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This tutorial ...

e A short tutorial (50 min) to introduce brief ideas and some promising
approaches

o Not an exhaustive survey

e Focus on anomaly detection in computer vision and medical image analysis
o You can find much literature on novelty detection in many domains

e Review of recent anomaly detection methods in 2017 ~ 2020
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Outline

e Medical imaging and anomaly detection
o Clinical motivation
o Anomaly detection system
o Anomaly score
o Challenges in anomaly detection
e Anomaly detection approaches in computer vision and medical imaging
o Deep learning based approaches
= Unsupervised and hybrid methods
s One-class neural networks
o Medical applications
o Anomaly scores for medical images
e Summary
o Limitations and Challenges

KYUNGPOOK

NATIONAL UNIVERSITY



Anomaly Detection
Medical Imaging Applications
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Medical Imaging

o “Process of creating visual representations of the interior of a body

for clinical analysis and medical intervention”
o Interpreted by medical doctors, radiologists or sonographers
o For diagnostic purpose

e CT, MRI, ultrasound imaging, functional imaging, ...
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Brain Hemorrhage

o Diagnosis using medical images
o Find any lesion
o Compare and measure

o What can you see?
o Same anatomical structure
= Location and shape

o Differences in pixel intensity and texture

o Expansion of the structure?

o Compared to healthy subject’s image

Patient

Healthy subject
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Anomalies in Medical Images

o Definition of anomaly
o “A deviation from the common rule, type, arrangement, or form”
o Also referred as abnormalities, outliers, or deviants

e Anomalies in diagnostic medical images
o Uncommon patterns in images

o How to detect and quantify

7 KYUNGPOOK
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Anomaly Detection in Medical Imaging

o Early detection of lesions is critical
o Better prognosis and able to prevent severe symptoms
e Problems in real world
o Number of experienced doctors < number of patients and scans
o Difficult to read all slices of 3D volumes = time-consuming
o Dataset for possible anomalies = not available in most cases

e Clinical scenario

N
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Characteristics of Anomalies

e Brain Hemorrhage

o Hounsfield unit Bone (1000)

o Different grey levels to -
hemorrhage

o Distinguishable from surrounding Hem‘;g‘ggg

structures and normal cases oM &m

e Anomalies !

o Depend on organs and CSF (0)

imaging modality —

Fat (-30~-100)
s CT, MR, US, X-Ray, PET, .... —

m Brain, heart, lung, prostate, ... Air (-1000)

—

o Need information about normal cases
o Understanding of abnormal changes
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Various Representations of Brain in MRI

e Large variations across patients, imaging device, and hospital
e Difficult to define anomalies and image dissimilarity
o Data-driven approaches may be promising

Tanenbaum, L. N., Tsiouris, A. J., Johnson, A. N., Naidich, T. P., DeLano, M. C., Melhem,
E.R., ... & Field, A. S. (2017). Synthetic MRI for clinical neuroimaging: results of the
10 Magnetic Resonance Image Compilation (MAGIC) prospective, multicenter, multireader

trial. American Journal of Neuroradiology, 38(6), 1103-1110. KYU N G Po 0 K
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Anomaly Detection System

o Aims to automatically localize anomalies and quantify their
differences from other observations (normal cases)
o Computer-aided anomaly detection
o Three fundamental approaches to anomaly detection
o Using prior knowledge of anomalies and normality or not

Areas without For medical imaging
RODNAY Hianc. VIO - Strong or weak annotation by experts
- Regions of interest, landmarks, disease type labels

Normal lungs

1. Supervised methods
2. Unsupervised methods
3. Semi-supervised methods

Hodge, V., & Austin, J. (2004). A survey of outlier detection
methodologies. Atrtificial intelligence review, 22(2), 85-126.

Figure | Figure 2
https://www.pinterest.com/pin/108790147231801412/
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Anomaly Detection System

e Approach #1: with prior knowledge of anomalies and normality
o Modeling normality and anomalies together
s Using pre-labelled data
o Limitations
= Require a good spread of normal and abnormal data for generalization =2

not easy in most clinical cases
m Classification is limited to the known distribution

NNI""

Cardiomegaly _Emphysema Mass Pneumothorax Multi-label chest X-Ray image classification

Using 112,120 chest X-ray images (Chest X-ray14)
Labelled for 14 disease pathologies + no-finding
* https://www.kaggle.com/nih-chest-xrays/data

Infiltration Atelectasis Effusion Emphysema

Pneumothorax Effusion Mass Infiltration
12 Guan, Qingji, and Yaping Huang. "Multi-label chest X-ray image classification KYU N G Po 0 K
via category-wise residual attention learning." Pattern Recognition NATIONAL UNIVERSITY

Letters (2018).
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Anomaly Detection System

e Approach #2: without prior knowledge of training data
o Assume that abnormal cases are well separated from the normal data
o Unsupervised clustering methods
m Remove outliers in training data and fit models to the remaining
m Use the outliers to build a robust classifier
o Limitations
= Difficult to recognize without expertise = machine can do it?

s Require to define dissimilarity measures between images

(a) “No Finding” (b) “Cardiomegaly” (¢) “Pneumothorax” (d) “Pneumothorax”
13 Baltruschat, Ivo M., Hannes Nickisch, Michael Grass, Tobias Knopp, and Axel KYU NGPOO K
Saalbach. "Comparison of deep learning approaches for multi-label chest X- NATIONAL UNIVERSITY

ray classification." Scientific reports 9, no. 1 (2019): 6381.
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Anomaly Detection System

e Approach #3: modeling normality only
o Learns to abnormality with supervision about normal class
= Draw a boundary of normality
s Suitable when the data set of possible anomalies is limited
= A way medical doctors recognize lesions in medical images
o Limitations
m Lack of prior information on anomalies = high false alarms

= Require enough samples for normality 2 how many?

Voxelwise detection using z-score threshold
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Challenges in Anomaly Detection

e Modeling methods of normal cases

o Representation learning of medical images
m Curse of dimensionality: 3D/4D volume (CT, MRI), large 2D image (X-Ray)

o Lack of well-defined representative boundary of normal cases
o Data collection from healthy subjects
o Good spread of normal cases: represent the diversity of target population
o Factors to consider
m Age, gender, imaging modality, hospital, and imaging protocol
o Generalization of models
o How to build more generalized models of normality with limited sample
o Data augmentation, hyperparameter settings, adding noise, ...
e Anomaly scores
o Margin from the boundaries of normal cases
o Evaluation: pixel-wise, patch-wise, region-wise, and image-wise
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Deep Anomaly Detection
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Anomaly Detection using Deep Learning

e Models

o Unsupervised AD MOG'S
= Reconstruction-based J 1

= Classifier using latent

representations Deep features
L sdAutoencoders + one-class
o Classification (one-class) S
e Anomaly scores

o Reconstruction loss —

o Distance from the center of
data distribution
o Depend on models and modalities

]
One-class
NEUIE]

Network

GAN

Chalapathy, Raghavendra, and Sanjay Chawla. "Deep learning for
18 anomaly detection: A survey." arXiv preprint arXiv:1901.03407 (2019). KYU N G Po 0 K
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Reconstruction-based Anomaly Detection

o Aims to localize anomalies in images

o Assume that anomalies yield higher residuals to the reconstruction
of input data

o Deep autoencoders with/without adversarial framework

Input Image Autoencoder Reconstruction Anomaly Map
with normal cases

19 KYUNGPOOK
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Autoencoder Approaches

o Robust deep autoencoder
o Deep autoencoding Gaussian mixture model
o Adversarial autoencoder

KYUNGPOOK

NATIONAL UNIVERSITY



Robust Deep Autoencoders

e An extension of deep autoencoder
o  To discover high quality, non-linear 0 prr——
features while eliminating noise

o Inspired by Robust PCA

o  Optimization problem
minllX — D(ECO)I| >

Bmda
01 10 50 100 150 200 250 0 700 W00

Robust Auto-
encoder Recon

min||Lp — Dg(Eg(Lp))llz + AllSIly
(Denoising)
rtrglisnllLD — Do (Eg(Lp))Il2 + AllS|l21

(Anomalies in group)
subjecttoX — L, —S5=0

Auto-encoder
Recon

WOoON~OL YN
SN N Wy & N e R

10 corruption
per digit

per digit
e Learning common patterns in data against image noise

Zhou, Chong, and Randy C. Paffenroth. "Anomaly detection with robust deep
autoencoders." In Proceedings of the 23rd ACM SIGKDD International
21 Conference on Knowledge Discovery and Data Mining, pp. 665-674. ACM, 2017. KYU NG Poo K
NATIONAL UNIVERSITY



Robust Deep Autoencoders

e Anomaly detection
o S:reconstruction error in

HQIiSIl”LD — Do (Eg(Lp))lz + AllS|l 2,1
o Larger A - sparser S

L e £

g+ St Lo

g R ISR Eanw LR

3 LTFRRLERNRL O]

oL focfFfows

€RCFEXI L L

R N SRR

PRrREEELRg NS

LFNAL A L4«

m R Lo OEC
1L~ L0 e L€

o Grouped [, ; horm to find
abnormal sample

e Working on abnormal sample

with significant differences
o Anomaly score 2

A = 0.00065

pixel-wise error

Zhou, Chong, and Randy C. Paffenroth. "Anomaly detection with robust deep

autoencoders.” In Proceedings of the 23rd ACM SIGKDD International KYU NG POO K

22 Conference on Knowledge Discovery and Data Mining, pp. 665-674. ACM, 2017.
NATIONAL UNIVERSITY



Deep Autoencoding Gaussian Mixture Model

e Curse of dimensionality
o Any sample could be a rare event with low probability to observe
o Not easy for density estimation
o Dimensionality reduction, but key features could be removed

e DAGMM T — :
! ompression 1
o Compression: deep autoencoder | network |l :
' L ] ,
= Latent features and o (o : o o S
. e @ — e (@ | _ ) !
reconstruction error o o ° of o i e  network |
. . . . [ ] [ ® ® ® i I L] :
o Estimation: predict the mixture 5 b N * |
membership for each sample o o . o o o |
) L e (e ° o o |
= K mixture components e | 0 o o :
R e P o o o I @
E(z) = —log (Z @Ckp( 1 G M)A N G M)))
k=1 £/ |2T|'Ek| --------------------------------------------------------------------------
Zong, Bo, Qi Song, Martin Rengiang Min, Wei Cheng, Cristian
Lumezanu, Daeki Cho, and Haifeng Chen. "Deep autoencoding
23 gaussian mixture model for unsupervised anomaly detection.” (2018). KYUNGPOOK
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Deep Autoencoding Gaussian Mixture Model

e Anomaly detection using DAGMM
o Sample with high energy (E(2))
» Low likelihood in mixture-component distribution
o Estimation network considers two features

. Component 1
= Not only latent representation

= Also consider reconstruction error Component 3

Component 2

e Anomaly localization
o How to use the membership information

o Patch-wise or region-wise evaluation i .
Anomaly >0 e > e >0
2 2 13
https://[towardsdatascience.com/gaussian
-mixture-models-explained-6986aaf5a95

Zong, Bo, Qi Song, Martin Rengiang Min, Wei Cheng, Cristian
Lumezanu, Daeki Cho, and Haifeng Chen. "Deep autoencoding KYUNGPOOK

24 gaussian mixture model for unsupervised anomaly detection.” (2018). NATIONAL UNIVERSITY
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Adversarial Autoencoder

e Learning the probability distribution of normal sample
o Controlling the latent distribution and image generation
o To ensure good generative reconstruction of normal sample

e Autoencoder +

two discriminators : I — |
o 1, ﬁjliz lﬁj o
o D,: distinguish btw | | | N

latent representation . . L Decoder
----------- T
and V' (0,1) b —
. . e AN Real
o D, distinguish btw 2 | — =
— YR Fake
the reconstructed ’  Disctor
image (x') from N(0,1)

Distribution prior

_____________________

_____________________

N (0 , 1) and real im age ﬁ Convolutional Layers I Fully connected Layers — % Fake Sample — b Real Sample

Pidhorskyi, Stanislav, Ranya Almohsen, and Gianfranco Doretto. "Generative
probabilistic novelty detection with adversarial autoencoders." In Advances in Neural
25 Information Processing Systems, pp. 6822-6833. 2018.
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Adversarial Autoencoder

o Anomaly detection
o By evaluating the inlier probability distribution on test sample
= Density estimation in latent space
> Image-wise anomaly evaluation = patch-wise approach

0.6 ‘ PDF of embeding p= o
Label “7” - inlier

0.5 -

> wewa 72 -2 7 777777

%0-4— Reconstruction: 7 ~) 7 ‘7 7 7 ,7 7 7

2‘03

E ”2 Label “0” - outlier

0.1 e 0 O 000 OO0 O 0O

0.0 Reconstruction: 9 7 ~ 0 9, 0 72 ’7 .

) 6
Reconstruction of inliers (7) and outliers (0)
Pidhorskyi, Stanislav, Ranya Almohsen, and Gianfranco Doretto. "Generative
probabilistic novelty detection with adversarial autoencoders.” In Advances in Neural KYU N G PO 0 K
26 Information Processing Systems, pp. 6822-6833. 2018. NATIONAL UNIVERSITY



Generative Adversarial Networks

e Deep convolutional GAN (AnoGAN)
e Ganomaly: a GAN for anomaly detection

Real
Samples

&

Latent
Space
" IsD

Generated
Fake
= Samples

https://www.kdnuggets.com/2017/01/generative-adversarial-
networks-hot-topic-machine-learning.html

27

‘. Correct? /

KYUNGPOOK

NATIONAL UNIVERSITY


https://www.kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html

Deep convolutional GAN (AnoGAN)

e Unsupervised learning
o To create arich generative model of normal cases
o Manifold learning of normal anatomical variability

e Mapping images to latent space (z)

o Latent space search Real

o To find the best z for normal images

o Using residual and discrimination losses

Lr(zy) =Y [x — G(z,)]
Lp(zy) =Y [f(x) — £(G(z,))] i

e

Generated
G(z)

Generator G Discriminator D

Schlegl, Thomas, Philipp Seebdck, Sebastian M. Waldstein, Ursula Schmidt-
Erfurth, and Georg Langs. "Unsupervised anomaly detection with generative
adversarial networks to guide marker discovery." In International Conference on KYU NGPOO K
2 . . . . . _ .
8 Information Processing in Medical Imaging, pp. 146-157. Springer, Cham, 2017. NATIONAL UNIVERSITY



Deep convolutional GAN (AnoGAN)

o Anomaly detection
o Anomaly score: A(x) =(1—\)- R(x)+ A- D(x)
o Pixel-wise residual loss to localize anomalies

Schlegl, Thomas, Philipp Seebdck, Sebastian M. Waldstein, Ursula Schmidt-
Erfurth, and Georg Langs. "Unsupervised anomaly detection with generative
adversarial networks to guide marker discovery." In International Conference on

29 Information Processing in Medical Imaging, pp. 146-157. Springer, Cham, 2017. 'ﬁ!gﬂﬁtﬁ\%‘%_ﬁ



GANomaly: a GAN for anomaly detection

e Problem of prior GAN based approaches
o Require latent space search to remap the latent vector to new images
o Expensive process and high complexity

e GANomaly = encoder-decoder-encoder pipeline
o To capture the normal data distribution within image and latent space

o Reconstruction network

s Adversarial auto-

encoder (AAE) . 4 b Lene = ||z — 2|,
o Latent vector generation L Leon = ||z — 2|,
= Encoder to learn .
. . o > Loaw = ||f(z) = F(2)]],
the distributions
from a latent space - fuimmw Real / Fake
fC)
Akcay, Samet, Amir Atapour-Abarghouei, and Toby P. Breckon. "Ganomaly:
Semi-supervised anomaly detection via adversarial training." In Asian
30 Conference on Computer Vision, pp. 622-637. Springer, Cham, 2018. KYUNGPOOK
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GANomaly: a GAN for anomaly detection

o Anomaly detection
o Anomaly score = distance between the latent vector of AAE and the
inferred vector from the reconstructed image
A#) = |Gp(@) — E(G@))],
|”-like image drawn from the normal data distribution

= X:“norma

FFOB

AAE fails to reconstruct abnormal
sample > dissimilarity btw the latent
vectors

Akcay, Samet, Amir Atapour-Abarghouei, and Toby P. Breckon. "Ganomaly:
Semi-supervised anomaly detection via adversarial training." In Asian KYU NGPOO K
31 Conference on Computer Vision, pp. 622-637. Springer, Cham, 2018. NATIONAL UNIVERSITY



One-class Classification Methods

o Deep Support Vector Data Description (Deep SVDD)
e One-class Convolutional Neural Network (OC-CNN)
o Adversarially Learned One-Class Classifier for Novelty Detection

https://en.wikipedia.org/wiki/One-class classification

32 KYUNGPOOK
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Deep Support Vector Data Description

e Previous approaches in one-class classification
o One-class SVM or kernel density estimation
o Fails in high-dimensional, data-rich scenarios < curse of dimensionality
e Deep support vector data description
o A neural network minimizing the volume of a hypersphere that encloses the
latent representations of normality data
o Learning common features across normal instances

A X
N ) - . .
1 2 —_— o L B "o _,3_ 2
. o min | ’rLﬂ;mﬁ{D- lo(z:: W) — ¢ ﬂj}
g.o ’ -] }1 L
R IWIR
R 'o.". s, =1
-

Ruff, Lukas, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed
Siddiqui, Alexander Binder, Emmanuel Muller, and Marius Kloft. "Deep one-class KYU NG POO K
33 classification." In International conference on machine learning, pp. 4393-4402. 2018. NATIONAL UNIVERSITY



Deep Support Vector Data Description

o Anomaly detection

o Anomaly score = distance of the latent representation of new image to

the center of the hypersphere
s(x) = [|o(z; W) — ¢||?

o Image-, patch-, and region-wise evaluation = rough localization

DOOLOO oo s
/] 1| A/ [/
44 & § U4\
77 72850
999919 777

Most normal Most anomalous Most normal Most anomalous

-

Ruff, Lukas, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed
Siddiqui, Alexander Binder, Emmanuel Muller, and Marius Kloft. "Deep one-class

34 classification." In International conference on machine learning, pp. 4393-4402. 2018. NATIONAL UNIVERSITY



One-class Convolutional Neural Network

e One-class classifier

o Mapping image features distant from pseudo-negative data
o Pseudo-negative data drawn from a Gaussian distribution

o Anomaly detection
o Classification with softmax layer: membership of normality

P Feature
x A ¢ T Extractor
o (o] % ’-"'(;-ﬁ X » ’ 00 e} ()\\
(o] o] . . AN \ r
(o] o 0] [e] QD OD o L) e ] o o] [o ! - "
. 090, ! o 2004 ' 09%0p
oo © x ' 0°©° Op 9 X YeXo) Q i
Q ‘\ (o] 000 [ X L
* 13 “ O ’ ] X s T
. o Qﬂ’ X ‘\\ ...h_.
X X \\\ X X X X \\ —
X . X X
> - Gaussian |
N (. o* - .
(a) OC-SVM (b) SVDD (c) Single-MPM et Concate  Classifier
Oza, Poojan, and Vishal M. Patel. "One-class convolutional neural KYU NG Poo K
network." IEEE Signal Processing Letters 26, no. 2 (2018): 277-281.
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Adversarially Learned One-Class Classifier

o Two networks with adversarial learning
o Generator (R): reconstruction from the normal data distribution

o Discriminator (D):

classification for inliers and A .

: ¥ B

O u tI I e rS target class training sample

o Using discriminator for anomaly ;
detection 2 E > S &

g S 5 83

 Input with random noise g & g3
o Robust to image noise and X >7 R X =[o,1j
distortions ) R = D . |

o Generalization

Sabokrou, Mohammad, Mohammad Khalooei, Mahmood Fathy, and Ehsan Adeli.
"Adversarially learned one-class classifier for novelty detection.” In Proceedings KYU NG POO K
36 of the CVPR, pp. 3379-3388. 2018. NATIONAL UNIVERSITY



Adversarially Learned One-Class Classifier

o Anomaly detection
o Using target class likelihood of reconstructed images
= Simple threshold
=« Low probability = outlier
o Generator usually fails to
reconstruct outlier images

Qutlier Class Reject Region Inlier Class

Sabokrou, Mohammad, Mohammad Khalooei, Mahmood Fathy, and Ehsan Adeli.
"Adversarially learned one-class classifier for novelty detection.” In Proceedings KYU NG P00 K
37  ofthe CVPR, pp. 3379-3388. 2018. NATIONAL UNIVERSITY
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Deep Anomaly Detection for
Medical Image Analysis
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Anomaly Detection in Medical Images

o Autoencoder approaches

o Aims to localize anomalies in medical images

o Reconstruction errors = pixel-wise anomaly score

o Using variational autoencoder and its variants for manifold learning
e Imaging domains

o Optical coherence tomography (OCT): retinal disease

o MRI, CT: brain tumor, brain hemorrhage

o Diffusion MRI: multiple sclerosis

o Neural networks designed for specific imaging modalities

e Anomaly scores

KYUNGPOOK
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Anomaly Score using Variational Autoencoder
Gradients

e Prior approaches
o Reconstruction error as anomaly score
o Assumption: models fail to reproduce anomalies not seen during
training
o Anomaly score with gradients
o Score = directions towards the normal data samples
o Magnitude of the score = magnitude of abnormality
o Score is the derivative of the error function w.r.t the input data

dlog p(x) N I(—Drr(q(z]x)|[p(=)) + Eq(z|z) log p(x|z)])

et

Ox Ox

Zimmerer, David, Jens Petersen, Simon AA Kohl, and Klaus H. Maier-Hein.
"A Case for the Score: Identifying Image Anomalies using Variational
Autoencoder Gradients." arXiv preprint arXiv:1912.00003 (2019). KYUNGPOOK
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Anomaly Score using Variational Autoencoder
Gradients

o Application to brain MR

Reconstruction Variaional Autoencoder
Error Gradients

Input Lesion

Zimmerer, David, Jens Petersen, Simon AA Kohl, and Klaus H. Maier-Hein.
"A Case for the Score: Identifying Image Anomalies using Variational
Autoencoder Gradients." arXiv preprint arXiv:1912.00003 (2019). KYUNGPOOK
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g-Space Novelty Detection with Variational Autoencoders

e Diffusion MRI
o Mapping the diffusion process
of water molecules
o Multiple volumes with different

b-values and gradient directions

R

Diffusion Signals
of different gradient directions
at the same location

b =1495, g7

42 KYUNGPOOK
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g-Space Novelty Detection with Variational Autoencoders

e Input feature
o d-dimensional vector of diffusion directions
o Voxel-wise modeling
o Normality modeling: Variational autoencoder
o Various anomaly scores
o Deterministic error -
o Stochastic error -

Xeest

= Multiple inference

o -
Enl:adeN TVXDel:Dder

= Average and min Normal sample
Normal sample: reconstruction q
error — Test sample
————— Test sample: reconstruction ‘ > 7

o Distance btw latent feature Novelty metric

Vasilev, Aleksei, Vladimir Golkov, Marc Meissner, llona Lipp, Eleonora

Sgarlata, Valentina Tomassini, Derek K. Jones, and Daniel Cremers. "g-Space

Novelty Detection with Variational Autoencoders." arXiv preprint KYU NG POO K
43 arXiv:1806.02997 (2018). NATIONAL UNIVERSITY



Uncertainty Autoencoder for Anomaly Detection

e Limitations of variational autoencoder
o To regularize the latent space to follow normal distribution = difficult to model
normal data distribution
e Spatial Uncertainty Auto-encoder
o Add isotropic Gaussian noise to model the data distribution as Gaussian with
fixed scalar variance
o Spatial autoencoder to preserve anatomical features of brain images
o Reconstruct “normal-like” brain image for disease cases

" Encoder pecoder KYUNGPOOK

NATIONAL UNIVERSITY



#4. Reconstruction-based Anomaly Detection

0.4

e Application to brain hemorrhage aor

e
w

Model

| ANOVAEGAN
Spatial UAE
02 VAE
Il veecen
0.1
0o ol LLEW LS [ [

1 5 10 15 20 25 30
Percentile

Sensitivity

o Better sensitivity compared to VAE, o .
VAE-GAN - Il . @
(%EI.Q. [ | ::EGA.N
Grover, A., & Ermon, S. (2018). Uncertainty
autoencoders: Learning compressed representations
via variational information maximization. arXiv preprint 7 i
arxiv:1812.10539. CT Upecenie” 7T
Jaeil Kim, et al. Unsupervised anomaly detection in KYUNGPOOK

4 : : :
> brain CT, in preparation NATIONAL UNIVERSITY
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Summary
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Summary

e Deep anomaly detection methods
o Autoencoder approaches
o Generative adversarial networks
o One-class classification

e Open questions

o How to reduce false positives and false negatives
m Large variations across subjects and image quality

III

o “Norma

s Reconstruction of abnormal region is unpredictable
o Anomaly evaluation: image-wise, patch-wise, pixel-wise
o Limited number of sample from normal cases

s Generalization matters

o Clinical interpretation of anomaly scores
= how images are separated from normal cases

47

https://medium.com/analytics

-like reconstruction process

-vidhya/detecting-anomalies-
in-x-ray-using-cnn-
led4c2e49f23a
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Discussion
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