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Abstract—LiDAR (Light Detection and Ranging) sensors are
widely used in self-driving cars with awareness of the surround-
ing environment. However, the LiDAR sensor is sensitive to harsh
weather conditions that cause the collected data to be distorted.
These types of weather reduce the safety of self-driving cars. The
harsh weather conditions also cause missing points problems on
the point clouds, and it causes the performance of 3D object
detection to reduce. Therefore, we propose a new method using
probability estimation, which includes a Deep Mixture of Factor
Analyzers (DMFA) and a Miss-Convolution layer, to recover
missing points caused by snow. The proposed work outperforms
models which perform well in normal conditions. In summary,
snow often causes detection errors for 3D modern detectors. By
recovering missing points in the point cloud, we significantly
make the performance of the 3D detector better in snowy weather
conditions.

Index Terms—Autonomous vehicles, LiDAR, 3D object detec-
tion, snowy weather conditions

I. INTRODUCTION

To deliver correct environmental awareness, autonomous
vehicle systems rely mainly on precise sensor data, employing
multi-sensor setups and pricey sensors such as LiDAR. A 3D
scanner known as LiDAR, which stands for Light Detection
and Ranging, uses light in laser pulses to detect range, thanks
to the rapid development of 3D sensing technology. One of the
most significant challenges in developing driverless vehicles
and driver assistance systems is how poorly they operate
in snowy conditions. Snowy weather conditions also harm
LiDAR sensors. As a result, inaccurate sensor data might lead
to erroneous decisions and car accidents. Therefore, our main
target is to improve the accuracy of the 3D object detection
model in snowy weather conditions.

LiDAR sensors are known to be sensitive to adverse weather
conditions such as snow due to reduced signal-to-noise ratio
and signal-to-background ratio as well as large backscattered
power from random droplets. This led to weather-dependent
changes in reflectivity and increased range uncertainty. In
some cases, this can cause false detection if the signal is re-
duced below the noise level. Further, the background strength
increases, especially close to the sensor, simply because a
larger fraction of the backscattered laser power from random
droplets is available. Harsh weather causes missing points for
the point cloud, which leads to a decrease in the performance
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of the 3D object detection model. Therefore, our proposed
work apply a Deep Mixture of Factor Analyzers (DMFA) and a
Miss-Convolution layer to recover missing points. As a result,
our proposed model outperforms both of model [7] and model
[10].

II. METHODOLOGY
A. Overall Architecture

The proposed model has almost parts same as the teacher
model in SE-SSD [4]. We put more a Deep Mixture of Factor
Analyzers (DMFA) network [3] and a Miss-Convolution layer.
The overall proposed architecture is shown in Fig. 1. The
model starts with a VoxelNet [6] network, divides the point
cloud into box cells, and then uses Voxel Feature Encoding
(VFE) to encode into sparse voxel features. Sparse convolution
is used to learn information about the z-axis and convert the
sparse 3D voxel into a 2D BEV image. BEV means bird’s
eye view. Sparse convolution network (SpconvNet) has four
blocks ({2, 2, 3,3} submanifold sparse convolution [8] layers)
with a sparse convolution layer [9] at the end. Then, We apply
the DMFA network [3], and Miss-Convolution layer to recover
missing points on point cloud. Next, we concatenate the sparse
3D feature along z into a 2D dense feature for feature extrac-
tion with the Spatial-Semantic Feature Aggregation (SSFA)
module and Attentional Fusion (AF) module. In this work,
we use a single shot detector (SSD)-like [5] architecture to
do the object detection task. Finally, three 1 x 1 convolutions
are applied for label classification, location regression, and
direction classification.

B. Miss-Convolution

A missing voxel is indicated by x = (z,, ) € R", where
z, € R? express for voxels with known values, while z,, €
R™ 4 denotes loss voxels. The set of indices (voxels) with
loss values in sample z is indicated J C {1,...,n}. While
conditional density p,, |, is defined on (n — d)-th space, we
expand it to the whole R"™ space.

P, 1 (t) = 4 Pemlao(tar)s il Ly = o (1)
Fmle 0, otherwise.

where ¢t 7/ denotes the limitation of ¢ € R"™ to the observed

voxels J' = {1,...,n}\J.
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Fig. 1. The architecture of our proposed MissVoxelNet model. The input point cloud will be encoded into features through VoxelNet and Sparse Convolution.
Then the Deep Mixture of Factor Analyzers network and miss-convolution layer has the function to recover the lost data. The predictions are made based on
the performance of Spatial-Semantic Feature Aggregation and Attentional Fusion modules.

The Factor Analyzer (FA) is a component of the DMFA,
and it has a Gaussian distribution with a low-dimensional
covariance matrix. A single FA calculated in R" is defined
by the mean vector © € R", and the covariance matrix
¥ = AAT + D, where A,y is the rank factor loading matrix
low consists of [ vector ai,...,a; € R™, such that | < n,
and D = D,,«,, = diag(d) is a diagonal matrix representing
the noise regardless of d € R™. FA is formalized as a random
vector with the following properties:

l
Z=p+VdoX+> Y a;. 2)

=1

where X ~ N(0,I), Y; ~ N(0,1) are independent, v/d
denotes element-wise square root of vector d, and a ® b
stands for element-wise multiplication of vectors a and b. We
consider a random vector Z with an MFA distribution Py
representing a missing data point © = (z,, z,,). Let M be a
linear convolution computation, which creates a random vector
M Z. The random vector M Z then has an FA distribution with
mean and variance calculated as follows:

E[MZ) = Mu

l
V[MZ)] = diag(Md) + Z Maj) - (Maj)* &

The activation function is then applied to all coordinates
of the feature map created by the M Z. The 1-dimensional
Gaussian density is P = ZlepiN(ml, 2). When ReLU
is applied to a random variable with densuy P, the predicted
value is:

E[ReLU(P)]

1 k
:2rzlpz(mz+

2

;i
—eX +m; -er

lod \/5 )) .
“4)

where erf(z) = % [ exp(—t?)dt is the error function. We

create a neural network that uses an incomplete = point cloud

to return the conditional DMFA parameters. The log-likelihood

loss is used to train an inpainting network.

C. Loss Function

Bounding box regression loss, label classification loss, and
direction classification loss are the three loss functions in our

model. This model is trained using typical loss functions in
object detection. For the bounding box position and angle
regression task of the teacher model, we utilize the Smooth-L1
loss function L;¢4:

Lyeg = SmoothL1(dy)
6b: |bp_bgt|’ lbe {x,y,z,w,l,h}
| sin(b, — bgt)|,

if be{r}
where {z,y,z}, {w,l,h}, and r denote the center position,
sizes, and orientation of a bounding box, respectively, sub-
script p means prediction, subscript gt means ground truth.
The label classification task is given by a focal loss L,:

S

Les = —a(l —6)"log(d))
& =lo(lp) — o(lgt)

where o and v are the parameters of the focal loss. The
sigmoid classification scores of prediction and ground truth
are o(l,), o(ly), respectively.

The direction classification loss L, is calculated using the
softmax function. To generate a direction classification target,
we utilize the following method: if the rotation around the z-
axis of the ground truth is less than 0, the value is negative;
otherwise, the value is positive.

(6)

III. EXPERIMENT AND RESULT

A. Experimental Setup

1) Dataset: The production of new synthetic datasets in
snow is demonstrated in this section. We used the LISA sim-
ulator [2] to build new synthetic datasets in snow conditions
based on the KITTI point cloud data [1]. We got new datasets
called Snow-KITTI, which are synthetic point cloud datasets
for snow condition. The weather type is divided into three
categories: light, medium, and heavy, as illustrated in Tab. II.
The modification of the point cloud in snow circumstances
with intensity levels of light, medium, and heavy is shown in
Fig. 2. In snow, there are some noises near the LiDAR sensor’s
position and missing point objects in point cloud. Following
the typical methodology, each of our training datasets com-
prises 3,712 training samples and 3,769 validation samples.
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TABLE I
AVERAGE PRECISION OF 3D OBJECT DETECTION COMPARISONS SPLIT ACROSS THREE SNOW INTENSITY LEVELS AND THREE DIFFICULTY LEVELS [%].
THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Light Medium Heavy
Model

Easy | Moderate | Hard Easy | Moderate | Hard | Easy | Moderate | Hard

Pointpillar [7] 43.96 30.27 28.53 | 38.66 26.69 24.20 | 33.19 22.37 20.89
SECOND [11] 69.43 50.08 46.72 | 62.93 44.24 40.56 | 57.05 35.28 31.95
def PV-RCNN [10] | 73.71 55.50 50.53 | 68.85 48.64 4432 | 61.29 41.77 38.67
MissVoxelNet (our) | 75.82 56.04 50.92 | 70.34 50.61 44.88 | 63.66 44.63 39.61

TABLE II B. Results

THE RATES OF SNOWFALL BASED ON LEVELS OF SIMULATED SNOWY
WEATHER INTENSITY

Levels of intensity Light Medium | Heavy

The rate of snowfall (mm/hr) | 0-0.8 | 0.8 - 0.9 > 0.9

Distribution of point cloud in snow based on X axis
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Fig. 2. The histogram shows the point distribution of point cloud in snowy
weather conditions based on X-axis.

2) Evaluation Metrics: We evaluate the performance of 3D
object detection models according to three levels of snow
intensities: light, medium, heavy. To measure the performance
of the 3D object detection task, average precision (AP) is
computed across 40 recall positions values between 0 and
1. Our trials are primarily focused on the most often used
car category, and the average precision is measured using an
Intersection over Union (IoU) threshold of 0.7. The benchmark
also contains three difficulty levels in the evaluation: easy,
moderate, and hard, which are dependent on object size, oc-
clusion, and truncation levels, with moderate average precision
being the official ranking statistic for 3D detection.

3) Training Details: We implemented our model with Py-
Torch (1.8) and trained on a RTX 3060 GPU. During the
training, we choose Adam Optimizer with learning rate le =3
with batch size 6 and total epoch 150.

The MissVoxelNet model’s results in 3D object detection
were compared with Pointpillar [7], SECOND [11] and def
PV-RCNN [10] model, which performed well in normal condi-
tions. For the comparison, we use the same input from Snow-
KITTI for all models. The comparison results are shown in
Tab. I. The performance of Pointpillar [7], SECOND [11]
and def PV-RCNN [10] model in snowy weather conditions
were reduced. The leading cause is losing data. By recovering
the lost points based on combining the probability estimation
method with the existing architecture of 3D object detection,
we have improved the model’s performance. It can be seen
that the performance of the proposed model is far superior
and achieves the best results in all snow intensity levels and
object difficulty levels.

IV. CONCLUSION

Using a new network called MissVoxelNet, we offer a
novel method for 3D object detection in this research. By
incorporating a DMFA network [3] and a Miss-Convolution
layer into an existing model, missing points on the point
cloud can be recovered. As a result, when compared to other
methodologies, our model outperforms the competition.
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