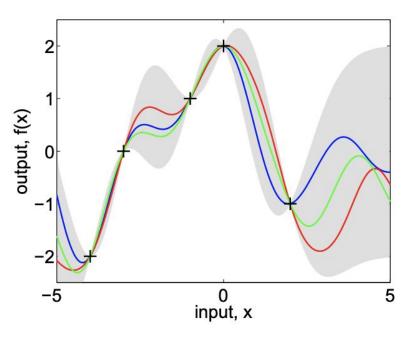
Bootstrapping Neural Process

Juho Lee*, Yoonho Lee*, Jungtaek Kim, Eunho Yang, Sung Ju Hwang, Yee Whye Teh Published at NeurIPS 2020

Graduate school of AI, KAIST

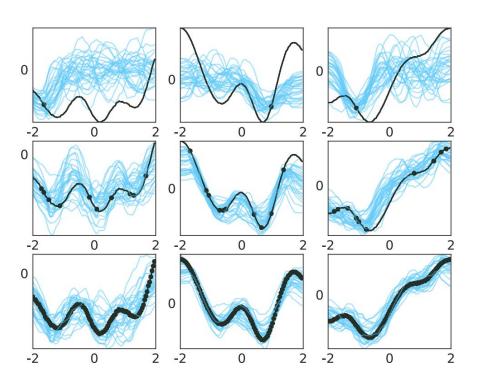
Gaussian process regression



- A prior over functions (stochastic processes).
- Assuming smoothness of functions formulated with Gaussian distributions.
- Closed-form predictive distributions.
- Inefficient for large-scale data.
- Not suitable for high-dimensional data.
- May not work well for data with non-Gaussian errors.

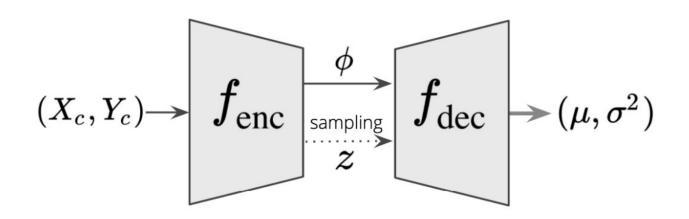
Img taken from [1]

Neural processes (NPs) [2]



- An implicitly defined prior over functions.
- A neural network version of stochastic processes.
- A data-driven way of learning priors over functions.
- Fast inference once trained.
- May describe high-dimensional and non-Gaussian data better.

Structure of NPs



$$\phi = f_{\text{denc}}(X_c, Y_c), \quad (\eta, \rho) = f_{\text{lenc}}(X_c, Y_c), \quad q(z|X_c, Y_c) = \mathcal{N}(z; \eta, \rho^2)$$
$$(\mu_i, \sigma_i) = f_{\text{dec}}(\phi, z, x_i), \quad p(y_i|x_i, z, \phi) = \mathcal{N}(y_i|\mu_i, \sigma_i^2),$$

Training NPs

- Collect the training datasets (not a single data, collect multiple training datasets from a task distribution).
- Construct a neural process model.
- Maximize the lower-bound on the expected likelihood.

$$\log p(Y|X, Y_c) \ge \sum_{i=1}^n \mathbb{E}_{q(z|X,Y)} \left[\log \frac{p(y_i|x_i, z, \phi)p(z|X_c, Y_c)}{q(z|X, Y)} \right].$$

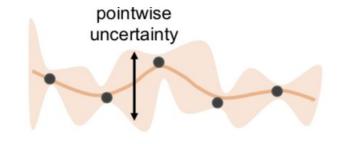
Uncertainties in NPs

Aleatoric uncertainty (pointwise uncertainty, measurement uncertainty)

$$p(y_i|x_i, z, \phi) = \mathcal{N}(y_i|\mu_i, \sigma_i^2)$$

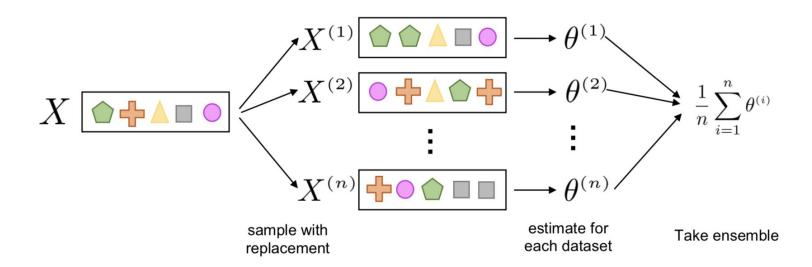
Epistemic uncertainty (functional uncertainty, model uncertainty)

$$(\eta, \rho) = f_{\text{lenc}}(X_c, Y_c), \quad q(z|X_c, Y_c) = \mathcal{N}(z; \eta, \rho^2)$$



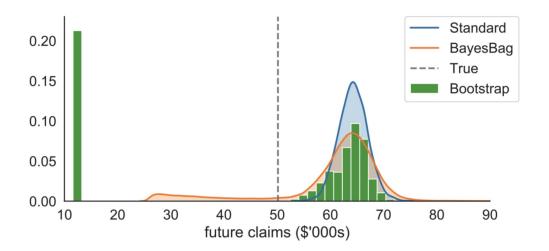
Bootstrap and Bagging

- Bootstrap [3]: use resampling to simulate distribution of parameters.
- Bagging [4]: ensembling estimates from multiple bootstrap datasets.



BayesBag [5]

- Bagging posteriors instead of point estimates.
- Requires less number of bootstrap samples.
- Robust under model-data mismatch [5].



Bootstrapping neural processes (BNP) - motivation

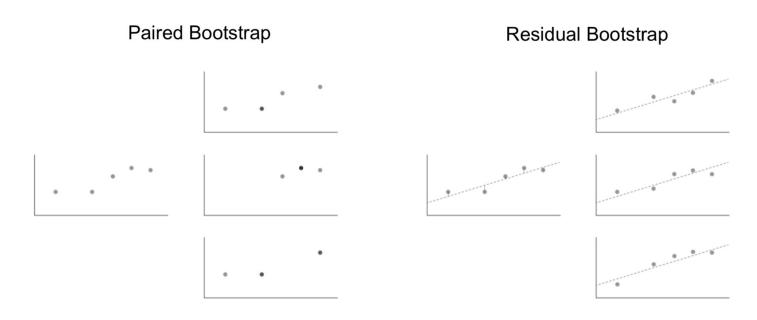
- BNP in a nutshell: replace the latent variable with bootstrapping to induce functional uncertainty.
- More natural way to model functional uncertainty
 - Modeling functional uncertainty with a gaussian latent variable is unnatural, and may act as a bottleneck.
 - We want to minimize the modeling assumption and let the data describe.
 - o Bootstrap and bagging may be a better way to model uncertainty in this case.

Model-data mismatch

- Recall that a neural process requires data sampled from a task distribution. What happens if it encounters data not from the task distribution seen during the training?
- BayesBag is proven to be robust under such scenario. Can neural process benefit from this property?

BNP - using residual bootstrap

We use residual bootstrap instead of vanilla bootstrap.



BNP - using residual bootstrap

1. Compute the initial prediction using the model.

$$\hat{\phi}^{(j)} = f_{ ext{enc}}(\hat{X}^{(j)}, \hat{Y}^{(j)}), \quad (\hat{\mu}_i^{(j)}, \hat{\sigma}_i^{(j)}) = f_{ ext{dec}}(x_i, \hat{\phi}^{(j)}) ext{ for } i \in c.$$

2. Compute the residuals and resample them.

$$arepsilon_i^{(j)} = rac{y_i - \hat{\mu}_i^{(j)}}{\hat{\sigma}_i^{(j)}} ext{ for } i \in c, \;\; \mathcal{E}^{(j)} = \{arepsilon_i^{(j)}\}_{i=1}^c, \;\; ilde{arepsilon}_1^{(j)}, \dots, ilde{arepsilon}_{|c|}^{(j)} \overset{ ext{s.w.r.}}{\sim} \mathcal{E}^{(j)}.$$

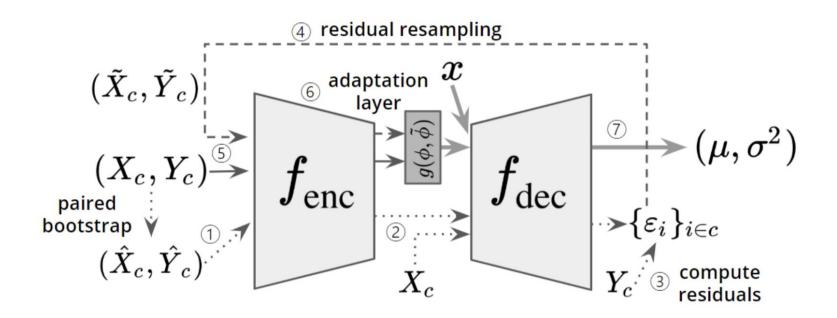
Construct bootstrap datasets.

$$ilde{x}_i^{(j)} = x_i, \ \ ilde{y}_i^{(j)} = \hat{\mu}_i^{(j)} + \hat{\sigma}_i^{(j)} ilde{arepsilon}_i^{(j)} \ ext{for} \ i \in c, \ (ilde{X}_c^{(j)}, ilde{Y}_c^{(j)}) := \{(ilde{x}_i^{(j)}, ilde{y}_i^{(j)})\}_{i \in c} \ ext{for} \ j = 1, \dots, k.$$

BNP - naive application does not work

- We can simply take a trained neural network and apply residual bootstrap + bagging.
- Unfortunately, this works terribly, even worse than the original NP.
 - The approximate posteriors computed from the NP are not perfectly accurate.
 - The bootstrap data generated from residual bootstrap are different from the training distribution, so they act as OOD data.
- We need to train NPs with bootstrap procedure!

BNP - architecture



BNP - a forward pass

- A BNP passes data into the model twice in a single forward pass.
- In the first forward pass, the data passes through the encoder-decoder to construct an initial prediction and compute the residuals.
- Once bootstrap samples are constructed, they are passed through the encoder-decoder again to compute predictions.
- The final prediction is given as a bagged posterior from multiple bootstrap samples.

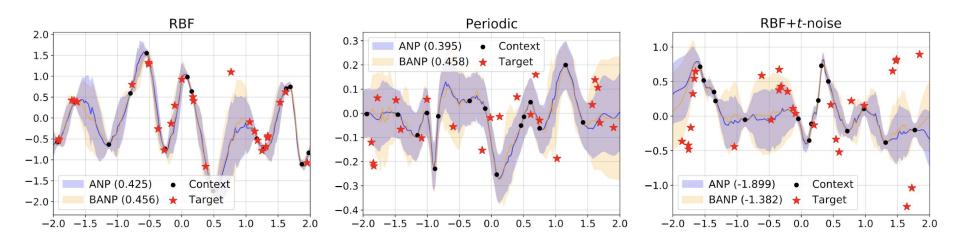
BNP - remark

- Every computation can be parallelized inference for multiple bootstrap datasets can be done by packing them into a tensor.
- Why do we expect BNP to be robust under model-data mismatch?
 - It is an amortized version of BayesBag, so expected to enjoy the robustness of it.
 - When test data is different from training, then we would have large residuals in the initial prediction, and this encourage the model to be conversative in the final prediction.

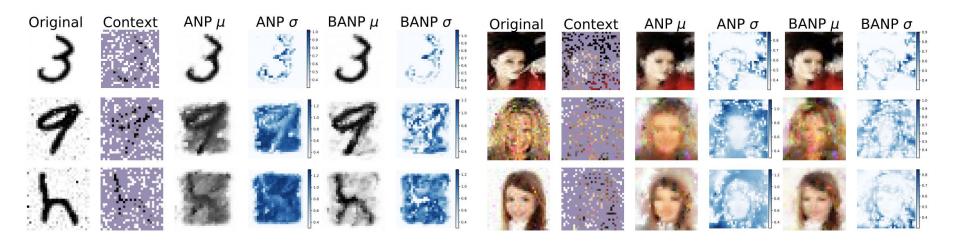
BNP - 1d regression experiments

	RBF		Matérn 5/2		Periodic		t-noise	
	context	target	context	target	context	target	context	target
CNP	0.972 ± 0.008	0.448 ± 0.006	0.846±0.009	0.206 ± 0.006	-0.163±0.008	-1.747±0.023	0.363 ± 0.147	-1.528 ± 0.068
NP	$0.902 \scriptstyle{\pm 0.009}$	$0.420 {\scriptstyle \pm 0.008}$	$0.774 \scriptstyle{\pm 0.012}$	$0.204 \scriptstyle{\pm 0.010}$	-0.181 ± 0.010	-1.338 ± 0.025	0.442 ± 0.016	-0.792 ± 0.048
CNP+DE	0.995	0.521	0.878	0.313	-0.098	-1.384	0.534	-1.129
BNP	1.013 ±0.007	0.526 ±0.005	0.890 ±0.009	0.317 ±0.006	-0.112±0.007	-1.082 ±0.011	0.553 ±0.009	-0.630 ±0.014
CANP	1.379 ± 0.000	$0.838 \scriptstyle{\pm 0.001}$	1.376 ± 0.000	$0.652 \scriptstyle{\pm 0.001}$	$0.476 \scriptstyle{\pm 0.043}$	-5.896±0.134	1.104 ± 0.009	-2.243±0.031
ANP	1.379 ± 0.000	$0.842 \scriptstyle{\pm 0.002}$	$1.376 \scriptstyle{\pm 0.000}$	$0.660{\scriptstyle\pm0.001}$	$0.600{\scriptstyle\pm0.034}$	-4.357 ± 0.182	$1.125 \scriptstyle{\pm 0.003}$	-1.776 ±0.021
CANP+DE	1.378	0.847	1.376	0.670	0.771	-4.598	1.161	-1.991
BANP	1.379 ±0.000	0.851 ±0.002	1.376±0.000	0.672 ±0.001	$0.705 \scriptstyle{\pm 0.016}$	-3.275 ±0.114	1.142 ± 0.007	-1.718 ±0.055

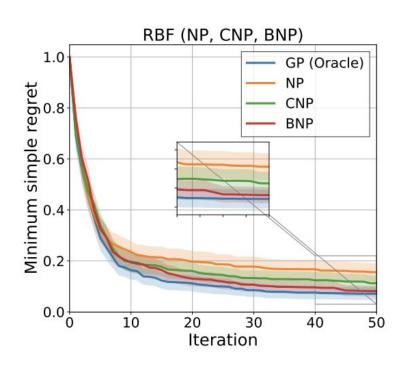
BNP - 1d regression experiments

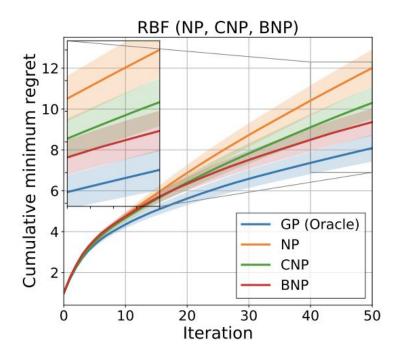


BNP - image completion experiments



BNP - Bayesian optimization



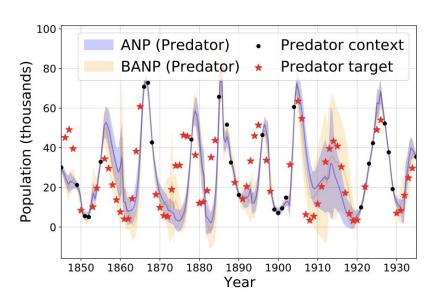


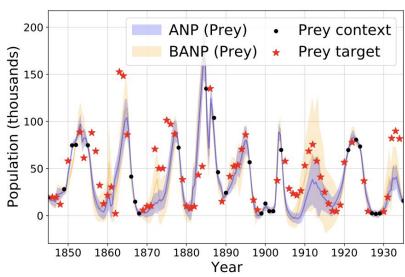
BNP - Predator-prey model

- Training models using data simulated from a differential equation model (Lotka-Volterra model), and test on real data (Hare-lynx data).
- All the models do well on simulated data, but fail on real data.

	Simu	ılated	Real		
	context	target	context	target	
CNP	0.088±0.031	-0.142±0.028	-2.702±0.007	-3.013±0.025	
NP	-0.002 ± 0.039	-0.252 ± 0.036	-2.747 ± 0.019	-3.057 ± 0.020	
CNP+DE	0.176	-0.026	-2.670	-2.952	
BNP	0.213 ±0.045	-0.011 ±0.041	-2.654 ±0.005	-2.942±0.010	
CANP	2.573 ± 0.014	$1.819_{\pm 0.021}$	1.767 ± 0.089	-8.007±0.538	
ANP	$2.582 \scriptstyle{\pm 0.007}$	$1.828 \scriptstyle{\pm 0.007}$	1.720 ± 0.257	-7.809 ± 0.642	
CANP+DE	2.591	1.874	2.021	-5.440	
BANP	2.586±0.009	$1.855{\scriptstyle\pm0.009}$	$1.783{\scriptstyle\pm0.156}$	-5.465 ±0.278	

BNP - Predator-prey model





Conclusion

- Proposed BNP a more natural way of incorporating model uncertainty.
- Residual bootstrap works well for regression tasks, and more robust under model-data mismatch.
- Future works
 - BNP for classifications
 - Other bootstrap strategies wild bootstrap, parametric bootstrap, ...
 - Applications to recent variants of NPs (convolutional, group-equivariant, ...)

References

- [1] C. E. Rasmussen and C. K. Williams, Gaussian process in machine learning, MIT Press, 2006.
- [2] M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende, S. M. A. Eslami, and Y. W. Teh. Neural processes. ICML Workshop on Theoretical Foundations and Applications of Deep Generative Models, 2018.
- [3] B. Efron. Bootstrap methods: another look at the jackknife. Annals of Statistics, 7(1):1–26, 1979.
- [4] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.