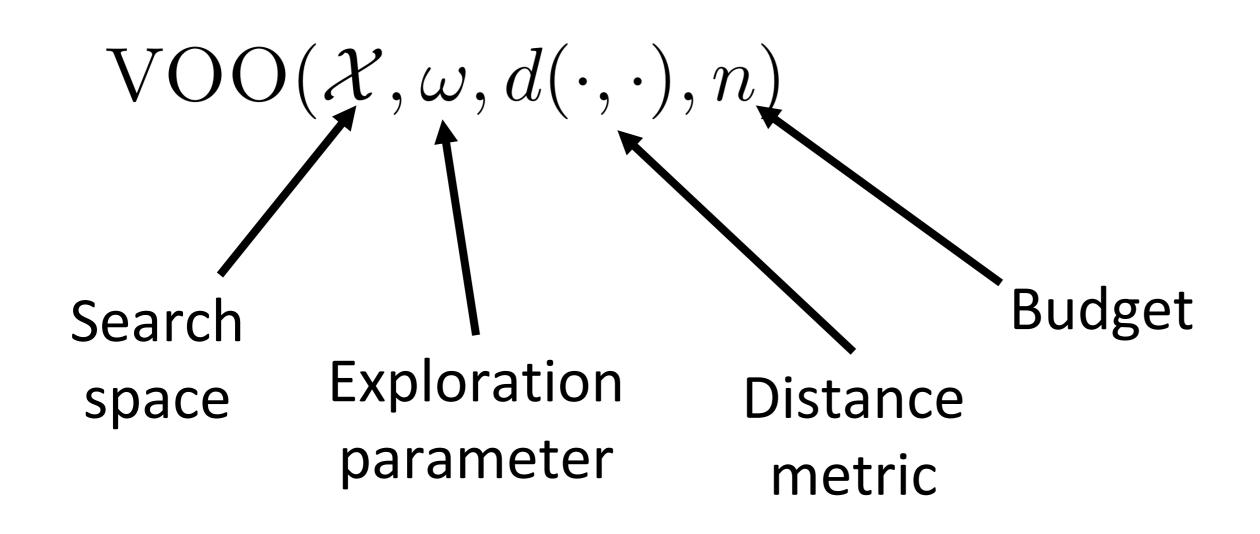
$$VOO(\mathcal{X}, \omega, d(\cdot, \cdot), n)$$



Search space







$$VOO(\mathcal{X}, \omega, d(\cdot, \cdot), n)$$

With probability ω

 $x_{t+1} \sim \text{UniformRandomlySample}(\mathcal{X})$

$$VOO(\mathcal{X}, \omega, d(\cdot, \cdot), n)$$

With probability ω

Exploration

 $x_{t+1} \sim \text{UniformRandomlySample}(\mathcal{X})$

VOO: Voronoi optimistic optimization

$$VOO(\mathcal{X}, \omega, d(\cdot, \cdot), n)$$

With probability ω

Exploration

 $x_{t+1} \sim \text{UniformRandomlySample}(\mathcal{X})$

With probability $1-\omega$

 $x_{t+1} \sim \text{SampleBestVCell}(d(\cdot, \cdot), x_{1:t})$

VOO: Voronoi optimistic optimization

$$VOO(\mathcal{X}, \omega, d(\cdot, \cdot), n)$$

With probability ω

Exploration

 $x_{t+1} \sim \text{UniformRandomlySample}(\mathcal{X})$

With probability $1-\omega$

 $x_{t+1} \sim \text{SampleBestVCell}(d(\cdot, \cdot), x_{1:t})$

Exploitation

VOO: Voronoi optimistic optimization

$$VOO(\mathcal{X}, \omega, d(\cdot, \cdot), n)$$

With probability ω

Exploration

 $x_{t+1} \sim \text{UniformRandomlySample}(\mathcal{X})$

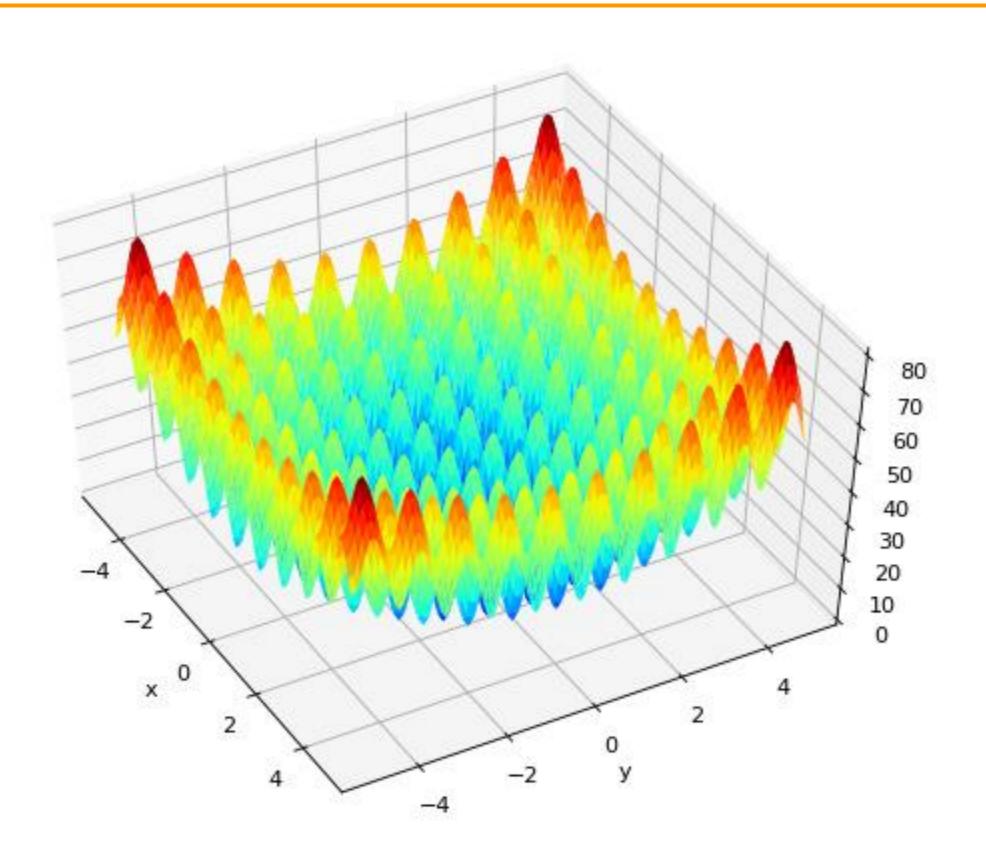
With probability $1-\omega$

$$x_{t+1} \sim \text{SampleBestVCell}(d(\cdot, \cdot), x_{1:t})$$

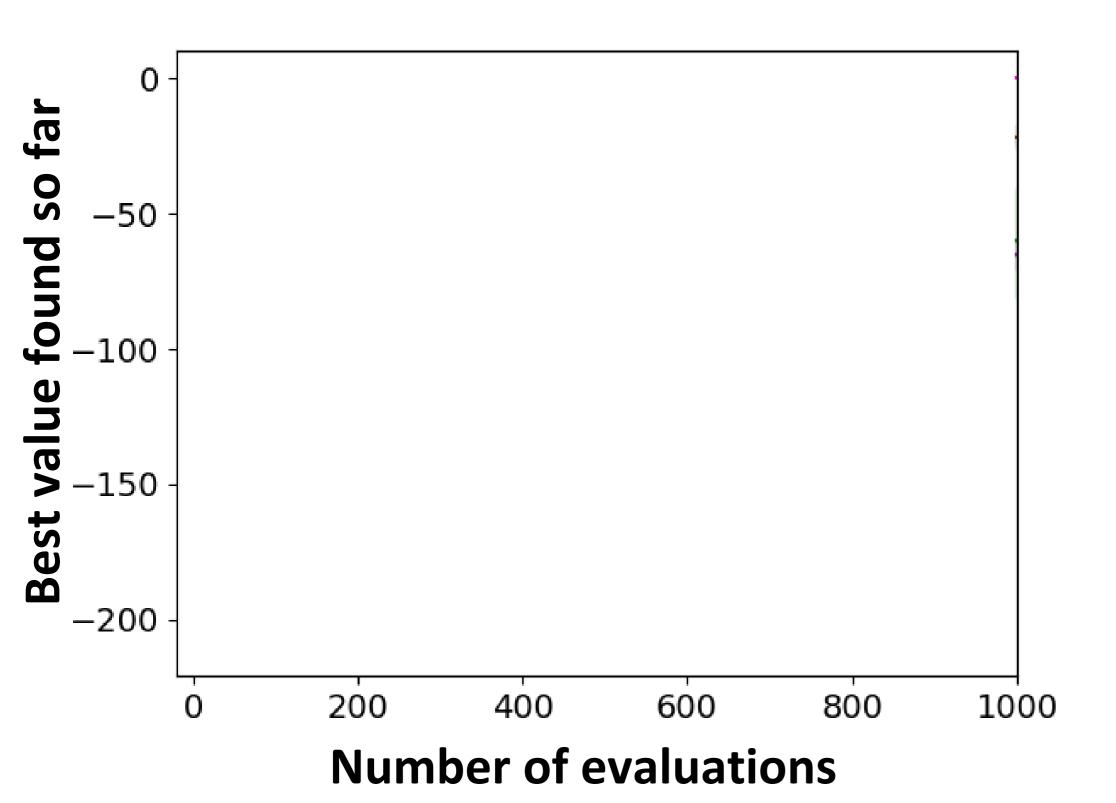
Evaluate $f(x_{t+1})$

Exploitation

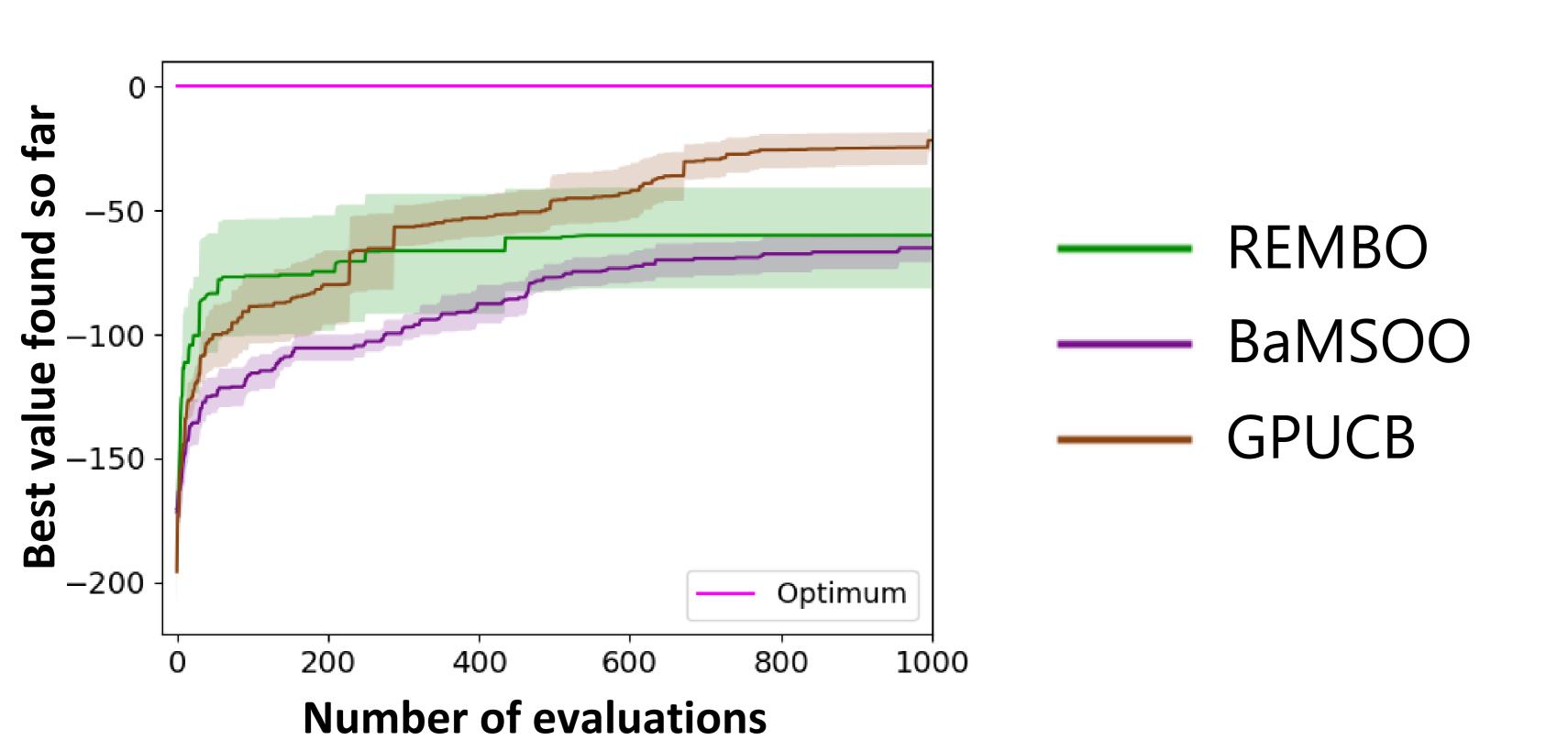
Optimizing Rastrigin function



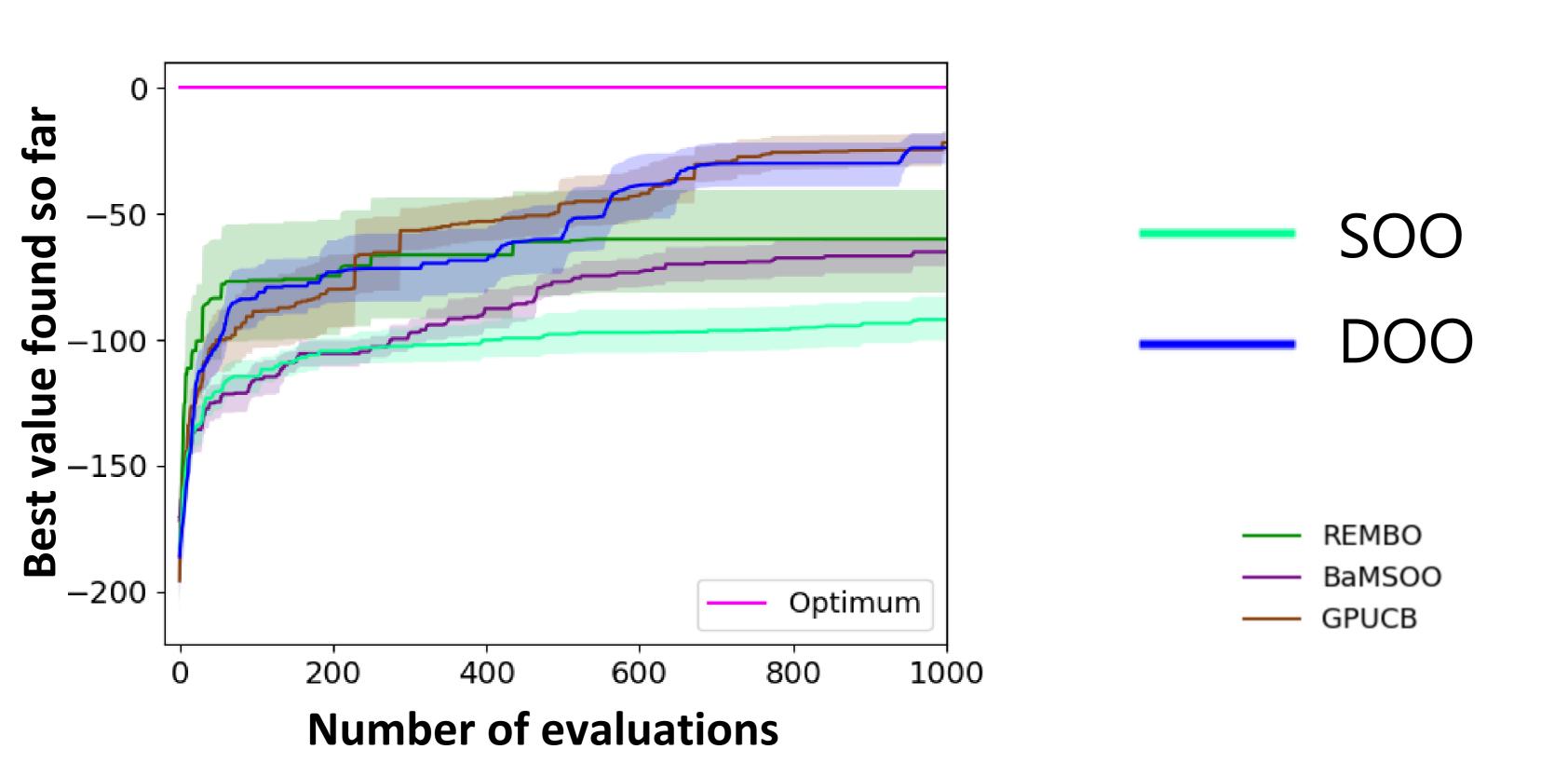
Optimizing 10 dimensional Rastrigin function



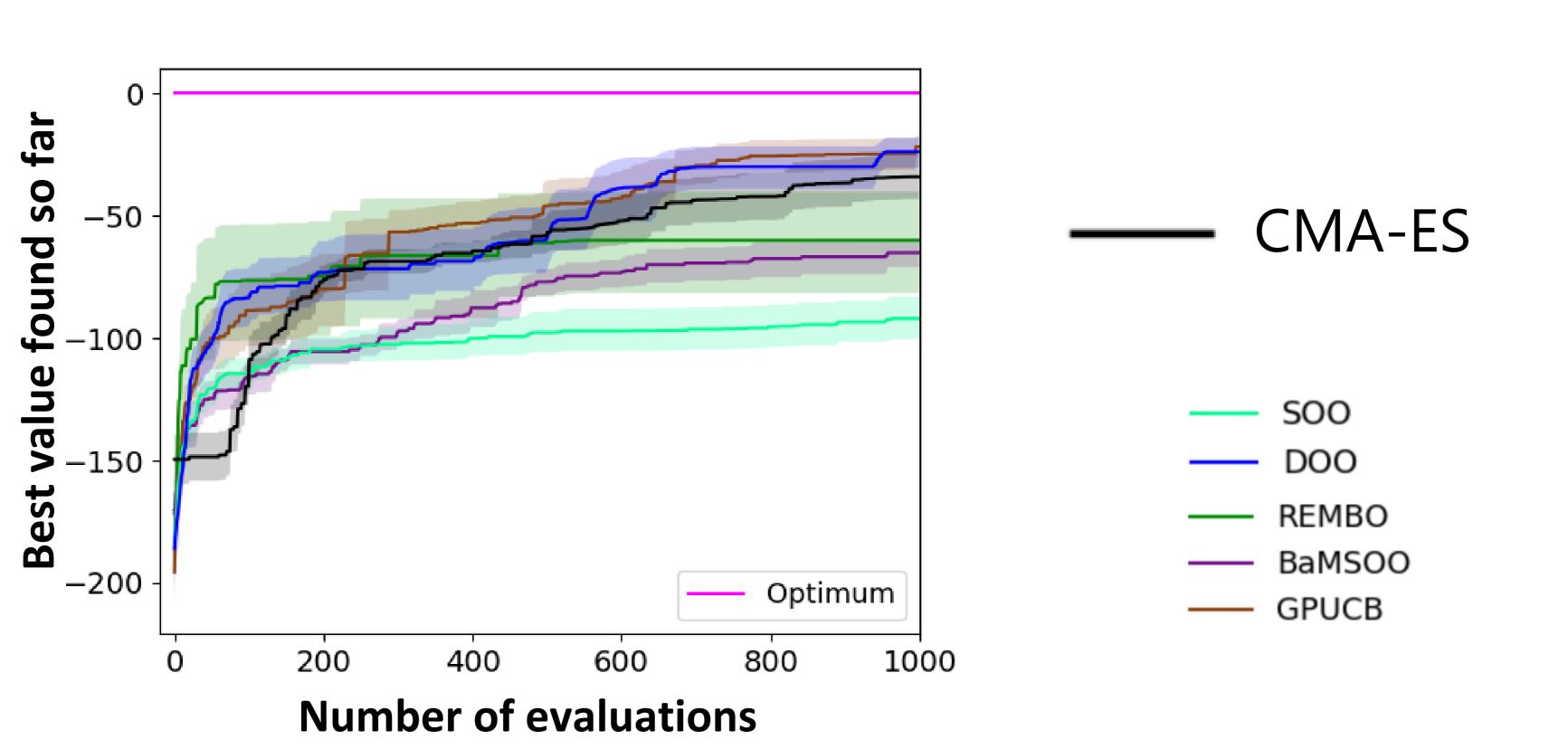
10D - Bayesian optimization methods



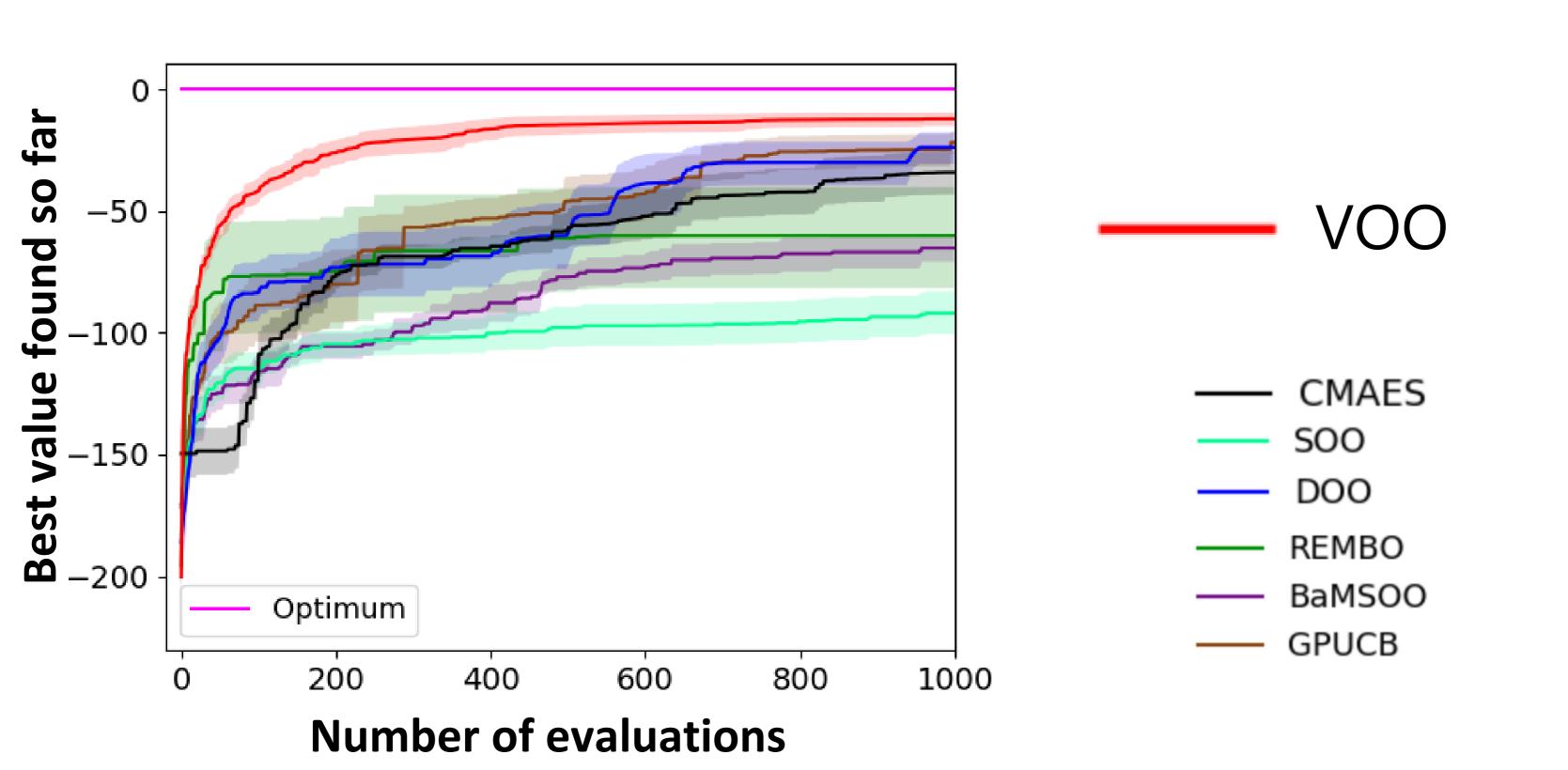
10D - Hierarchical partitioning methods



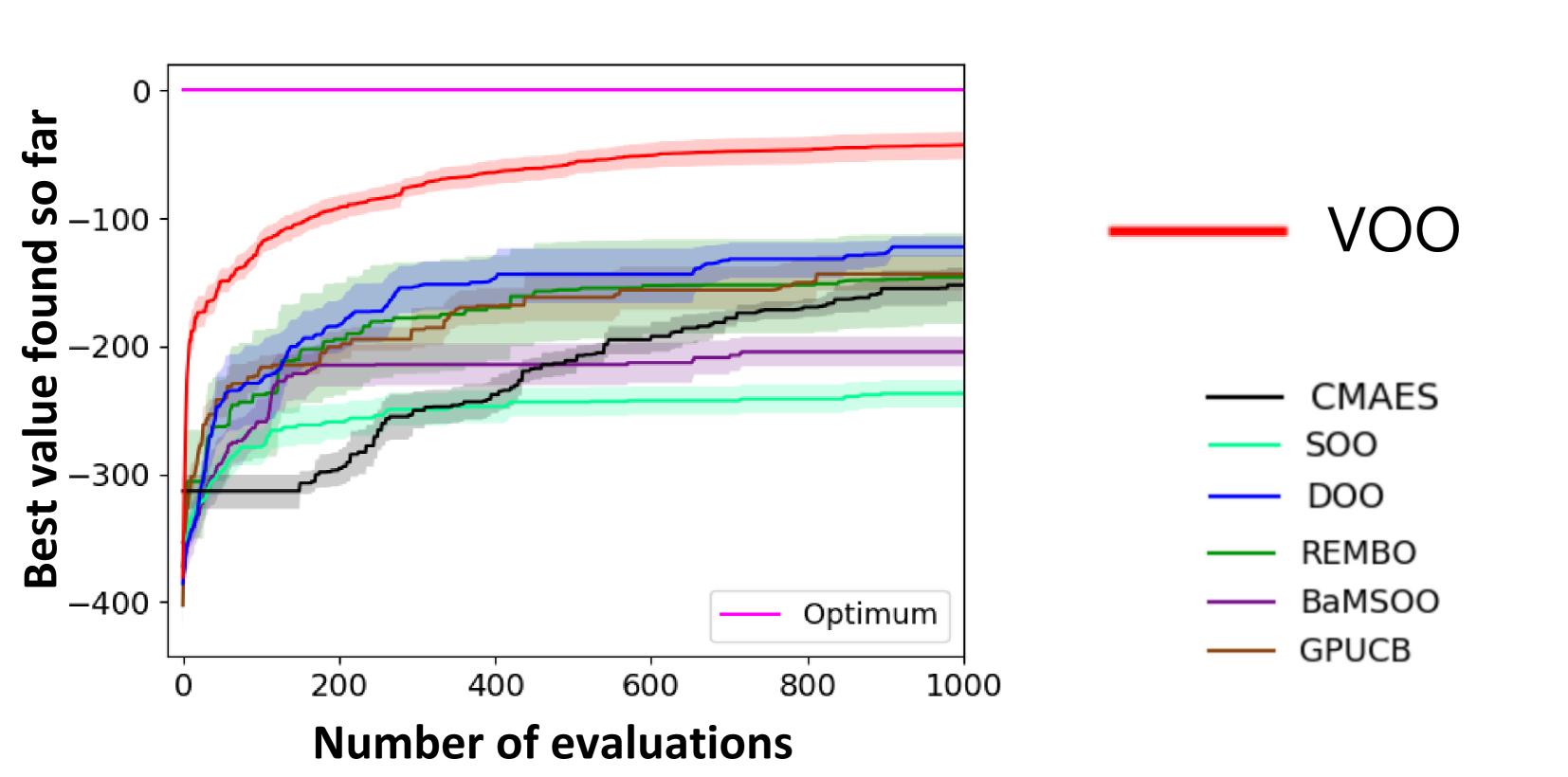
10D – Evolutionary algorithm



10D – Voronoi optimistic optimization



20D – even more drastic difference



From BBFO to MCTS

- So that was when planning horizon is 1
- What about planning horizon >= 1, for deterministic environments?

VOO applied to Trees (VOOT): high-level idea

Assign a VOO agent at each node

VOO applied to Trees (VOOT): high-level idea

Assign a VOO agent at each node

Solve the action optimization problem using the estimated Q-function

$$\max_{a \in \mathcal{A}} \hat{Q}(s, a)$$

Our main theoretical result

How many simulations do we need to guarantee

$$V_{\star}(s_0) - \hat{V}_N(s_0) \le \eta, \eta > 0$$

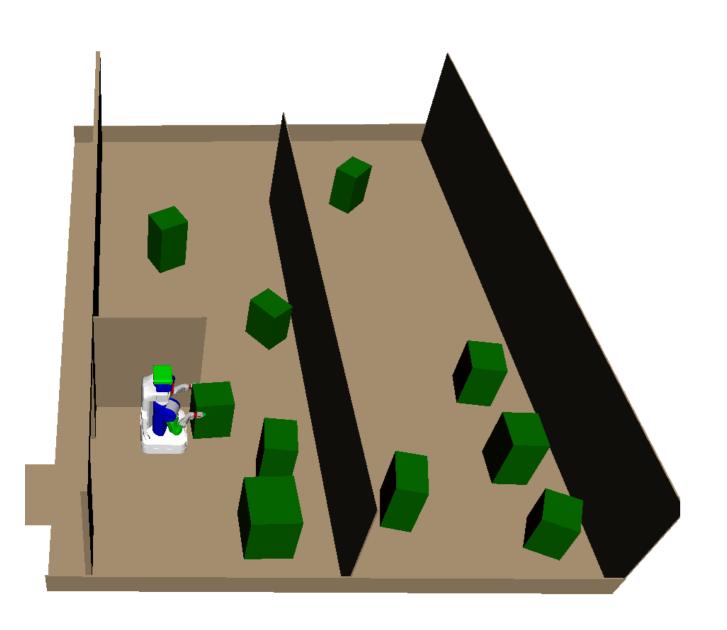
Our main theoretical result

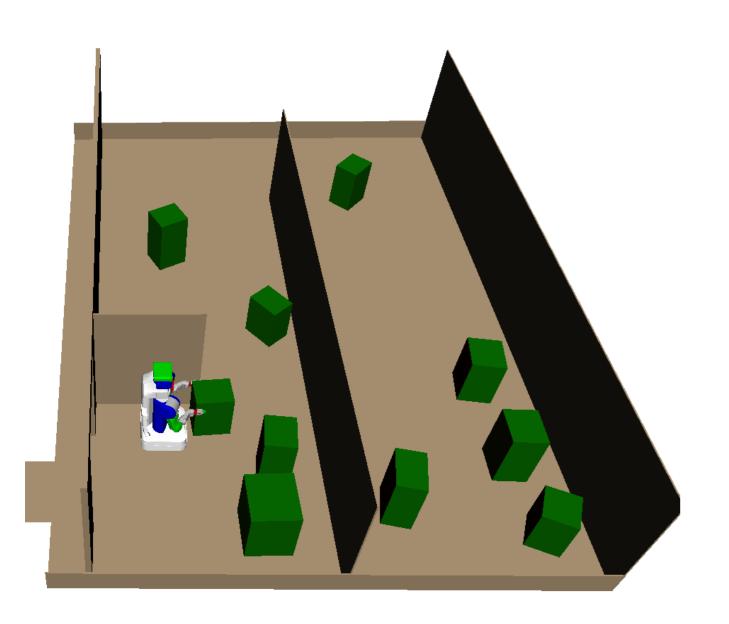
How many simulations do we need to guarantee

$$V_{\star}(s_0) - \hat{V}_N(s_0) \le \eta, \eta > 0$$

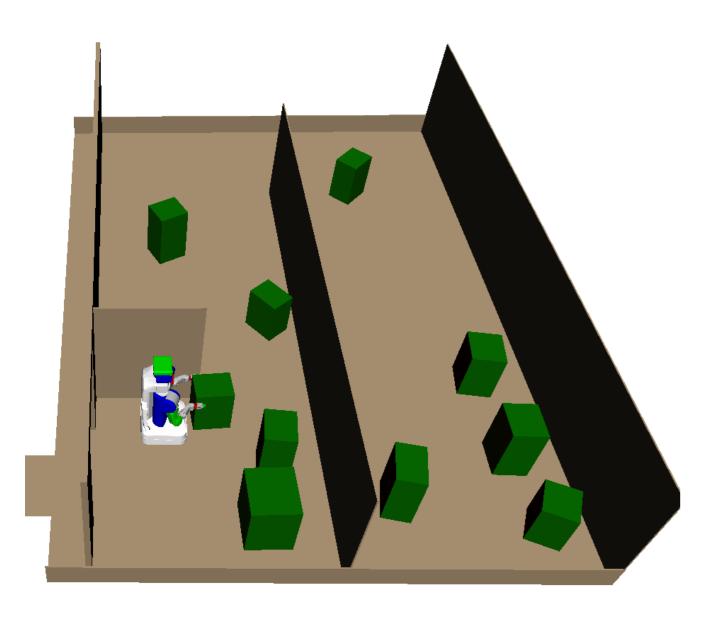
Under mild assumptions, $\mathbb{E}[N] = m^h$

$$m = \log\left(\frac{\eta(1-\gamma)}{2L\delta_{max}C_{max}}\right) \cdot \min(G_{\lambda,\omega}, K_{\nu,\omega,\lambda})$$

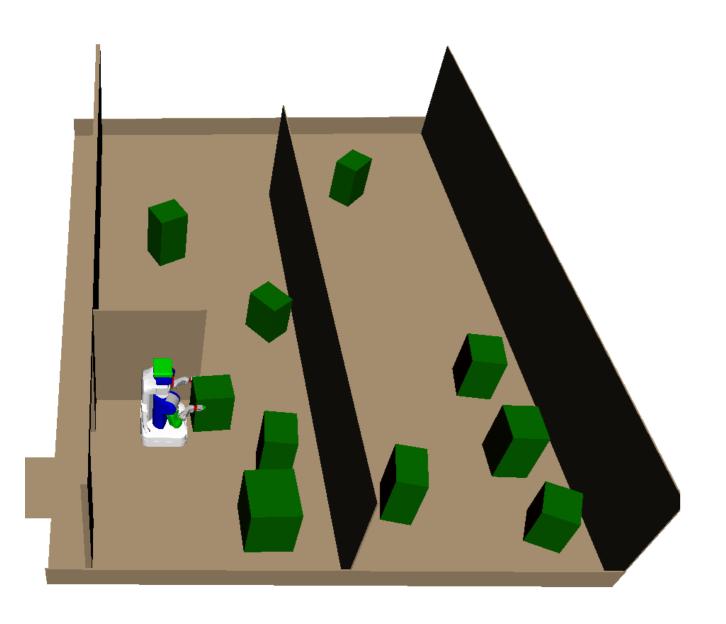




Actions: placements for three boxes (9 dim)

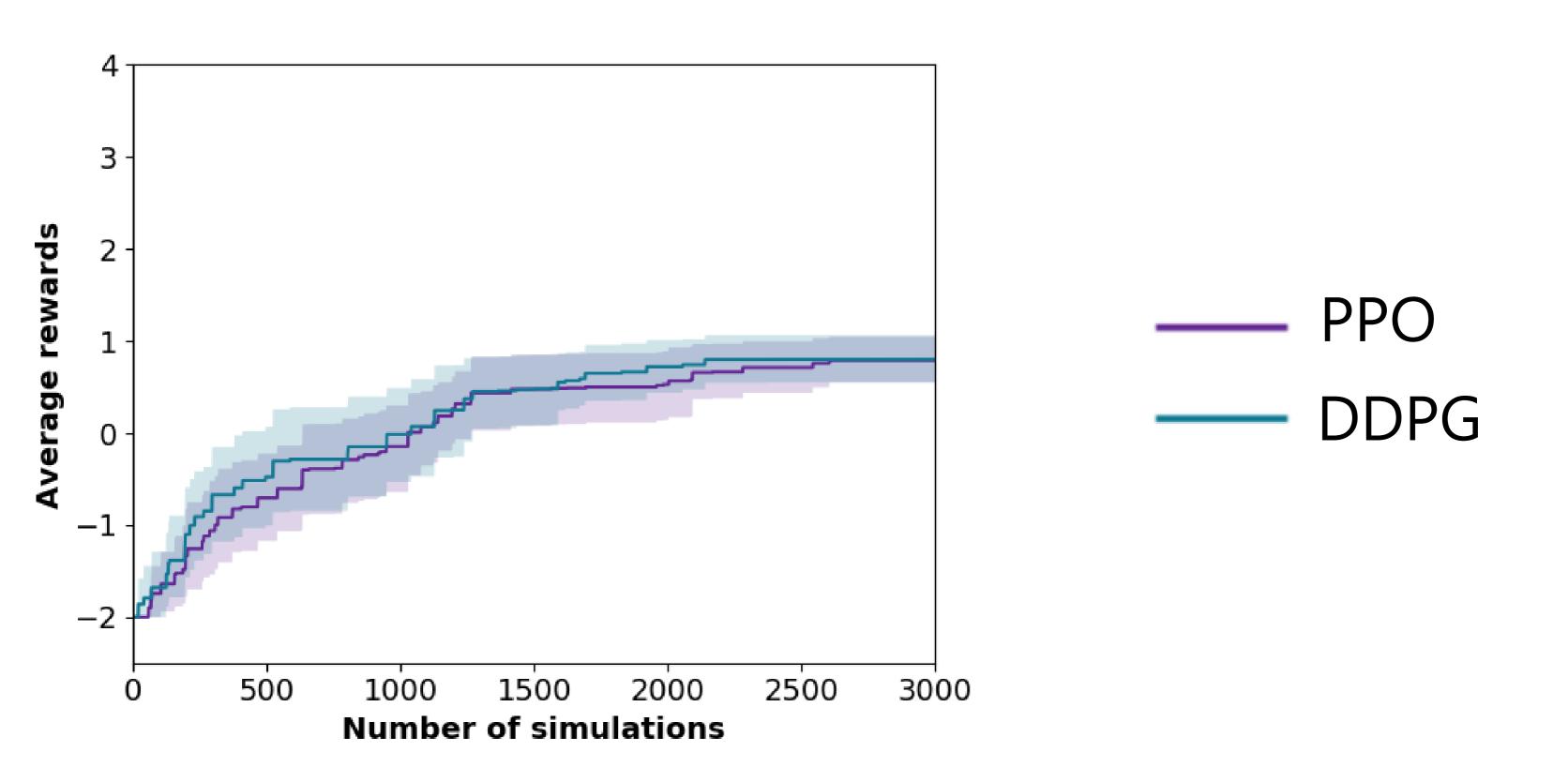


- Actions: placements for three boxes (9 dim)
- Reward function:
 - 1/d if feasible,
 - r_min otherwise

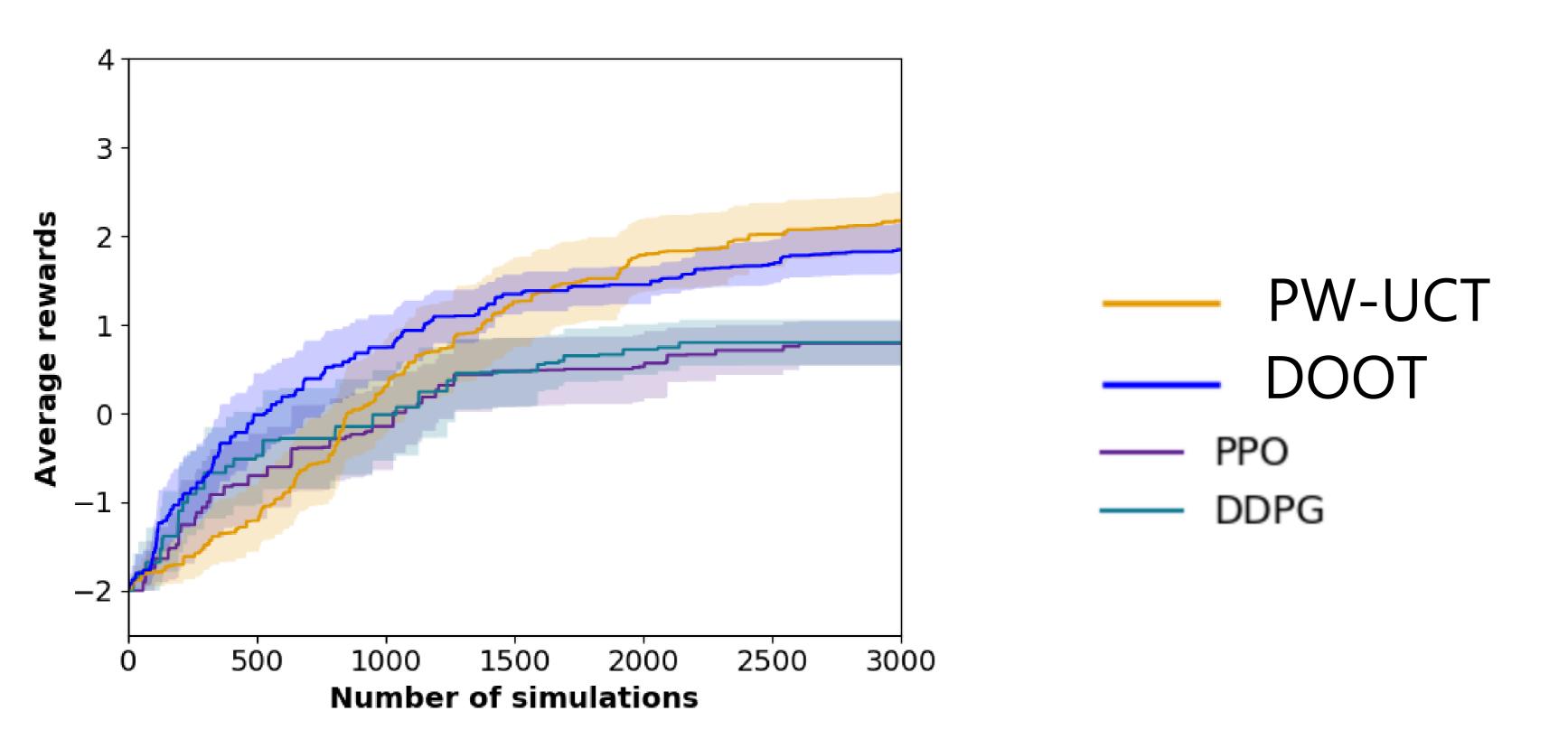


- Actions: placements for three boxes (9 dim)
- Reward function:
 - 1/d if feasible,
 - r_min otherwise
- Total boxes to pack: 20

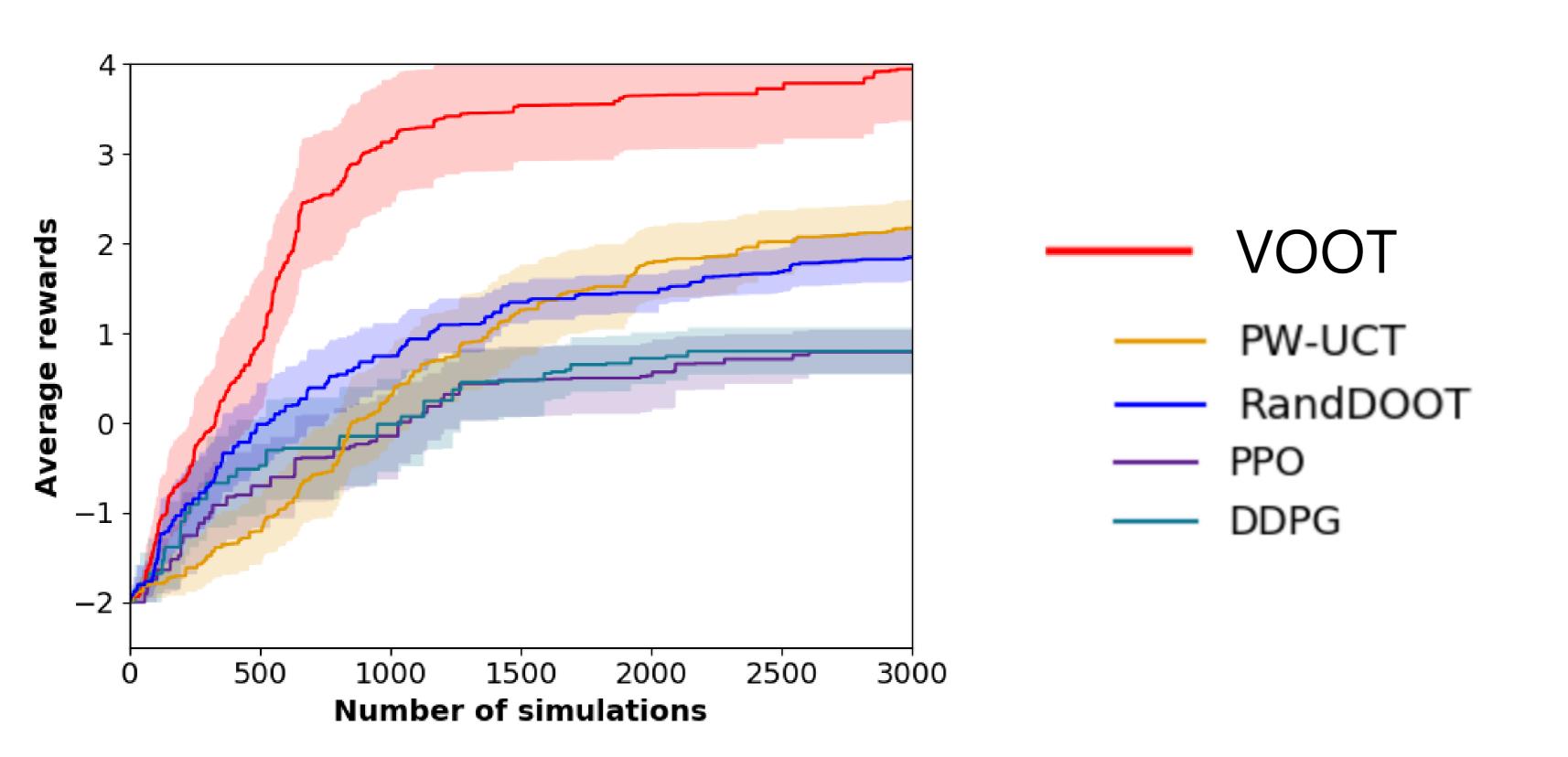
State-of-the-art RL algorithms



State-of-the-art continuous-action MCTS



VOO applied to Trees



Takeaways

Voronoi Optimistic Optimization applied to Trees (VOOT) for deterministic environment

- <u>Empirical contribution</u>: improvement over the stateof-the-art, especially in high-dimensional actionspaces
- Theoretical contribution: regret-bound for VOOT