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Abstract—There are two methods of collision detection in
the wireless physical quantity conversion lump-sum collection
method (PhyC-SN), in which sensor information is converted into
carrier waves for transmission: energy detection alone and the
use of features that utilize energy detection and frequency offsets
together. The detection accuracy is better when features utilizing
frequency offsets are used than when energy detection is used
alone. However, the frequency offset causes a loss of orthogonality
between subcarriers, resulting in inter-carrier interference, which
degrades the accuracy of collision detection. In this paper, we
propose a collision detection method that suppresses the effects
of inter-carrier interference by applying a window function to
the transmitted carrier wave with multiple symbols.

I. INTRODUCTION

In recent years, sensor networks have become so widespread
due to the development of communication technology that we
are now in the IoT era[1]. The technology of simultaneous
multiple connections has been attracting attention. In commu-
nication, it is necessary to communicate with many sensors
quickly.

In the conventional packet communication method, when
communicating with many sensors, the communication en-
vironment becomes congested, transmission efficiency de-
creases, and packets may be lost[2]. In addition, the communi-
cation cost becomes large because ID information is assigned
to each packet. This paper focuses on a new communication
method called PhyC-SN[3], which improves the transmission
speed and reduces the transmission volume. Although it is
still necessary to consider how to utilize PhyC-SN as a
new communication method, a positioning method has been
proposed as an example of utilizing PhyC-SN[4].

In certain situations, the PhyC-SN communication method
has advantages over packet communication. However, PhyC-
SN also has many problems. In this paper, as an initial
study, we evaluate the effectiveness of high-sensitivity de-
tection using window functions and support vector machines
(SVM) for three patterns with 0, 1, and 2 or more sensors
by simulating two features: energy value and phase variance
utilizing frequency offsets.

II. COLLISION DETECTION IN PHYC-SN

A. PhyC-SN

The system model of PhyC-SN [5] is shown in Figure
1 . In Fig. 1, each sensor acquires temperature information
and transmits the frequency corresponding to the temperature
information. The receiver simultaneously receives the carrier
wave sent from each sensor. The receiver processes the infor-
mation according to the received frequency.

Fig. 1. PhyC-SN

B. Collision detection

In order to distinguish between one and two transmitting
sensors on the same subcarrier, not only energy detection but
also phase dispersion utilizing frequency offset has been used
to improve the discrimination accuracy[6]. In this paper, we
evaluate the identification accuracy of three patterns in which
the number of sensors is 0, 1, or more than 2 at each subcarrier
when multiple subcarriers are identified simultaneously using
PhyC-SN.

C. Frequency Offset

Frequency offsets cause errors in the local carrier wave
because the transmitter and receiver are not synchronized.
Therefore, noise due to the frequency offset is introduced
during reception, which causes inter-carrier interference. In
this paper, we assume a low-cost product and a case where
frequency offsets occur. The dispersion value of the phase
transition amount that takes advantage of the phase transition
amount caused by the frequency offset is used as a feature in
the identification.

D. Variance value of phase transition amount

The following equation shows the variance value of the
phase transition amount

ω = {(θ̂1−θ̂2)
2+(θ̂1−θ̂3)

2+. . .+(θ̂2−θ̂3)
2+. . .+(θ̂n−1−θ̂n)

2}
(1)
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Fig. 2. Transmitter-side Processing

∗θ̂a − θ̂b =

{
θ̂a − θ̂b (θ̂a − θ̂b < 180)

360− θ̂a − θ̂b(θ̂a − θ̂b ≥ 180)

ϕ =
ω

N(N − 1)
(2)

where θn denotes the phase transition at the nth receiving
antenna, and a symbol is defined as a carrier wave divided
by a certain time width, and the phase difference between
two symbols is defined as the phase transition. In Eq. 1, the
magnitude of the difference between each phase transition is
calculated and expressed as the sum ω. Since the difference
of the phase transitions is always the value with the smallest
angular magnitude, if the difference of the phase transitions
is greater than 180, the value of the difference of the phase
transitions is subtracted from the total 360. In Eq. 2, the
variance value of the phase transition ϕ is obtained by dividing
ω by the number of antennas N and the number of antennas
minus one, N − 1.

III. HIGH SENSITIVITY DETECTION

A. System Model

The system model transmitter and receiver in this paper is
shown in Figure2 and Figure3. On the transmitter side, the
actual data to be sent is set to 1 and the data not to be sent
is set to 0. The data is IFFTed and then randomly frequency
offset. This is done to represent the deviation of the carrier
wave from the actual transmitter/receiver. Finally, the resulting
carrier wave is used as one symbol, and the same symbol is
duplicated and transmitted.

At the receiver side, noise is added immediately after
receiving the transmitted carrier wave. The FFT is performed
by applying a window function to this state over multiple
symbols. This process increases the frequency resolution and
produces a large number of frequency bin, so features are
detected by synthesizing them for each subcarrier. Finally,
SVM (Support Vector Machine) is used for restoration.

B. Window Function

Because of the frequency offset, inter-carrier interference
must be considered. In some cases, window functions are used
to suppress inter-carrier interference. For this reason, we are
also evaluating the window functions when they are changed.

Fig. 3. Receiver-side Processing

There are various types of window functions, and the window
functions employed in this study are rectangular windows
and Blackman-Harris windows. Rectangular windows have a
feature that the main lobe is sharp but side lobes are generated.
The Black-Harris window has the feature that the main lobe
is a little wider, but the sidelobes can be suppressed compared
to other window functions. The Blackman-Harris window and
the rectangular window are compared and evaluated.

Figure 4 is the FFT of multiple symbols multiplied by
a rectangular window and a Blackman-Harris window. The
vertical axis is the energy value and the horizontal axis is the
frequency Bin. The spread of a transmission at a frequency
Bin of 0 is shown. In the case of a rectangular window, the
narrower the main lobe spread, the higher the energy value of
the side lobes. In the Blackman-Harris window, the spread of
the main lobe suppresses the energy values of the sidelobes.
This is a trade-off relationship, and if the emphasis is on
main lobe detection, the use of a rectangular window is more
advantageous. Conversely, if the emphasis is on suppressing
sidelobes, the use of a Blackman-Harris window is more
advantageous.

C. Multiple Symbols

Since applying a window function to multiple symbols
increases the FFT size, the window function is usually applied
to a single symbol, as shown in the normal case of Fig.5.
However, since the window function is combined with the
first and the last symbols, the distortion caused by the window
function becomes large when the window function is applied
to a single symbol. Therefore, applying the window function
to multiple symbols, as in the proposed method, suppresses the
distortion caused by the window function and thus improves
the detection accuracy. Moreover, by applying the window
function to multiple symbols, the received frequency Bin for
a single subcarrier can be viewed in detail. This fine view is
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Fig. 4. Frequency Spread of Rectangular and Blackman-Harris windows

Fig. 5. Using Window Functions

sensitive to the effect of frequency offset, which also affects
the identification accuracy.

Figure 6 is an example of received frequency Bin. The
vertical axis is the energy magnitude and the horizontal axis is
the frequency Bin. Here, the frequency Bin corresponding to
one subcarrier corresponds to 9 to 17. Each color represents
the distribution of the energy value of one sensor during
transmission, but with different frequency offsets applied to
each. Red represents no frequency offset, blue and green are
0.3012 and -0.3012, respectively. By looking at the frequency
Bin in detail, it can be seen that the peak points of the energy
values due to the frequency offsets are different.

D. SVM (Support Vector Machine)

As a feature detection, Figure 7 is a scatter plot of energy
values and phase variances for the cases when the number of
sensors is one and two, respectively. The horizontal axis is
the energy value and the vertical axis is the phase variance.
In the conventional method, the energy value is used as the
threshold value. In the areas with energy values of 2 and 3

Fig. 6. Received frequency Bin example

Fig. 7. Scatter Diagram

in Figure 7, the number of transmitting sensors is 1 and 2,
respectively, and it is difficult to distinguish them from each
other. By adding the phase variance as a feature, it is possible
to identify the number of transmitting sensors at energy values
of 2 and 3. By determining the optimal boundary line for
identifying the number of transmitting sensors (1 or 2), the
accuracy of identification can be improved. SVM is used to
create the optimal boundary. In this simulation, the SVM is
parameterized and simulated by Matlab application, SVM that
can be optimized by a classification learner.
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Fig. 8. Experimental Environment

Fig. 9. Collected Data

IV. SIMULATION OVERVIEW

A. Experimental Data

In conducting this simulation, we used data from an actual
case in which radio waves were emitted outdoors using 920
MHz band LoRa. As shown in Fig.8. The RSSI and the
subcarriers were preliminarily matched with a quantization
interval of 6 dB. The RSSI received by each sensor is recorded
and transmitted from the sensor to the aggregation station on
the frequency of the subcarrier corresponding to the RSSI.

Examples of collected data are shown in Figure 9. NaN is
the value below the noise level, and in this experiment, the
sensors do not transmit any signals to the aggregation station
when the value is below the noise level.

Figure 10 shows the correspondence between the RSSI of
data number 1 in Figure 9 and the subcarriers to be transmitted.
The RSSI ranges from -136dB to -40dB and corresponds to
subcarriers in 6dB intervals. . The number of transmitting
sensors for each subcarrier is shown.

Fig. 10. Correspondence chart between RSSI and Subcarriers

B. Simulation Evaluation

Using the experimental data, the number of sensors to be
transmitted on each subcarrier is determined and the data is
transmitted. The receiver processes the data and reconstructs
it. The error rate of the restored data is evaluated. We compare
five methods of restoration and evaluate their error rates. The
second is an evaluation of the error rate when a rectangular
window is applied to each symbol. The third is an evaluation of
the error rate when a rectangular window is applied to multiple
symbols. The fifth is the evaluation of the error rate when the
Blackman-Harris window is applied to multiple symbols.

C. Error Rate

In this paper, we simulate the identification of three patterns
in which the number of transmitting sensors is 0, 1, or 2 or
more. The error rate in this simulation is the probability of
misjudgment from the total, which is the value obtained by
dividing the total by all the misjudgments such as when the
number of transmitting sensors is 0 and the identification judg-
ments are 1, 2 or more, or when the number of transmitting
sensors is 1 and the identification judgments are 0, 2 or more.

TABLE I
SIMULATION PARAMETERS

Data Type usage data
Number of Receiving Antennas 10 antennas

Fading Environment Rayleigh fading
Number of Subcarriers 16

Frequency Offset random number per sensor of [-0.4 0.4]
Number of Window Symbols 9 Symbols

Window Function Rectangular windows
Blackman-Harris windows

Number of Sensors 35 sensors
Number of pre-training data 60 Data

Number of data for verification 64 Data
SNR 0,5,10,15,20[dB]

D. Simulation parameters

The simulation parameters are shown in Table I. In the
Rayleigh fading environment, the number of receiving anten-
nas is assumed to be 10. The number of subcarriers is 16. The
frequency offsets are randomly assigned within the range of
-0.4 to 0.4 of the normalized frequency spacing. Since this
experiment assumes a low-priced product, the range of the
magnitude of the frequency offset deviation is allowed to be
wide. The window function is the Blackman-Harris window as
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(a) Rectangular window(1 symbol)(b) Rectangular window(9 symbols)

(c) Blackman-Harris window
(1 symbol)

(d) Blackman-Harris window
(9 symbols)

Fig. 11. Scatter Diagram

described above. The window function is applied to 9 symbols.
The number of sensors is 35, and each sensor has 124 data.
The error rates for 5 SNR values (0, 5, 10, 15, and 20 [dB])
are evaluated by simulation.

V. SIMULATION RESULTS

A. Scatter Diagram

Figure 11 is a scatter plot of the window function multiplied
by a rectangular window and a Blackman-Harris window with
one symbol and nine symbols, respectively. The horizontal axis
is the energy value and the vertical axis is the phase variance.
When the window function is applied to each symbol, it is
difficult to see the boundary line due to the difference in the
number of sensors, but when the window function is applied
to multiple symbols, the boundary line can be seen for each
sensor algebra. However, when the window function is applied
to multiple symbols, the boundary line becomes visible for
each sensor algebra. When the window function is applied
to multiple symbols, the phase dispersion for the number of
transmitting sensors of 1 is suppressed. In Fig. 11(b) and Fig.
11(d), we can see that the phase variance is relatively lower
in Fig. 11(d) when the number of sensors is 1.

B. Error Rate Evaluation

Figure 12 shows the simulation results. The vertical axis
is the error rate and the horizontal axis is the SNR. In the
case where a Blackman-Harris window is inserted for each
symbol, the accuracy is worse than that of conventional energy
detection due to the large effect of distortion caused by the
window function. In other cases, the error rate was lower

Fig. 12. Simulation Results

than that of energy detection by utilizing SVM. In addition,
the use of multiple symbols reduces the distortion caused
by the window function, resulting in a lower error rate. In
terms of rectangular windows, applying rectangular windows
to multiple symbols, rather than rectangular windows to each
symbol, allows us to see the effects of frequency offsets in
detail, and the difference in the number of features depending
on the number of sensors reduces the error rate.

VI. SUMMARY

High-sensitivity detection was performed to improve the
identification accuracy of sensors with 0, 1, and 2 or more
sensors using the physical quantity conversion batch collection
method (PhyC-SN). The window function was changed to
suppress inter-carrier interference. When the window function
was applied to each symbol, the identification accuracy was
degraded due to the distortion caused by the Blackman-
Harris window. On the other hand, when the Blackman-Harris
window was applied to multiple symbols, the distortion caused
by the window function was suppressed, leading to a reduction
in the error rate. Also for rectangular windows, changes were
observed depending on the number of symbols over which
the window function was applied. Frequency resolution can
be increased by applying the window function to multiple
symbols. Therefore, since the effect of frequency offset can
be observed more precisely, even for the rectangular window,
applying the window function to multiple symbols increased
the difference in the feature values depending on the number
of sensors, leading to a decrease in the error rate. Comparing
the window functions, the rectangular window leads to a lower
error rate than the Blackman-Harris window in this study.
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VII. FUTURE

As an initial study, we have evaluated the discrimination
accuracy for the number of sensors above 0, 1, and 2, and
are considering increasing the number of sensors that can be
discriminated. By increasing the frequency resolution, we are
able to perform detailed analysis. We would like to focus on
the frequency spread as a new feature to be considered in the
future.
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