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Abstract—Cardiac arrhythmia detection exploiting electrocar-
diogram (ECG) signal has gradually become mature in the
recent decade. Recent advancement in the deep learning (DL)
area has accelerated its extensive application in this area of
healthcare research. Especially, convolutional neural network
(CNN) based architecture has become more popular and has
drawn a lot of research attention for the precise detection of
cardiac arrhythmia utilizing single or few QRS complexes or
beats of ECG signals. In this article, we have investigated the
performance of six CNN based classifiers for cardiac arrhythmia
(15 classes) detection based on the spectrogram of the long
duration ECG signals. Six pre-trained state-of-the-art CNN based
models, i.e. VGG-16, ResNet-50, Inception, MobileNet, DenseNet,
and EfficientNet have been used as feature extractors. At the
beginning of this investigation, short term fourier transform
has been used to extract time-frequency domain information’s
from the long duration ECG signals as well as generate two
dimensional spectrogram images to be fed into these CNN based
architectures as input. However, the overall performances of
the six ECG rhythm classifiers in terms of accuracy, precision,
recall, and F1 score, are also evaluated and investigated explic-
itly to demonstrate the comparative analysis. In addition, the
experiment has been conducted varying the learning rate during
training of the classifiers to study the impact of the learning rates
on discriminative feature learning.

Index Terms—Cardiac arrhythmia, electrocardiogram (ECG),
CNN, STFT, transfer learning.

I. INTRODUCTION

Cardiac arrhythmia has been considered as one of the impor-
tant and outrageous manifestation of cardiovascular diseases
(CVD) which causes majority of cardiac arrests and sudden
deaths to human across the world [1]. It refers to heart rhythm
disorders which obstruct the origin and physiological diffusion
of the electrical stimulus of the heart. Because of adopting the
sedentary lifestyle, the occurrence and mortality rate of the
SVD is still growing among large set of population specially
in developing countries [2]. As a result, it has become very
important to monitor heart rhythm regularly in order to manage
and prevent the CVDs. Exploiting electrocardiogram (ECG)
signal is very useful for the diagnosis of arrhythmia since it
is a non-invasive and easy-to-apply method to measure the
cardiac activity [3].

ECG (electrocardiogram) is an important and the most
widely disseminated medical tool that records the can provide

useful information on cardiac excitability, transmission, and
recovery. Therefore, automatic diagnosis of cardiovascular dis-
ease significantly relies on the precise detection of the irregular
heart rhythms from ECG signals [4]. The conventional method
of ECG signals rhythm classification includes morphological
features extraction of single or few QRS complexes or beat
to detect rhythm. But, the current method may fail to achieve
satisfactory diagnostic performance during when trained on
multi-class ECG data [5]. Hence, diagnosing CVD using
long-duration ECG signal fragments is an alternative to the
conventional method though it is very challenging.

In the past decade, numerous machine learning (ML) tech-
niques, such as neural network (NN) [6], SVM [7], decision
tree [8], logistic regression [9], linear discriminant [10], neuro-
fuzzy system [11], K-nearest neighbors (KNN) classification
method [12], have been utilized in ECG signal classification.
But the performance of ML based classifier largely relies on
noise reduction during data pre-processing and discrimina-
tive spatiotemporal feature extraction [13]. In recent years,
deep learning (DL) algorithms have proven their efficacy in
wide range of applications, such as image processing, pattern
recognition, computer vision and thus inspired researchers to
replace conventional ML methods. In addition, because of
the capability of learning discriminative features automati-
cally, DL based model can reduce the complexity in various
applications [14]. Recently, many researchers applied several
deep learning techniques to the study of ECG classification.
Studies manifest that the widely exploited DL based model
is convolutional neural network (CNN). Kiranyaz proposed
1D convolutional neural networks for real-time patient-specific
ECG classification [15]. The proposed network can effectively
classify five typical beats from the ECG records. In order to
realize the classification of 5 typical types of arrhythmia sig-
nals, i.e., normal, left bundle branch block, right bundle branch
block, atrial premature contraction and ventricular premature
contraction, Li also proposed 1D-CNN based method in [16].
An ECG monitoring system integrating the Impulse Radio
Ultra Wideband (IR-UWB) radar with the CNN have been
studied in [17]. Jun proposed an effective ECG arrhythmia
classification method using a deep two-dimensional (2D) con-
volutional neural network considering ECG signal segment as
2D image. In order to identify and classify four types of ECG
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TABLE I
ILLUSTRATION OF THE ECG DATA USED IN THIS EXPERIMENT.

Arrhythmia type Symbol Record
Training

samples

Test

samples

Atrial bigeminy AB 222 6 2

Atrial fibrillation AFIB

201-203,210,

217,219,221,

222

632 159

Atrial flutter AFL 202,203,222 61 16

Ventricular

bigeminy
B 106,119,200 196 49

2° heart block BII 231 55 14

Idioventricular IVR 124,207 10 3

Normal sinus N

101-106,108,

109,111-119,

121-124, 205

200-202, 219

207-209, 220

212-215,222

223,228,230,

231,233,234

5048 1263

Nodal (A-V

junctional)

rhythm

NOD 124,201,222 21 6

Paced rhythm P
102,104,107,

217
527 132

Pre-excitation PREX 230 59 15

Sinus bradycardia SBR 232 144 36

Supraventricular

tachyarrhythmia
SVTA

207,209,220,

234
14 4

Ventricular

trigeminy
T

106,119,124,

201,208,214,

221,223

86 22

Ventricular flutter VFL 207 11 3

Ventricular

tachycardia
VT

200,203,205,

223,233
13 4

patterns, Salem proposed an ECG arrhythmia classification
method in [18] using transfer learning from 2D deep CNN
features. However, all these studies focused on developing
ECG arrhythmia classifier based on beat levels. A very few
studies have been conducted based on rhythm label taking
long duration ECG signals under consideration. In this work,
we have broadly investigated the comparative performances
of five deep 2D CNN models for cardiac arrhythmia (15
classes) detection based on long-duration electrocardiography
(ECG) signal analysis. Since, ECG is one-dimensional time
domain signal, short-time Fourier transform has been applied
to transform into time-frequency spectrograms and use it as
2D input of the deep CNN models at the very beginning. We

Fig. 1. The architecture of the ECG based arrhythmia detection using STFT
based long duration ECG spectrogram.

have utilized VGG-16, ResNet50, InceptionNet, MobileNet,
Efficient Net as the backbone of five CNN based models. But,
instead of training these models from scratch using ECG data,
these model were pre-trained on image database and used
as feature extractor in our experiment. since our dataset is
not comparatively large, the learning of these models after
being pre-trained on huge database associated with image
classification and object recognition can be transferred for
ECG classification purposes. This is very well known method
for image classification purpose and it also known as transfer
learning.

The rest of this article is organized as follows. In section II,
our experimental methodology has been demonstrated broadly.
section III illustrates the experimental results with detail dis-
cussion. Finally, we draw conclusion of this article in section
IV.

II. METHODOLOGY

A. Overview of Method

The architecture of the ECG based arrhythmia detection
using STFT based long duration ECG spectrogram is depicted
in Fig. 1. This method doesn’t require signal filtering, hand-
crafted feature extraction from the signal, and feature selection
at any stage. The ECG data are obtained from MIT-BIH ar-
rhythmia database [19]. The input ECG signals are segmented
into 10 seconds duration recordings and annotated based on
the the recordings annotations. Later on, the short time Fourier
transform (STFT) is utilized to transform each 10 seconds
ECG signal into 2D time-frequency spectrogram and the size
of ECG spectrogram images are 256 × 256 × 1. Exploiting
these obtained ECG spectrograms, the CNN based classifier
learns spatial features at multiple scaling representations and
get optimized iteratively. In the Table 1, we have shown the
various cardiac arrhythmia diagnostic classes, the associated
number of ECG signal fragments collected, and their distribu-
tions into training and test sets.
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Fig. 2. Typical long duration ECG samples of different classes.

B. Data Acquisition and Selection

This subsection provides comprehensive demonstration of
ECG data acquisition and selection methods. The original
MIT-BIH Arrhythmia Database hosted by PhysioNet contains
48 records studied by the BIH Arrhythmia Laboratory and
each of them is slightly over 30 minutes long [19]. The
sampling rate of each ECG recordings are set to 360 Hz.
Two cardiologists independently worked to annotate them in
15 rhythm labels. since, we are focused on long duration ECG
signal in this study, for each type of rhythm we segmented 10
second long ECG record which contains 3600 samples. Fig. 2
depicts the typical ECG signal samples of class normal sinus,
sinus bradycardia, 2° heart block. The number records used in
this experiment for each class are given Table I. Besides, the
number of training and testing samples used in this experiment
are also shown in the table.

C. ECG Data Pre-processing

As our classifier is 2D CNN based model, the input of the
classifier must be an 2D image. Therefore, both the training
and testing ECG data samples represented in time domain are
transformed into 2D time-frequency spectrograms using STFT.

TABLE II
PERFORMANCE MEASURES COMPARISON OF THE USED PRE-TRAINED 2D

CNN MODEL.

Pre-trained

CNN model
Parameters

Top-5

accuracy

Time (ms) per

inference step (GPU)

VGG-16 138.4M 90.1% 4.2

ResNet50 25.6M 92.1% 4.6

Inception 23.9M 93.7% 6.9

MobileNet 4.3M 90.1% 3.4

DenseNet 8.1M 92.3% 5.4

EfficientNet 5.3M 93.3% 4.9

Before applying STFT transformation, the data samples are
normalized between 0 to 1.

However, learning feature variation from a ECG signal
becomes very difficult without analyzing the frequency domain
properties. To extract frequency domain behavior of a signal,
classical Fourier transform (FT) was used in many previous
studies. But, the FT method assumes the signal as stationary,
i.e. the signal has no time domain properties [20]. But, it
observed from the experiment that the ECG signal is a non-
stationary signal and its frequency also varies according to the
time. The short time Fourier transform (STFT) is a well-known
and widely used linear operator which was developed to
overcomes this drawback by considering an analysis window
that has a specific time-frequency resolution property. Thu, the
STFT can explore both the instantaneous frequency behavior
as well as the instantaneous amplitude behavior of a signal at
the same time [21].

In the STFT, a window function is utilized for extracting
time domain information. The window function has a given
interval and the value of this window function outside the
interval is zero. This window function is shifted over the
whole non-stationary signal sequentially and every time it
is multiplied with the signal to calculate frequency domain
information. However, for a discretized digital signal, the
time-frequency spectrogram of a non-stationary signal can be
calculated as

STFT {x[n]} =

∞∑
−∞

x[n]g[n− τ ]e−jwn (1)

where x[n] represents the discretized digital signal and in our
experiment x[n] the ECG signal which sampling rate was 360
Hz. g[n] is the window function and τ is the shifting parameter.
There are several windows available for STFT operation but
we used “Hann” window in generating 2D spectrogram image.
Besides, the window length is chosen as 128 and the value of
τ is 14.

D. Architecture of the CNN based ECG Arrhythmia Classifier

In this subsection, the detail of the CNN based ECG
arrhythmia classifier is described. We have used state-of-the-
art pre-trained CNN model to extract discriminative features
from the input 2D spectrogram. When a 2D spectrogram
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Fig. 3. Spectrograms of long duration ECG samples belonging to different
classes.

TABLE III
HYPER-PARAMETERS OF THE CNN BASED CLASSIFIERS TRAINING.

Name of the

hyper-parameter
Values

Shape of the

training data
(6889, 256, 256, 1)

Shape of the

testing data
(1723, 256, 256, 1)

Epoch 60

Optimizer Adam

Batch size 64

Loss
Categorical

cross-entropy

Learning rate .001, .005, .0001

image is given as input, a Conv2D layer is used between
the input and the pre-trained CNN model. Because the pre-
trained CNN model can only take 3 channel input, but the
given input channel is 1. Therefore to produce 3 channel
input, three convolutional kernels of size (3 × 3) are applied
in this first convolutional layer. Afterwards, pre-trained CNN
model extracts features from the out of the first convolutional
layer. In our experiment, we have utilized five state-of-the-art
CNN models, i.e. VGG16, ResNet50, Inception, MobileNet,
DenseNet, EfficientNet, which was previously trained on a
large database “imagenet” in order to extract spatial discrimi-
native features and we named the classifiers as Model I, Model

Fig. 4. The architecture of the 2D CNN based ECG arrhythmia classifier.

II, Model III, Model IV, Model V, and Model VI, respectively.
Table II presents the overview of the five CNN models. How-
ever, after extraction of the features, global average pooling
layer is used to down sample the detection of features in
feature maps. Then two dense layers are applied along with
two activation function ReLU, softmax, respectively.

III. EXPERIMENTAL RESULTS

A. Model Training and Optimization

For this experiment, we trained and optimized six CNN
based classifiers architecture. This subsection elucidates the
overall training and optimization details of six CNN based
classifiers. Based on the basic hyper-parameters shown in
Table III, the six ECG heart rhythm classifier are trained and
optimized. However, the raw ECG data are segmented into 10s
signals and afterwards, the spectrograms of size (256× 256)
are produced using the STFT. The whole dataset is divided
into training and testing sets by the ratios of 80% and 20%,
respectively. The number of training and testing samples of our
experiment are 6889 and 1723. “Categorical cross-entropy”
function is used to measure th loss between actual label and
predicted label. To optimize the CNN based classifier, “Adam”
optimizer is applied with the different learning rates .001,
.005, and .0001. We have applied 60 iterations to converge
the classifier models. In addition, the batch size is set to 64.
All the training and testing programs have been performed
in anaconda python 3.7 on a system equipped with 3.80 GHz
CPU, 256 GB RAM, and a single NVIDIA Quadro RTX 6000
GPU.

B. Evaluation Metrics

In this section, we have evaluated and demonstrated elabo-
rately the classification performance of our CNN based ECG
rhythm classifier. In order to investigate the performance of
recognition, four performance metrics, e.g., accuracy, preci-
sion, recall, and F1 score are measured. For a binary class
problem, theses metrics of the classifier are defined as,

Accuracy =
(TP + TN)

(TP + TN + FP + FN)

Precision =
TP

(TP + FP )

Recall =
TP

(TP + FN)

F1 = 2× precision.recall

precision+ recall
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TABLE IV
PERFORMANCE OF CNN BASED ARCHITECTURES FOR LONG DURATION ECG RHYTHM CLASSIFICATION.

Models
learning rate=.001 learning rate=.005 learning rate=.0001

Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

Model I 85.4% .840 .860 .842 83.3% .843 .833 .836 84.0% .797 .840 .808

Model II 87.6% .850 .871 .857 86.4% .856 .864 .854 86.2% .826 .862 .831

Model III 79.1% .713 .792 .733 79.3% .705 .793 .716 80.3% .739 .803 .759

Model IV 85.9% .839 .860 .845 84.0% .835 .840 .832 85.1% .816 .852 .817

Model V 83.7% .805 .835 .809 88.4% .870 .885 .857 78.1% .736 .781 .697

Model VI 83.6% .821 .836 .821 88.2% .854 .882 .863 81.5% .742 .815 .757

where, TP, TN, FP, FN represents true positive, true negative,
false positive, false negative, respectively. In the multi-class
cases, several averaging techniques are used to extend these
binary metrics to multi-class. In our experiment, binary classi-
fication metrics are measured employing one-vs-rest strategy
for each class. Afterwards, we compute the weighted average
of individual binary metric since class imbalance exists in our
experiment.

C. Performance Analysis

This section reveals the overall performances of the clas-
sifiers and also compares the performances of the six pre-
trained CNN model based ECG arrhythmia classifiers in terms
of accuracy, precision, recall, and F1 score. However, the
performance are measures for three learning rates in order
to investigate the impact of learning rate on the classification
performances.

Table IV exhibits the comparison of overall performances
of the six classifiers. When the learning rate is .001, the
maximum classification accuracy is 87.6% which is achieved
by model II that includes ResNet50 and the minimum accuracy
is 79.1% achieved by model III which includes InceptionNet.
In addition, the precision, recall and F1 score is also higher
for the model II. Since the network is very large, residual
connection in the model II assists to reduce effect of over-
fitting and to enhance classification performance. On the other
hand, model V that includes DenseNet shows comparatively
better performance than the model II when the learning rate
is .005. At this learning rate, the maximum accuracy is 88.4%
which is higher than the previous case as well as than the later
case. Besides, the maximum value of precision, recall, and F1
score achieved by model V is .870, .885, .857, respectively
at the learning rate .005. The model III gain shows lowest
performance at this learning rate. Now, when the learning
rate becomes .0001, model II shows the maximum accuracy
along with the precision, recall, and F1 score. But, the model
V performance decreases at this case and it attains lowest
performance compared with other classifiers.

IV. CONCLUSION

Recognizing patterns of ECG signal rhythm using deep
learning based architecture is one of the popular method
to classify the type of arrhythmia. In this article, we have
evaluated and investigated the performance of six structurally
different CNN models for multi-class (15 classes) long du-
ration ECG signal classification task. STFT has been applied
to extract both time and frequency domain features from the
ECG signals and create 2D spectrogram images. However,
six pre-trined CNN based models are used as spatial feature
extractor to study the importance of transfer learning in the
arrhythmia detection task. Advantages of such methods are
also observed in this paper. The overall experimental results
depict the efficacy of the pre-trained CNN model based ECG
rhythm classifiers with minimal training time due to transfer
learning.
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