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Abstract—This paper describes an abnormal voltage regulation
detection approach based on machine learning algorithm in a on-
Grid photovoltaic (PV) system. The three-phase AC voltage of the
power conversion system is measured using a voltage transformer
and used as a feature of the proposed detection scheme. We
integrated the principle component analysis (PCA) technique
and the support vector machine to improve the algorithm’s
accuracy and reliability (SVM). Before applying the real-time
data to the SVM model, the PCA analysis is performed. The
proposed system’s implementation results demonstrate its efficacy
and robustness in the intelligent PV-ESS energy farm.

Index Terms—Abnormality detection, voltage regulation, en-
ergy storage system, support vector machine, principal compo-
nent analysis.

I. INTRODUCTION

HOTOVOLTAIC (PV) power generation is becoming
more popular [1] and its integration into a power dis-
tribution network might cause substantial voltage regulation
issues. Voltage imbalance between phases and over-voltage
at nodes are two critical issues [2]. Existing voltage control
devices, such as switched capacitors and on-load tap chang-
ers, are unable to offer accurate temporal responses to PV
generation fluctuations. As a result, significant investments
have been made to strengthen the power distribution system
[3], including specific equipment such as static synchronous
compensators and energy storage systems to adjust voltage [4].
Several centralized-based control approaches have also been
presented [5,6] and have demonstrated superior performance.
Support vector machines (SVM) are widely used classifiers
that are increasingly being applied in real-world issues be-
cause of their superior performance. SVMs [7][8], k-Nearest
Neighbor [9], Decision Tree [10], and other classifiers can ac-
complish defect detection tasks. SVM offers anti-interference
performance, outstanding stability, and a positive effect on the
binary classification issue. In [11], the authors present SVM
based defect diagnostics algorithm by using multi-sensory data
from the wind turbines. Using stator currents and their related
voltages data, the SVM is used to detect inter-turn short-circuit
defects in a three-phase induction motor[12]. Moreover, The
extended Kalman filter is employed to estimate three-phase
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currents in the transformer’s primary wingdings, resulting in a
hybrid SVM algorithm for successful diagnostics of power
transformers [13]. By combining the principal component
analysis (PCA) and kernel PCA with the deep structure, a
method called deep extended principal component analysis -
support vector machine was presented to make full use of the
linear and non-linear information for fault identification [14].
Gaussian kernel-based SVM is applied for classifying various
fault conditions of electromagnetic pumps by using vibration
signals [15]. Furthermore, based on Pearson’s correlation co-
efficient and the SVM technique, wireless sensor measurement
fault is detected by using the highly co-related features [16].

Despite the recent increase in interest in data-driven tech-
niques for fault detection and identification in the electric
field, there are still gaps in current research in areas such
as voltage regulation fault identification, over current fault
detection, leakage current fault detection, fault detection in
multi-sensor systems, and condition-based predictive fault
detection. Considering the gaps in those areas, this paper
proposes PCA-SVM based real-time fault detection scheme
with multi-features to bridge the present research gap.

The main contribution of this article is to design an abnor-
mality detection model for an integrated PV-ESS energy farm
to detect abnormal voltage regulation during PV generation.
Therefore, we implement this scheme for real-time detection.
This paper organizes as follows: Section II describes the math-
ematical model for the proposed system. Simulation results
and the corresponding discussion are illustrated in section III.
Finally, the conclusion of this work is presented in section IV.

II. METHODOLOGY

In this section, the methodology of the proposed system is
described. Since the PV-ESS is connected to the utility power
grid, voltage regulation is a considerable issue. After installing
a PV system into a power distribution network, the direction
of power flow will change, causing voltage regulation at nodes
that cross the acceptable limits. The voltage regulation can also
occur due to leading and lagging power factors in the system.
Consequently, the system needs to detect voltage regulation in
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Fig. 1. Overall architecture of the system.
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TABLE I

PERFORMANCE ANALYSIS FOR THE PROPOSED SYSTEM

Phase name  Data Sample  Average Vny (V)  Regulation limit
R 10000 400.96 +1%
S 10000 397.70 +1%
10000 399.75 +1%

the system to know the system condition due to installing PV
system. The Fig.1 shows the overall process of the proposed
scheme.

The phase transformer is used to measure the three-phase
voltage of the power conversion system (PCS). The voltage is
measured and sent it to the edge server which is connected
central cloud server. The cloud server is used to store the
historic data three-phase voltages of the PCS system along
with the power generation. The voltage regulation is calculated
as follows:

Vfoh—load(t) - sz?llload(t)
Vo toad(®)

no—load

VRP'%) = *100% (1)

where VRP!, VP ;Lloa - and V‘;)iibllfloa 4 are defined as voltage
regulation, no load voltage and full load voltage.

Since the proposed algorithm is supervised learning, the data
should be prepared based on the requirements of the algorithm.
According to the acceptable range of voltage regulation, we
have categorized the system condition. Above the acceptable
range of the regulations, the system will be considered as
abnormal system. In the proposed system, we have considered
the acceptable range of voltage regulation which is presented
in Table I. The most significant phase in the effectiveness
of machine learning algorithms is generally the selection and
extraction of good features.

The statistical learning theory and the Vapnik—Chervonenkis
dimension are the foundations of the SVM algorithm [17],
[18]. SVM analysis aims to determine an appropriate sep-
arating hyperplane by maximizing the margin between the
separating data. Let’s consider the training data sample D
which is consist of N group of data [19]. Then the set of
data samples can be expressed as follows:

D= (zi, )Y, )
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where z; € RM is the i*" data sample, and y; € 1,—1 is
the sample label. The classification hyperplane is the SVM’s
optimization objectives which is defined by the following
equation:

wlz +b=0, (3)

where w = [wy,....,w,] and z; = [x1,29,....,x,] are n-
dimensional weights vector and input vector, and b is termed as
the biasing unit. According to the Lagrangian Duality Theory,
Eq. (2) is turned into an optimization problem that solves for
the Lagrangian factor a. The objective function is formulated
as follows:
N N N
min a;a;y;yik(x;, x5)s.t. a;y; = 0,0 < a; <C,
u ; ; Yiyik( i) ; Y
“4)

where C is penalty factor and k(-) is a kernel function that
achieves linear separation of samples in a high-dimensional
feature space for linearly inseparable data.

N
flx) = Zaiyik(%xiﬂ'b (&)
i=1

In this work, we conducted a classification experiment using
Radial basis function (RBF) kernel functions, as shown below:

exp ( ) (6)

The performance metrics which are considered to evaluate the
proposed algorithm is defined as follows:

|z — ]|
202

(TP +TN)
A = 7
Y = TP Y TN + FP + FN) )
TP
Precision = 7(TP T FP) 3
TP
[ — 9
Recall = Grp 7Ny ©)
TP
F1— Score = (10)

TP+ 5(FP+ FN)

where, T'P= number of true positives, 7'N= number of true
negatives, F'P = number of false positives, and F'N= number
of false negatives.
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Fig. 3. Normal and abnormal three-phase voltage data distribution. Fig. 5. Normal and abnormal data distribution of voltage regulations after
PCA analysis.
TABLE II
0.8 =1 Normal PERFORMANCE ANALYSIS FOR THE PROPOSED SYSTEM
[ Abnormal
0. -
! Model Accuracy  Precision  Recall F1-Score  AUC
06 SVM 94.85% 94.61% 86.42%  89.86% 0.92
05 PCA-SVM  95.40% 94.66% 86.73%  90.12% 0.90
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0.1 10000 data samples. The data is split into train and test
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-3 -2 -1 0 1 2 3
Voltaae Reaulation (%)

Fig. 4. Normal and abnormal data distribution of voltage regulations.

III. RESULT AND DISCUSSION

In this study, the three voltage data utilized for state identi-
fication and fault diagnosis is acquired from the PV-ESS and
utility grid integrated system. The three phase voltage data
samples are depicted in Fig. 2. Since the power generation
from the PV is DC, the PCS is used to convert the generated
DC power to the AC. However, to verify the performance

data and rest of the data is used for test purpose. Fig. 3 shows
the density of normal and abnormal voltages in the datasets.
After calculating the voltage regulation, the density of normal
and abnormal data has shown in the Fig. 4. For increasing
the performance of the SVM classifier, we have converted 3
features into single features by using PCA. The Fig. 5 shows
density of normal and abnormal data distribution. The Table
II shows the performance analysis of proposed fault classifier.
It can be seen that the PCA-SVM overperform in terms of
accuracy, precision, recall, and F1-Score. Table II shows that
the SVM models of RBF kernel functions evaluated provided
classification accuracy of 94.85%, while PCA-SVM based on
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Fig. 6. Abnormal voltage regulations detection results.

rfb kernel functions delivered fault classification accuracy of
95.40%. However, the RBF kernel based SVM show better
performance in terms of AUC score which means this classifier
is more convinced in its prediction than PCA-SVM classifier.
Fig.6 shows the testing results of the PCA-SVM classifiers
for voltage regulations faults where normal and abnormal data
have labels of 0 and 1, respectively.

IV. CONCLUSION

Effective abnormal voltage regulation detection in the PV-
ESS and grid system can lead to secure and reliable utiliza-
tion of renewable energy resources. In this study, we have
developed machine learning algorithms for detecting abnormal
voltage regulation detection. Moreover, the PCA analysis is
used for better feature conversion which helps to increase the
detection accuracy. The proposed scheme can achieve 95.40%
accuracy which is better than the normal SVM algorithm.
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