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Abstract— This paper presents a novel deep learning framework
for autonomous clinical diagnosis by dealing with the training with
poorly labeled clinical dataset. Partially labeled data and inconsistent
labels from multiple annotators make the model hard to learn
accurate diagnosis in frequently and drastically updated clinical
dataset. Motivated by such difficulties, the proposed framework
introduces the weighted combination of inconsistent labels by
considering multiple annotators' expertise and adapt meta-learning
approach for the quick adaptation to the updated dataset.
Experimental results on the posterior pelvic tilt detection in a squat
motion show the proposed approach outperforms the conventional
learning approaches in terms of the convergence speed and the
converged mean squared error.
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L.

Physiotherapy is an important treatment to assist in the
recovery of many injuries, disabilities, and health conditions.
Although proper physiotherapy treatment conducted under the
supervision of medical specialists is beneficial for the speedy
and successful recovery, it entails a large cost and the
inconvenience of visiting medical facility. Furthermore, recent
outbreak of COVID-19 makes it harder for patients to get
proper treatment from medical facilities. For these reasons, the
demand for rehabilitation monitoring systems is constantly
increasing with the need of in-home physiotherapy [1], [2]

INTRODUCTION

The autonomous diagnosis of medical disorder is
considered as a key technology for the monitoring system.
There has been great improvement in the autonomous
diagnosis in virtue of recent advances in machine learning
algorithms and hardware [3]. Although the previous work on
the artificial intelligence (Al)-based diagnosis have
successfully shown great potential for deep learning, it is not
easy to achieve a high accuracy with deep learning approaches
in practical systems with poor training dataset. In the field of
medical diagnosis, it is hard to establish a large, high quality
dataset due to expensive annotation [4], privacy [5], and
scarcity of diseases [6]. Hence, dealing with the problems
caused by poor dataset is essential to improve the deep
learning-based diagnosis performance in practical scenarios.

Recently, crowdsourcing annotation via Amazon
Mechanical Turk and Crowdflower has received attention as an
effective solution to alleviate the annotation problem [7].
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However, the crowdsourcing cannot clearly solve the
annotation problem in the clinical diagnosis by introducing
inconsistent labeling problem. Due to the nature of its
symptom-based diagnosis, the results of clinical diagnosis are
relatively more dependent on the annotator's expertise and
personal experience compared to other fields. In addition, the
limited number of data sources and annotators with expertise,
the clinical dataset consists of a small number of data samples
and can be drastically updated by the participation of new
annotators and the additional data sources. Such frequent and
drastic updates give rise to significant computational cost for
re-training the deep neural network (DNN) model. For the
computational cost reduction and the incremental performance
improvement with the dataset update, the quick adaptation of
DNN model to the updated dataset is required.

In order to cope with the partially and inconsistently
labeled data, and dynamic dataset update, we propose a novel
meta-learning based clinical diagnosis method that takes
account of the annotator's expertise by introducing the weight
on labels. Although there have been some previous works on
learning from multiple annotators with varying expertise [8],
[9], they have not provided the solution to deal with
inconsistent and duplicated labels for the same data from
multiple annotators. We apply the proposed method to the
evaluation of squat exercise, which is one of the representative
rehabilitation activities that help prevent injuries, strengthens
core muscles, and improves balance and posture [10].
Specifically, based on inertial measurement unit (IMU) sensor
data, the proposed method learns to detect the timing of
posterior pelvic tilt, which is a critical factor for diagnosing
low-back problem and evaluating athletic performance [11], in
the descent phase of squatting. Experiment results show that
the proposed clinical diagnosis method outperforms the
conventional learning-based approaches, including transfer
learning, in terms of not only the convergence speed of DNN
model but also the timing gap with ground-truth. The
contributions of our work can be summarized as follows:

e To the best of our knowledge, this is an initial work that
tackles the practical challenges of deep learning for
autonomous clinical diagnosis, such as a large variation
in labeling pattern of annotators with varying expertise,
partially labeled data samples, small dataset size, and

dynamic dataset update.
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e We propose a novel deep learning framework for
mitigating the problems caused by the partially and
inconsistently labeled data, and dynamic dataset update
in clinical diagnosis.

e We develop IMU-based wearable devices for sensing
body movement. Based on the collected sensor data, we
create a new squat dataset with the data annotation of
physiatrists.

e The performance of the proposed methodology is
evaluated with posterior pelvic tilt detection from the
constructed squat dataset. Experiment results show that
the proposed method can achieve better convergence
speed and mean squared error (MSE) than the transfer
learning-based approach developed for shortening the
training time and mitigating the problems caused by
small dataset size [12].

e Besides the clinical diagnosis, the proposed deep
learning framework can also be utilized for solving
other types of problems with partially and inconsistently
labeled data, and dynamic dataset update.

II. PROBLEM DESCRIPTION

In a squat, the timing of posterior pelvic tilt provides useful
information for diagnosing low-back problem and evaluating
athletic performance. For autonomous disorder diagnosis and
athletic performance evaluation, we consider the problem of
detecting posterior pelvic tilt timing in the IMU sensor data of
the squat movement.

Each squat data is constructed by F-dimensional sensing
data of R IMU sensors for S sampling periods. The i-th squat
data is denoted as x; € R®"5, Since the annotators are assumed
to have different levels of experience and expertise in diagnosis,
the annotation results for the same data can be different
between annotators. To deal with such inconsistency, we
combine the annotation results after assigning weights to
annotators according to the level of annotator’s experience and
expertise. Specifically, the ground truth label for data x; is
defined as

A
= § % 1
Vi Za E:A’la Yiar ( )
a €A

where A, A, and y;, denote the set of all annotators, the weight
assigned to annotator a, and the annotation result of annotator
for data x;, respectively. However, in practical scenarios, it is
hard for each annotator to participate in the annotation of all
data samples due to the limited processing capability of human.
For this reason, only a subset A; — A of annotators annotate
data x;, and the corresponding combined label is represented by
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Hence, the combined label (2) is actually available for
training the model instead of (1). Different annotator set of data

leads to the reliability variation of the combined label y; and it
makes hard to learn the generalized rule for detecting posterior
pelvic tilt with conventional deep learning technique.

Furthermore, due to the nature of clinical data, the size of
clinical dataset is generally small. For this reason, the dataset
can be drastically updated by the participation of new
annotators and the additional data sources. Specifically, the
dataset D ={(x;, {yia:a € Jli})]?]:l can be updated by D’ with
more data samples N' > N and A;" D A;. In addition, with the
new annotators and re-arrangement of weights, the annotator
weights A = {Ai, A1, ..., Mgy} can be updated by A’ = {11, A,
.evs Mogr} for A" o A. Such drastic updates require additional
training process, and it causes significant computational cost
and time for re-training the DNN model in the conventional
deep learning algorithm.

Eventually, the objective of our work is to learn initial
model parameters @ that can be quickly adapted to the updates
in D"and A’so as to well approximate the updated ground truth

yi ~ fo(x)) for (x;, {yia:a € A}) €D, (3)

where ;" denotes the ground truth label (1) computed with the
updated annotator set A, and fo(-) denotes DNN model with
parameters 6.

I11. QUICK MODEL ADAPTATION WITH META-LEARNING-BASED
APPROACH

Meta-learning, also known as learning to learn, aims to
learn a general purpose learning algorithm that can generalize
across multiple tasks and enables new task to be learned
quickly. For the quick adaptation to the updates D’ and A’, we
adapt the model-agnostic meta-learning (MAML) approach,
which learns an initialization of model parameters so that a
new task can be learned with a few gradient update steps [13].
In other words, the initial model parameters & that can quickly
adapt to a new task 7' = (D', A’) should be learned from the
dataset D.

First of all, we generate new tasks 70" by randomly
trimming data samples and annotations and randomly re-
arranging annotator weights of the original task 7 = (D, A) as
follows

) = (D(m)‘A(m))

~ (o € A} a0} @)

where, A™ c A, A; "™ = A; N™ < N, and M denote the total
annotator set, annotator set of data x;, number of data samples,
and weight of annotator £, respectively, in the trimmed task .
Such tasks can be utilized to learn internal features applicable
to various tasks. Specifically, the model parameters @ adapt to a
task 7 via stochastic gradient descent (SGD)

0™ « 6 —aVyLyom(fy) )
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where o denotes a learning rate and Ly (") denotes a loss
function that evaluates the model parameters for a given task
7@, To take account of the reliability of the combined label,
weighted mean squared error (WMSE) is adopted as a loss
function

1
B0

2

Lo (fp) = . (6)
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where B™ denotes a batch sampled from D™, and §" denotes
the combined label of x; for participating annotator set 4" and
annotator weight A™. With the summation term of weights in
(6), the data sample that is annotated by highly experienced
annotators has more influence on the model parameter
adaptation (5).

Based on the parameter adaptations for M trimmed tasks,
we derive the generalized model parameters € that enables
model to adapt quickly to a new task by solving the following
problem

M
arg max Z L) (fyom)
m=1

0

M
= argmax Z L) (fs—avgcr(m)(fe))-

m=1

Based on (7), the optimized parameters & across the trimmed
tasks are derived via SGD as follows

M
60— ) Ly (fyum). @®)
m=1

Eventually, the proposed meta-learning-based model
generalization for clinical diagnosis can be summarized as
algorithm 1.

IV. EXPERIMENTAL RESULTS

A.  Measurement Settings

To collect motion data, we develop wearable devices with
IMU sensors. Fig. 1-(a) shows the structure of the developed
wearable device. 9-axis IMU sensor MPU9250 can measure
acceleration, angular velocity, and magnetic strength. Arduino
Nano 33 BLE board is used to record the sensor data to
database via Bluetooth. In order to get rid of any restrictions on
movements, rechargeable lithium polymer ion battery is
utilized for supplying power without wired connection. Based
on the medical advice from physiatrist, the developed devices
are placed on R = 4 parts of body as shown in fig. 1-(b). Two
out of four devices are placed on top of lumbar spine L4 and
S2. The other two devices are placed at the one-third point
between the patella and pelvis bone on the left thigh and the
midpoint of the patella and ankle bone on the left calf.
Eventually, R =4 IMU sensors measure the /= 3-dimensional
sensing data of squat motion with a sampling frequency of 20
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Algorithm 1 Meta-learning-based model generalization for
clinical diagnosis
Require: Original task 7 = (D. A)
Require: Learning rates a. /3
1: Initialize parameters ¢ randomly

2. while not done do
3 Generate M trimmed tasks 70 from T
4 for all 70 do
5: Sample batch BU™) of datapoints from D™
6 Evaluate L) (fg) with Bm)
7 0 = 0 — aVoLrom(fo)
8: Sample batch B™) of datapoints from D™
9: end for
10: Update # + 0 — 3V, E:f 1 Ly (faomy) with Bm)
for each m
11: end while
MPU9250
Arduino
Band

Power module

Battery

(a) Components of device

(b) Device placement

Fig. 1. Experiment setup

Hz for 5 seconds. Environmental parameters are summarized in
table L.

B. Dataset Construction

With the developed devices, the squat motion dataset is
constructed through the collaboration with physiatrists in
department of physical medicine & rehabilitation, Kosin
University gospel hospital. The clinical dataset is composed of
1268 data samples that are measured from 4 subjects and
annotated by 2 physiatrists.

In order to overcome the limited number of annotators, we
create 8 virtual annotators with different annotation patterns by
adding some noise to the labels annotated by physiatrist a € {1,
6}. For instance, the virtual annotator a’ € A; is assumed to
annotate the data x; as follows

Yia' = Yia T Wia, (9)
where y;, denotes a label annotated by physiatrista € {1, 6},
and w;, ~ N (o, 1) denotes the variation from y; .. Specifically,
the labels of virtual annotator a’ € {2, 3,4, 5} ora’' € {7,8,9,
10} are generated by adding noise to labels of physiatrist a = 1
or a = 6, respectively. The noise means are p> = (7 =2, 13 = g
=-2, (4= o =4, us = p10 = -4. Note that A= {1, 2, 3,4, 5} and

A=AU {6,7,8,9,10}.



TABLE L ENVIRONMENTAL PARAMETERS

Parameters Value [unit]

No. of IMU sensors, R 4 [sensors]

Dimension of a sensing sample, V' 3 [dimensions]

No. of samples in a data sample, S 100 [samples]

No. of annotators in original task, |A] 5 [annotators]

No. of annotators in original task, |:A/| 10 [annotators]

No. of trimmed tasks, M 3 [tasks]

Original dataset size, N 400 [data samples]

Updated dataset size, N’ 800 [data samples]
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Fig. 2. Training progress comparison

In the original task 7, the annotation set A; for data i € {I,
2, ..., N} is randomly generated while satisfying |4; | = 3. On
the other hand, in a new task 7', the annotation set A;’ for data i

e {1, 2, ..., N’} is randomly generated by adding two
additional annotators among {6, 7, 8, 9, 10}.

C. Performance Comparison

this subsection, simulation results show the
performances of the proposed framework and the conventional
learning-based approaches in terms of the convergence speed
and the converged MSE. We consider two conventional
learning methods, denoted by Baseline and Transfer learning
in figures. In the baseline method, a simple supervised learning
is conducted for the updated task 7’ with randomly initialized
model parameters. In the transfer learning method, the model is
initialized with the model parameters trained for the original
task 7 and is fine-tuned to the updated task 7. For all learning
methods, we adopt the same convolutional neural network
(CNN) model consisting of two convolution layers and a single
fully connected layer. In all simulation results, the inference

accuracy is quantified by MSE between ground truth label and
inference, Elly; — fo (x:)1%],

In

Fig. 2 shows MSE of training model inference with respect to
gradient update steps in the situation where the task is updated
by new annotators, additional annotations, annotator weight re-
arrangement, and new data samples according to section IV-B.
All methods are shown to reduce the error as the training
progresses; however, there are big performance gaps between
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Fig. 3. Training progress with restricted task updates

them in the convergence speed and the converged MSE. Even
though the transfer learning-based method is shown to achieve
MSE comparable to the proposed method in the early stage of
training process by exploiting the similarity between tasks, its
initial parameters fully-fitted to the original task 7 makes it
hard for the model to adapt to a new task 7. On the other hand,
from the observation that the proposed learning framework
outperforms the other methods in terms of the convergence
speed and converged MSE, we can see that the proposed
framework is able to effectively derive the generalized initial
model representation across various tasks.

In order to see the effects of task update factors on the
performance separately, fig. 3 shows training progresses with
the updated task without (a) additional data samples, N'= N =
400, and (b) additional annotators, A'=A= {1, 2, 3,4, 5}. All
environmental parameters except the restriction factor are the
same with fig. 2. From two panels of fig. 3, the proposed
framework is shown to achieve significant performance gains
in both types of task updates. Furthermore, we can see that the
proposed framework is relatively more effective to the task

update with additional annotators than the update with
additional data samples.

V. CONCLUSIONS

In this paper, we have proposed a learning-based clinical
diagnosis framework where the model training is conducted
with the dataset in poor conditions with inconsistently and
partially labeled data from multiple annotators. The proposed



framework has dealt with such challenges by introducing the
compromised label with the weighted combination of the
inconsistent labels and adapting a meta-learning approach for
the generalized initial model parameters. In addition, we have
developed wearable devices with IMU sensors to construct a
clinical dataset for posterior pelvic tilt detection in squat
motion. Experimental results have shown that the proposed
framework outperforms the conventional learning-based
approaches in terms of convergence speed and MSE. It has also
been shown that the proposed framework is relatively more
effective for the task update with additional annotators than the
update with additional data samples.
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