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Abstract—  With  the  rapid  development  of  the  internet  of  things

and information and communication technology, several studies into

autonomous agricultural vehicles, such as self-driving tractors, drones,

and seed-planting robots, have been undertaken. Autonomous farming

systems have the potential to produce more crops with less impact on

the environment and less effort, and self-driving agricultural vehicles

are among the innovative technologies that could be key to future food

supplies.  In  this  study,  we  design  an  obstruction  detection  method

based  on  point  clouds,  for  autonomous  driving  in  an  agricultural

environment. Pulsed LiDAR technology with a bandwidth of 1,550nm

is adopted and the LiDAR sensor with an FoV of 90 degrees is utilized.

We design a deep learning model to detect  property information for

structured or unstructured obstructions.
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I.  Introduction 

Many countries have faced problems with food production,
due to a decrease in the number of farmers,  population aging,
and climate change. As reported in [1], in Korea, the population
of farmers is expected to decrease by 16.7% between 2015 and
2024, and It is predicted that the proportion of farmers aged 65 or
older  will  reach  43.8%  of  the  total  population  of  agricultural
workers  by  2024.  Demand  for  the  automation  and
mechanization of agriculture to improve agricultural production
has therefore been increasing. With the rapid development of the
internet  of  things  and  information  and  communication
technology,  several  studies  into  autonomous  agricultural
vehicles, such as self-driving tractors, drones, and seed-planting
robots,  have  been  undertaken.  Autonomous  farming  systems
have the potential to produce more crops with less impact on the
environment  and  less  effort,  and  self-driving  agricultural
vehicles  are  among  the  innovative  technologies  that  could  be
key  to  future  food  supplies.  Globally,  major  agricultural
machinery manufacturers  have developed autonomous driving
technology. John Deere released an autonomous tractor with an
auto tractor controller which can be adapted to other tractors as
plug and play kits, and which can recognize obstacles using laser
scanners [2].  Case IH proposed an autonomous tractor system
[3],  which could detect  obstacles  using a  camera and sensors,
and  could  be  remotely  operated  using  a  tablet.  New  Holland
developed  “NHDrive”  which  can  detect  obstacles  using  a
combination  of  light  detection  and  ranging  (LiDAR)  and
cameras [4]. Yammar released the “Yanmar Robot Tractor”, a

self-driving robot tractor, with a self-driving system which uses
a  real-time  kinematic  (RTK)  module  and  an  Inertial
Measurement  Unit  [5].  If  autonomous  driving  agricultural
vehicles suitable for agricultural environments are developed, it
is expected that the utilization of this technology in agriculture
will increase.

Since  an  autonomous driving agricultural  vehicle  needs  to
control  its  speed,  steering,  velocity,  and  position,  as  well  as
detecting  crops,  fruit  trees,  and  obstructions,  it  should  be
equipped with sensors such as cameras or LiDAR. The use of
existing  LiDAR  sensors  in  an  agricultural  environment  has
problems, such as difficulties dealing with shadowed areas and a
low vertical  field  of  view (FoV)  (30  degrees)  which  does  not
detect  all  the  crops'  environment.  Poor  conditions,  such  as
sprinkler spray, snow, rain, and dust, are common. In order to
solve these problems in an agricultural environment, the use of a
LiDAR  sensor  with  a  wavelength  of  1550nm  is  valuable,  as
reflection is less likely to occur due to moisture in the air. It is
also necessary to increase the vertical FoV to 90 degrees.

In this study, we designed an obstruction detection method
based on point clouds, for autonomous driving in an agricultural
environment.  Pulsed  LiDAR  technology  with  a  bandwidth  of
1,550nm was adopted and the LiDAR sensor with an FoV of 90
degrees  was  utilized.  We  designed  a  deep  learning  model  to
detect  property  information  for  structured  or  unstructured
obstructions—distance,  height,  depth,  and  speed—from  point
cloud data from the LiDAR sensor.

The remainder of this paper is organized as follows: Section
2  presents  the  related  works  on  autonomous  driving  control
methods. Sections 3 explains an obstacle detection scheme for
autonomous  driving  in  agricultural  environment  Section  4
concludes this work.

II. Related works

A. Autonomous driving control method

This  section  presents  the  proposed  autonomous  driving
method for the agricultural vehicle with a working machine and
a chassis attached to body, such as weeding vehicle and speed
sprayer.  There  are  two  main  parts  of  the  autonomous  driving
control  method:  1)  Global  Navigation  Satellite  System
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(GNSS)-RTK  sensor  integrated  positioning  algorithm,  which
calculate  the  navigational  information;  and  2)  Path  tracking
control algorithm, which predicts the desired vehicle path based
on waypoints and the vehicle position [6]. To guarantee stability
and  accuracy  of  autonomous  driving  and  continuity  of
navigational information, the integration of GNSS-RTK and a
positioning  algorithm  was  implemented  based  on  extended
Kalman filter [7, 8]. To implement autonomous driving method
along  the  desired  vehicle  path  based  on  current  navigational
information and waypoints, the path tracking control algorithm
calculates  control  parameters  including  right  and  left  track
velocities. The algorithm consists of four parts: computing the
control parameters, switching the waypoint, checking the quality
of navigational data, and searching the target point.

B. Point Cloud Segmentation

Point-wise classification or sematic segmentation based on
point clouds is a well-known research topic [9]. Availability of
largescale datasets, such as Semantic 3D [10], S3DIS [11], and
SemanticKITTI [12], made it possible to investigate end-to-end
pipelines. Recently, thanks to the emergence of LiDAR-centric
datasets  [13],  3D  object  detectors  [14],  multi  object  tracking
based  on  LiDAR became  popular.  Weng  et  al.  [15]  proposed
simple methods based on constant-velocity motion models and
linear  assignment  which  can  perform  well  when  3D  object
detection  methods  are  localized  reliably.  Aygun  er  al.  [16]
demonstrated 3D object detection in the spatial domain, which
localized possible  object  instance centers  within a 4D volume
and  associated  points  to  estimated  centers  in  a  bottom-up
manner,  while  a  semantic  branch  assigns  semantic  classes  to
points.

III.Obstacle detection for autonomous driving

A. Pulsed LiDAR device design

Fig. 1. Comparison of pulsed LiDAR and FMCW LiDAR methods.

Camera  sensors  have  been  used  to  recognize  geographic
features  or  crops,  using  image  sequences.  However,  camera
sensors can have low accuracy due to the effects of weather and
environment, and additional processing methods are needed to
detect distance or depth. LiDAR sensors can be used for multi-
object  detection,  and are robust  to  weather  conditions such as
high or low intensity illumination. With the 900 nm wavelength
of laser light used in existing LiDAR sensors, the signal-to-noise
ratio is high, due to the scattering and reflection of light under
poor  environmental  conditions.  To  solve  these  problems,  it  is
necessary  to  use  laser  light  with  a  1,550nm  wavelength.  We
therefore  used  an  avalanche  photo  diode  based  on  indium
gallium  arsenide  instead  of  a  single  photon  avalanche  diode
based on silicon.

There are two main methods of light irradiation: 1) the Pulse
3D  method,  which  transmits  and  receives  only  a  single  pulse
intermittently,  and  calculates  the  time  distance  between  the
transmitted  and received  pulses;  and 2)  Frequency Modulated
Continuous  Wave  (FMCW)  which  generates  a  continuous
waveform,  and  calculates  the  distance  from  the  frequency
difference  between  the  transmitted  and  received  waveforms.
Figure  1  shows  examples  of  Pulse  3D  and  FMCW  LiDAR.
Since  existing  FMCW  methods  transmit  and  receive  light
continuously,  increasing  laser  energy  can  lead  to  eye  safety
problems.  To  solve  the  eye  safety  problem,  when  detecting
objects, we used the Pulse 3D method, which involves radiating
the light for a very short period of time. We designed a LiDAR
device  using  the  PWM  Pulse  method  in  preliminary
experiments, as shown in Figure 2.

Fig. 2. Pilot study: LiDAR with PWM Pulse method.

B. Obstruction detection using a point cloud

We designed an obstruction detection method based on point
clouds  obtained from the  LiDAR system described in  Section
3.1.  Figure  3  shows  an  overview  of  the  obstruction  detection
method.  We  obtained  data  from  several  consecutive  LiDAR
scans, and formed 4D point clouds. We identified the most likely
instance  centers  using  a  neural  network  model,  and  assigned
semantic  classes  to  points.  As  well  as  the  most  likely  object
centers in a 4D point cloud, we also needed variance predictions
for  each  point,  to  evaluate  the  probability  scores  during
clustering, and a posterior over all semantic classes. To calculate
probabilities and a posterior for all semantic classes, we needed
to  predict  the  variance  for  every  point.  We  estimated  these
quantities utilizing an encoder-decoder network which directly
takes a 4D point cloud. The encoder uses the KPConv backbone
[17],  which  is  based  on  deformable  point  convolutions.  The
decoder  uses  consecutive  point  convolutions  to  predict  point-
wise feature embeddings. We added an object, point variance,
and semantic decoders, and used cross-entropy loss to train the
network.
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Fig. 3. Overview of the obstruction detection method

IV. Conclusions

In this study, we designed an obstruction detection method
based on point clouds, for autonomous driving in an agricultural
environment.  Pulsed  LiDAR  technology  with  a  bandwidth  of
1,550nm was adopted and the LiDAR sensor with an FoV of 90
degrees  was  utilized.  We  designed  a  deep  learning  model  to
detect  property  information  for  structured  or  unstructured
obstructions.

In  order  to  accurately  learn  deep  running-based  models,  a
considerable  amount  of  data  is  required.  Therefore,  it  is
necessary  to  build  high-quality  datasets  in  order  to  improve
performance.  In  future  works,  we  will  build  4D  point  cloud
datasets  in  agricultural  environment,  considering  poor
environmental  conditions.  Furthermore,  we  will  compare
reliability and accuracy with previous studies to investigate the
performance of the proposed method.
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