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Abstract—In a post-disaster area, Unmanned Aerial Vehicles
(UAVs) are considered one of the most effective ways to provide
emergency wireless communication services, especially when
the wireless infrastructure becomes malfunctioned due to the
extensive damage. In this paper, we investigate the UAV-based
emergency wireless communication network for a post-disaster
area, where the UAV acts as a flying Base Station (BS) to
provide wireless connectivity from the sky. UAV should collect
as much data as possible from ground users in the affected
area. Considering the malfunction of power supplies in the post-
disaster area, the available energy for ground users is very
limited. Moreover, UAV operates with an onboard battery with a
limited capacity. Aiming to maximize the uplink throughput by
maximizing the number of visited ground users during the flight
round, the UAV trajectory optimization problem is formulated
under the concern of dual limited available energy (i.e., limited
ground user and UAV energy capacities). Considering that both
energy terms are dynamic and cumulative over time, this opti-
mization problem becomes hard to be solved using conventional
optimization methods. Therefore, a multi-armed bandit (MAB)-
based algorithm controlled with dual limited energy capacities
is proposed to tackle this problem. The simulation results show
that the proposed algorithm could solve the optimization problem
and maximize the achievable throughput under these energy
constraints.

Index Terms—unmanned aerial vehicles, trajectory optimiza-
tion, emergency wireless communication, multi-armed bandit

I. INTRODUCTION

Large-scale natural disasters always wreak unpredictable
casualties on life and severe havoc on property. During the
last decades, various types of natural disasters, such as floods,
hurricanes, earthquakes, tsunamis, wild fires, etc., caused thou-
sands of injuries, deaths, and about 100% —150% additional
increase in material losses over the globe [1]. The first few
hours after the disaster occurrence are considered the golden
relief time for victims in the post-disaster area. Hence, an
emergency wireless communication network becomes crucial
in this situation, especially when the communication infras-
tructure is devastated due to the damage caused by this
disaster. Moreover, the paralysis of the power system caused
by a natural disaster makes the situation more complicated in
the post-disaster area. In 2011, a massive earthquake with a

978-1-6654-8550-0/22/$31.00 ©2022 IEEE

43

magnitude of 9.0 caused a tsunami on the eastern coast of
Japan which destroyed more than 6000 base stations (BSs)
in that area. Therefore, the still operating BSs are heavily
overloaded with a large volume of voice and data traffic
that caused a high call block rate, resulting in the loss of
communication services for four days after the tsunami [2].

The ultimate solution would be to deploy a specific wireless
network that is independent of the existing broadband network.
An unmanned Aerial Vehicle (UAV) wireless network is con-
sidered one of these feasible and efficient wireless networks
for emergency wireless communications. UAVs are known for
their flexible deployment and immediate response that can be
used as ubiquitous temporary mobile BS to establish such an
emergency wireless communication network [3]. Therefore,
during the last few years, UAVs have been utilized to support
different applications in emergency wireless communication
networks including disaster management, surveillance and
early warnings, post-disaster fusion centers, damage assess-
ment, supply-aid drop, etc.

Despite the advantages of using UAVs to operate emergency
wireless communication networks in the post-disaster area,
there are some technical issues that should be considered to
realize these types of network, such as: 1) the available energy
for victims is fugacious due to the destruction of the power
supply infrastructure as a resulted of the natural disaster [4];
2) the UAV working time is limited to the capacity of the
attached on-board battery. Once it becomes nearly depleted,
the UAV should return to its base to recharge its battery [S];
3) the UAV should plan and optimize its flight trajectory in
this harsh environment caused by the natural disaster. This
required a fast online optimization algorithm to deal with the
abrupt change in the geographical field [3]. Therefore, all
these factors should be deemed while designing an emergency
wireless communication network. Furthermore, since it is
considered a critical operation, the UAV must serve as many
victims as possible in the disaster area before its batteries run
out of energy.
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A. Prior Works and Motivations

One of the key features of using UAVs in emergency wire-
less communication networks is their ability to collect wide-
ranging data from geographically scattered ground devices,
such as ground BSs, ground users, and even ground sensors
[6]. Moreover, UAV can act as a flying BS or edge server
to aid different traffic offloading scenarios [7]. Therefore, not
only the radio resource management of UAV wireless network
but also the planning and optimization of the UAV’s trajectory
becomes a critical issue due to its mobility. In recent years,
many investigations have been conducted on this topic. The
authors in [8] used the speed of the UAV with the location
of the waypoints to design the UAV trajectory. In this way,
they could minimize the mission completion time in a UAV-
based multi-cast system. A heuristic algorithm based on UAV
speed control and UAV data scheduling was proposed in [9]
to minimize the total energy consumption.

When accurate models of UAV wireless networks includ-
ing their flight dynamics are available, UAV trajectory opti-
mization can be performed using conventional optimization
techniques. However, it is difficult to construct these accurate
network models, leading to the use of model-free machine
learning algorithms to control the operation of UAVs that
support wireless communication networks. Machine learning
algorithms are capable of formulating autonomous control pol-
icy by exploiting collected information from past experiences
[10]. The authors of [11] maximized the total distance traveled
by the UAV using a policy gradient method for trajectory
optimization. The deep Q-learning algorithm is utilized in [12]
to optimize the flight trajectory of the UAV to maximize the
data rate during the flight time in an unknown environment.
In [13], the authors maximized the uplink transmission rate in
the UAV cellular network by designing the flying trajectory
of the UAV. They could transform the optimization problem
into a Markov Decision Process (MDP) and solved it using
the Deterministic Policy Gradient (DPG) algorithm.

Despite the existence of many excellent research on UAV
wireless communications, there are a few works focused on
UAV-assisted emergency wireless communication networks. In
our previous works [14], [15] , we studied the radio resource
allocation for UAV emergency wireless communications using
dynamic spectrum access system. UAVs were deployed as
a Cognitive Radio Network (CRN), aiming to maximize the
downlink data rate in a post-disaster area. This optimization
problem was implemented as a multi-player multi-armed ban-
dit problem controlled by the limited transmission power of
each UAV. Mohamed et al. in [16] addressed the gateway
selection for gateways in a post-disaster area. Where, UAVs try
to find the best gateway to offload its data. The whole process
was done in a decentralized manner using a constrained MAB-
based algorithm. Also, a constrained MAB-based algorithm
is adopted in [17] to support an attached Reconfigurable
Intelligent Surface (RIS) to the UAV. The optimization prob-
lem amid to find the optimum trajectory of the UAV that
maximises the total throughput while reducing the consumed
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flying power of the UAV. The UAV trajectory optimization
problem that maximized the accumulated data volume from
ground sensors was studies in [18] under unknown network
information. The optimization problem is transformed into
a finite MDP and solved using two reinforcement learn-
ing frameworks, called state-action-reward-state-action (Sarsa)
and Q-learning-based, UAV trajectory optimization algorithms
(i.e., SUTOA and QUTOA). Authors in [19] studied the UAV
trajectory optimization problem in a UAV emergency wireless
communication network aimed to maximize the total system
rate and constrained by the limited flight time of the UAYV,
the power capacity of the ground user, and the need to avoid
obstacles in the disaster area. The whole process was done
using a Lyapunov-based deep Q-learning framework called
Safe-DQN.

All these related works to UAV emergency wireless commu-
nication networks addressed the optimization problem under a
single power constraint, either a limited UAV battery capacity
or a limited available energy for ground users (i.e., ground
UE or ground sensors). We believe that these two factors
are considered the most critical factors in designing a UAV
emergency wireless communication network. This is due to
the devastation or, at least, the paralysis of the power supply
network as a result of the natural disaster. Therefore, our
proposed framework aims to study the optimization problem
of the UAV trajectory under these two power conditions. To
this end, our objective is to study a dual constraint optimiza-
tion problem that could improve the reliability of the UAV
emergency wireless network compared to previous works.

B. Contributions and Organization

As discussed in the previous section, most of the current
studies related to emergency wireless communication network
focused on the limited energy capacity of UAV and just a few
of them considered the limited energy capacity of ground users
(i.e., ground users equipment (UEs)). Here comes our idea to
fill this gap by studying an optimization scenario under both
of limited UAU and UEs energy capacity. UAV is considered
as flying BS that provide wireless connectivity from the sky
to ground UEs in the post-disaster area. The data collected
from the UEs is considered extremely important to estimate the
situation of the victims and evaluate the damage in the post-
disaster area. To that end, these valuable data can be analyzed
to guide rescue teams in saving these precious lives. Our main
target is to maximize the collected data from ground UEs
under the limited power capacity for both UAV and ground
UEs. However, since the coverage of UAV is relatively small
compared to ground BSs, our target is to optimize the UAV
flying trajectory to maximize the number of visited ground
UEs before its battery being used up. The main contribution
of this paper can be summarized as follows:

e We proposed a framework for an emergency wireless

communication network where the UAV collects user data
in a post-disaster area. Ground BSs malfunctioned as a
result of the damage caused by a natural disaster, however
ground UEs that are located in the UAV coverage area
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Fig. 1. UAV emergency wireless communication network

can upload their data using an alternative way of con-
nectivity from the sky by the support of UAV emergency
wireless communication network. Taking into account the
limited available energy for both the UAV and ground
UEs in the post-disaster area, we formulate a dynamic
optimization problem to maximize the uplink throughput
for the UAV emergency wireless communication network
by optimizing the flying trajectory of the UAV under these
assumptions.

o The optimization problem is transformed into a con-
strained multi-armed bandit (MAB) problem where ac-
tion, reward, and cost are defined as the flight direction,
the throughput of the uploaded data, and the dissipated
power for both the UAV and UEs, respectively.

o It should be mentioned that, to the best of our knowledge,
this is the first research work to study this type of opti-
mization problem under dual-constrained energy capacity
for both UAV and UEs, simultaneously.

The rest of our paper is organized as follows. Section II
shows the system model used in our study and formulates the
optimization problem to maximize the long-term throughput.
A constrained multi-armed bandit algorithm is adapted in
Section III to solve this optimization problem. The results and
analysis of the simulation are provided in Section IV. Finally,
the paper is concluded in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section discusses the network architecture for the UAV-
assisted emergency wireless network, the flying model used
for the UAV, the channel model used in uploading data, and
formulates the optimization problem.

A. System Model

Fig. 1 shows the system architecture for the UAV-assisted
emergency wireless communication network, where a natural
disaster, such as an earth quake, floods, etc., hits a certain area
and results in a malfunction of power supplies and the wireless
network. Our idea is to deploy UAV in this post-disaster area
to provide the wireless connectivity from the sky. In such a
way, wireless connectivity can be provided for victims, i.e.,
ground UEs, in this damaged area, so that they can offload
their data, that should be valuable in guiding rescue teams
and estimating damage. It is assumed that there are M UEs
trapped in this post-disaster area, denoted by M = {1, ..., M }.
Each of them has a stationary location denoted in Cartesian
coordinates by I, = (T, Ym ). It is supposed that the UAV
starts to fly from the middle of the disaster are, i.e., the middle
of the simulation area, which is denoted by Iy = (zg,¥o)-
Also, it flies according to a constant speed v m/s and altitude
H m. We suppose that this altitude is relatively high and the
data transmission period is quite small. Therefore, the UAV
is considered stationary during offloading the UE data. We
make use of the channel model that is illustrated in [19]
according to the 3GPP specifications in the technical report
[20]. The wireless communication link between the UAV and
each of the served UEs is determined by two components, i.e.,
line-of-sight (LoS) component and nonline-of-sight (NLoS)
component according to the probability of each of them.
Equations (1), (2), at the bottom of this page, show the path-
loss equation and the probability of LoS and NLoS equation,
respectively, where d,,, denotes the direct link between the
UAV and any connected UE. The following equations (3), (4),
and (5) show how to calculated parameters d,,,, dy, and po,
respectively.

H? + ||l — o)|?,YVm e M 3)
do = max (294.05log,, H — 432.94, 18) (4)
po = 233.981log,o H — 0.95 (5)

The probability of NLoS can be obtained as:

ijr\L]LOS —1— P#LOS (6)

The channel gain between the UAV and any connected UE
can be calculated as follows:

. -1 3 1
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if LoS link 0
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if\/d2, — H2 < dy
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Pm - do



For the sake of simplicity, we assume that the effective
radiation angle of the attached UAV antenna is denoted by
¢, then the maximum direct transmission link is H/ cos(¢).
In addition, it is assumed that only a single UE can establish
a wireless link to the UAV at a time. Hence, there is no
simultaneous wireless connections from UEs towards UAV. A
connection indicator «,, is set to 1 when a UE m successfully
established a wireless link to the UAV, and otherwise it set
to 0. In this way, we ensure that there is no interference
from the simultaneous transmission of multiple UEs. Then,
the transmission data rate of any UE m towards the UAV can
be calculated as:

where B is the available bandwidth of the wireless channel,
P!* is the transmission power for UE m, o denotes the power
of additive white Gaussian noise (AWGN) on the UAV side.

From the limited energy capacity point of view, the power
consumption consists of two terms: 1) the power consumed by
each UE during data offloading and idle mode; 2) the power
consumed by the UAV during flying over the post-disaster
area to provide wireless network connectivity to UEs. The
power consumed in the UAV by the receiver circuit and signal
processing is relatively small compared to the flying power and
can be neglected. These two power terms can be denoted as
follows:

t
gm Py
go

Rm, = amB 10g2 <]— + (8)

am P if UE at Tx mode

em(t) = . . )
(1 — ayn)e€iare, if UE at idle mode

Eyav(t) = Py (10)

Where ¢t = {1,...,T} is the elapsed time while the UAV
scans the post-disaster area. Our goal is to maximize the data
collected from the ground UEs so that it can improve the
efficiency of the rescue operation. Also, it should keep an eye
on the valuable and limited energy on both UEs and the UAV
sides. Therefore, the optimization problem is formulated to
maximize the long term UAV uplink throughput via optimizing
the flight trajectory of the UAV. To this end, the optimization
problem can be defined as follows:

max
meM

1 T M
f Z Z RnL(t)
t=1m=1
T

> em(t) < eo,¥m € M

t=1

s.t. an

T
> Euav(t) < By
t=1

Where e is the total available energy for each UE m, and Ej
is the total available energy for the UAV.
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III. DEA-MAB BASED UAV TRAJECTORY OPTIMIZATION
FRAMEWORK

In this section, we will introduce the general MAB al-
gorithm and the proposed dual-energy-aware MAB (DEA-
MAB) framework aiming to solve the pre-described trajectory
optimization problem.

A. The General MAB Algorithm

MAB algorithm can be described as a set of arms of a bandit
machine. Each arm leads to a certain reward. A player who
wants to maximize his total reward during a certain playing
period; however, the amount of reward behind each arm is
not revealed to the player in advance. In this context, this
instantaneous reward behind each arm is just revealed to the
player once he plays with a certain arm. In addition, the player
may lose some reward in each trial due to not selecting the arm
that leads to the highest known reward. This loss is denoted by
regret [21]. Therefore, each player should develop a strategy
to maximize the total reward over the horizon, in other words,
minimize the regret over this horizon. Therefore, he should
find the best strategy to continue exploiting the discovered
arm that leads to the highest reward, and at the same time,
he should continue exploring other arms that may lead to a
higher reward. This is considered a common dilemma facing
the MAB algorithm, and is called the exploration-exploitation
trade-off [22].

B. The Proposed DEA-MAB Framework

Our proposed DEA-MAB framework is inspired by the
Cost-Subsidized Explore-Then-Commit algorithm illustrated
in [23]. In any real world application, a certain action that
leads to a higher reward always has a higher cost. One of
the ideas to balance this reward/cost trade-off is to deduct the
paid cost from the achieved reward. However, it is not always
meaningful, especially when the reward and the cost are
defined in different quantities [23]. Thus, it becomes necessary
to find a new MAB algorithm that can optimize both cost and
reward. In other words, it can avoid incur excessive cost for
just a marginal increase in the reward. In the proposed DEA-
MAB framework, both the upper confidence bound (UCB) and
the lower confidence bound (LCB) values are examined for
each candidate arm. Then, a feasibility region of acceptable
reward is constructed, where arms that achieve a reward larger
than the maximum LCB value are counted. For each of these
arms, we check for the corresponding remaining UE energy
and construct a list of the most critical UEs whose energy is
about to be depleted. Of this list, we choose the UE that has
the least UAV flying power consumption to be selected for
data offload operation.

To illustrate the proposed DEA-MAB framework, in each
time period ¢, the UAV should fly towards a certain UE that
the DEA-MAB selects to provide the emergency wireless
connectivity from the sky. The input of the DEA-MAB is the
space for all available M UEs in the post-disaster area and
the tuning parameters w and ( , and the output is the next
selected UE to be served. In this way, the UAV can optimize



the flight trajectory by selecting the most suitable UE to be
served at each time ¢. The process is divided into two phases.
For the initialization phase, the UAV flies toward the UEs in
a random way, estimates the achievable data rate R,,, at each
time ¢, and counts the number of selected UEs as follows:

Qm(t“l‘l) :Qm(t>+1 (12)
1 Qm(t+1)
Bnt+1) =547 ; Rp(i)  (13)

where Q,,(t) is the count of times that the UAV selects the
UE m until time ¢. This initialization phase is considered a
pure exploration phase and is carried out over a period of time
equal to (T'/M)?/? as illustrated in [23]. In the second phase,
i.e., the selection phase, at each time ¢, the UCB and LCB are
evaluate as follows:

UCB

Ym (t) = Rm(t) + V 21H(t)/Qm(t),Vm eM (14)
VOB (t) = R (t) — /2In(t) /Qm (t),Ym € M (15)

The UE index that achieved the highest value of vEZCB(t) at
time ¢ is calculated as follows:
®))

Then, the feasibility region of UEs can be calculated as
follows:

n(t) = arg max (V#CB

m

(16)

(t) > (1 —w)yp?

m

Fous(t) = {m . yUCB (t)} 17)

Out of this feasibility region, we construct a list of the most
critical UEs that need to be served before their power being
depleted as follows:

T

{m : Zem(t) >(1- C)eo}

t=1

Crea(t) (18)
Finally, out of this list, the UE corresponding the lowest energy
dissipated in UAV flying towards this UE is selected for the
UAV trajectory as follows:

m*(t) = argmin
MmECrte(t

(Puavo) (19
In this way, the DEA-MAB framework can optimize the UAV
flying trajectory under dual-energy constraints.

IV. SIMULATION RESULTS

In this section, we evaluate the proposed DEA-MAB frame-
work for the trajectory optimization of the UAV emergency
wireless communication network. It is assumed that the UAV
should find the best trajectory to maximize the data throughput
from ground UEs in the post-disaster area. Table I shown the
simulation parameters.

47

TABLE 1
SIMULATION PARAMETERS
Parameter Value
Simulation area 10 km?
Flight speed () 20 km/h
Flight altitude (H) 100 m
UAV radiation angle (o) /8 rad
Carrier frequency (f) 5.8 GHz
Channel bandwidth (B) 10 MHz
UE transmission power (P.7) 23 dBm
UAV battery capacity (Eo) 100-200 Wh
Total number of UEs (M) 20-50
AWGN spectral density (o) -130 dBm/Hz
UE power dissipation in idle mode (e;q;¢) 0.05 mW
Data rate feasibility region factor (w) 0.6
Critical power feasibility region factor (¢) 0.5
6
10 10 ; .
- © —E=100Wh
- & —E=200Wh
9r J
-9
8 - --" - -9
7 P S
a 7 _- - _-" |
2 -7 -7
34 . - ? -
o ”
= -
sp_-" .
(3
s ]
3 \ I | L \
20 25 30 35 40 45 50
Number of UEs
Fig. 2. Cumulative uplink throughput with varying number of UEs

1000

- © —E=100Wh
- & —E=200Wh

©
o
o

®
o
[S)

Total UEs energy consumption (Joule)

0 I I I . I
35 40 45

Number of UEs

50
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Fig. 2 shows the cumulative uplink throughput of the
UAV emergency wireless communication network. These two
curves show an upward trend, which means that, regardless of
the battery capacity of the UAV, the total system throughput



increases with the increase in the number of UEs. This
upward performance gradually tends to approach saturation
with increasing UEs. This can be justified that for any commu-
nication system with a certain bandwidth, there is a maximum
channel capacity regardless the number of users in that area.
Furthermore, when the UAV battery capacity is increased to
200 Wh, the system achieves a higher throughput with a lower
number of users compared to UAV with a battery capacity
of 100 Wh. However, this curve tends to saturation at larger
number of users due to the previous fact.

In Fig. 3, the total energy consumption of UEs is compared
to the number of available UEs in the post-disaster area. It can
be observed that with the increase in UEs number, the total
energy consumption is increased as well. However, for a lower
UAV battery capacity, i.e., 100 Wh, there is no considerable
increase in the total UEs power consumption when the number
of UEs are increased from 40 to 50. This can be described
as the UAV battery cannot support a longer flight distance to
cover the increased number of UEs that are spread in the post-
disaster area. So, for 50 UEs, it seems some of them do not
have a chance to offload their data and stay in idle mode which
is reflected in decreasing in the total power consumption of
UEs. However, for a UAV battery capacity equal to 200 Wh,
the total power consumption of UEs is still increasing when
the number of UEs reaches 50. In this situation, the larger UAV
battery capacity could support a longer flight distance which
is reflected in the increase of the total UEs power dissipation
as well.

V. CONCLUSIONS

In this paper, we have studied trajectory optimization for
a UAV-assisted emergency wireless communication network.
The UAV is deployed to provide emergency wireless con-
nectivity from the sky to ground UEs when ground BSs
malfunction as a result of the damage caused by a natural
disaster. The UAV tried to optimize its flying trajectory to
maximize the cumulative uplink throughput. However, due
to the energy limitation for both the UAV and UEs, the
optimization problem is constrained by this dynamic energy
consumption over time. We proposed a dual-energy-aware
based multi-armed bandit framework to tackle this constrained
problem. The proposed framework could optimize the UAV
flight trajectory with respect to the limited available energy
for both the UAV and UEs. In addition, it could maximize
cumulative throughput and accomplish the task of offloading
UEs in the post-disaster area.
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