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Abstract— Object tracking is a fundamental problem in the field  The distribution of this hidden layer 4 is learned from data in
of computer vision. Th§ oquct tracklng methods proposed so far can the learning process. The hidden layer 4 has a probability
be divided into a ‘discriminative correlation filter” and a ‘deep  gisyribution determined by the mean and standard deviation. As

learning .based mf:thods with a complex structure and a IOt. of shown in Fig. 2, the VAE can be expressed as the probability
computation. In this paper, we propose an algorithm for tracking

objects with a simple structure while maintaining tracking p(h|x) that the encoder obtains the hidden layer / from the
performance using a convolutional variational auto-encoder, external
memory, and a Siamese network. As a result of an experiment with
an RT (real-time) data set to measure real-time, the result was a
precision of 0.546 and a success rate of 0.527.

given data x , and the probability p(x|h) that the decoder

obtains the data x from the hidden layer % .
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I. INTRODUCTION @

Object tracking, which automatically tracks a specified
target in a changing video sequence, is a fundamental problem
in many computer vision fields, such as visual surveillance, -
traffic monitoring, and automatic driving. The object tracking
methods proposed so far can be largely divided into a
‘discriminative correlation filter’ and a ‘deep neural network’

tracking phase part 1

based methods.
Existing object tracking algorithms have developed into - 1 | Pr—
iy . . . . — — Memory
complex structures to utilize image feature information or time- - =
dependent information. In this paper, we propose a new object
. . . Siamese Correlation
tracking method that surpasses the latest object tracking network > wap

algorithms in a real-time object tracking environment by
increasing the processing speed by introducing a simple and -_ it
efficient algorithm as shown in Fig. 1. The proposed method

can be applied to low computing power environments such as
embedded environments when applied to aerial imaging
devices such as vehicle image collecting device on the road or tracking phase part 2
drones.
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II. BACKGROUND THEORY Wite

A. Variaational Auto-encoder @

Variational auto-encoder (VAE) [1] inherited the
characteristics of auto-encoder. However, the hidden layer 4
of the auto-encoder is simply a value that appears in the middle
of the calculation without any special relation to the training
data x, whereas the VAE has the difference that the hidden
layer 4 is a random variable with a continuous distribution.

Candidare Memory

e

Fig. 1. Implementation of the proposed object tracking.
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Fig. 2. Structure of a variable auto-encoder.

The decoder of the VAE is an artificial neural network that
generates data x from the hidden layer 4 . To know the

probability distribution p(x) of the result x , the decoder
learns p(x|h). In terms of a manifold, p(x|h) can be

described as a function f(x)= p(x \ h) that projects an input

x into the manifold space. Since the decoder is a generative
model, it generates semantically similar results as the value of
the hidden layer A changes.

The encoder of the VAE is an artificial neural network that
obtains the hidden layer /4 from the input data x . Given the
input data x , the probability distribution p(h|x) of the

hidden layer % is called the posterior distribution, and its value
is difficult to calculate directly. Therefore, a method of

approximating by q(h | x) is used by introducing a variational
inference method.

The goal of learning of VAE is to find the probability
distribution of real data, p(x). For convenience of calculation,
if p(x) is converted into a log format, the lower bound cost
function of log p(x) using maximum likelihood estimation
(MLE) E(x):

log p(x) = L(x)

E(x)=E, ., [log p(x|7)]=Dy (a(n]x)ll p(h))

The first term in Eq. (2) tells how efficiently the decoder
reconstructs data x from the hidden layer %2 as a
reconstruction error. The second term in Eq. (2) is the
Kullback-Leibler divergence (K-L divergence) regularization
term, which is a standard function that measures how different

two different probability distributions ¢ (4 |x) and p(h) are.
In wvariational inference, q(h) is defined as a normal
distribution.

q(h)=N(u,.0;)

However, when the input data x is of high dimensionality, if
q is defined as in Eq. (3), one normal distribution with the
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same mean and variance is assumed for all data, so it is very
difficult to learn the network. To solve this problem, the VAE
puts the parameters p, and o, of g as functions of x as

follows.

q(h]x)=N (g, (x).Z, (x))

If the learning of the VAE is a simple maximum likelihood
estimation problem, it can be solved with the artificial neural
network's gradient-ascent algorithm. However, in order to put
h as the input of the decoder, sampling is required because #
is a random variable. To solve this problem, a method called
re-parameterization is used. This method is a method of
changing the stochastic property of the hidden layer % to
deterministic by adding a random noise ¢ from the outside.
Fig. 3 shows the re-parameterization process of the VAE.
Diamond means a variable with a re-deterministic property,
and a circle means a variable with a probabilistic property.
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Fig. 3. Reparameterization of variable autoencoders.

B. Neural Turing Machine

A neural Turing machine (NTM) [2] refers to an artificial
neural network that can be connected to an external memory.
The structure of the NTM includes two components, a neural
network controller and a memory bank, as shown in Fig. 4.
Like most artificial neural networks, the controller interacts
with the outside world through input and output vectors. Unlike
standard artificial neural networks, it uses selective read and
write operations to interact with the memory matrix. Similar to
a Turing machine, the output of an artificial neural network can
be variable using a ‘head’. All components of a NTM can be
differentiated, so we can train directly with gradient descent.
Since the degree of interaction with the memory is sparse, the
degree of interaction between read and write is determined by
the weight size. Due to the read and write heads each have
weights, each location can read and write as much information
to memory as desired.

External Input External Output
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Fig. 4. Structure of a neural turing machine.



C. Siamese network

The Siamese network [3] has a structure as shown in Fig. 5,
and consists of two identical sub-networks performing
embedding and one cost function. The input to the network is a
pair of samples and labels. Each input is embedded through a
sub-network to produce two outputs. The cost function
combines the label with the embedded output. The slope of the
cost function for the parameter vectors controlling the two sub-
networks is calculated through back propagation. The
parameter vector is updated in a stochastic gradient descent
method using the sum of the gradients provided by the two
sub-networks.

Fig. 5. The structure of the siamese network.

Let x, and x, be a pair of samples. If the samples x, and
x, belong to the same class, y can be defined as y =0 as the
binary label of the pair of samples; otherwise, it can be defined
as y=1. Let W be the weight to be learned, and let the two
points in the low-dimensional space created by projecting x,
and x, be G, (x,) and G, (x,), respectively. Then, the cost
function E, (x,,x,) that measures the similarity between the

pair samples x, and x, can be defined as in Eq. (9).

E, (xl Xy ) = "GW (xl )_ Gy (xZ )"

The Siamese network is a network that learns the
embedding function G, using a sample set x ={x,,x,,...,x, }

by a deep learning method having multi-layers, and has a non-
linear structure. Therefore, the analysis performance is superior
to that of linear distance metric learning such as linear
discriminant analysis.

III. REAL-TIME OBJECT TRACKING USING CVAE AND
EXTERNAL MEMORY

In this chapter, we will describe a real-time object tracking
method using a convolutional variational auto-encoder (CVAE),
an external memory, and a Siamese network.

The structure and execution process of the proposed object
tracking algorithm are shown in Fig. 1 and Table 1. The
proposed object tracking algorithm takes as inputs a video
sequence V , ground-truth gf , and the number of video

sequences n . The proposed object tracking algorithm is
divided into three steps: initialization (Lines 5 to 8 of Table 1),
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tracking phase part 1 (Lines 11 to 14 of Table 1), and tracking
phase part 2 (Lines 15 to 17 of Table 1).

TABLE L. PSEUDOCODE OF THE PROPOSED OBJECT TRACKING
ALGORITHM
Notation
V' = video sequence C = candidate image
n =# of video sequence C,.+a =cmbedded candidate image
gt = ground tmﬂ_l M = external memory
b = result bounding box S, =size of field image
F = field image S i ¢ candidate i
F, .. =embedded field image e T Size ol candicale image
corr = correlation map
1 | procedure Proposed tracker
2 | Input: V, gt, n
3 | Output: b
4 | /* Initialization */
5 b = g,
6 crop C from V| using b, with S,
71 Cppa = VAE_embedding( C )
8 M = Cﬂmb(’d
9 | /* Tracking video frame */
10 | for t =2to n
11 crop F from V, using b, with S,
12 F,a = VAE_embedding( F )
13 corr = siamese_network ( F,,, ,, M)
14 b, = argmax_ corr
15 crop C from V, using b, with S.
16 C,pea = VAE_embedding( C )
17 | M =Controller( M , Cobed )
18 | return b

A. Low-dimensional Embedding of Images Using CVAE

The CVAE proposed in this paper reduces the number of
parameters to be trained by replacing the fully connected
network (FCN) in the encoder and decoder of the VAE with a
convolutional neural network (CNN). In addition, it has the
advantage of being able to more effectively project the image
onto the manifold space by extracting two-dimensional features
using a convolution filter. In order to extract features from
candidate and field images of different sizes using the VAE, all
fully connected networks in the encoder part of the existing
VAESs should be replaced with convolutional neural networks.
Fig. 6(a) shows the sampling method used in the existing VAE.
Transform the tensor of the last feature extraction layer of the
VAE into a vector using flatten operation. After that, it is
reduced to a vector of a desired dimension (d -dim) using a
fully concatenated operation. In this way, the mean and
standard deviation to obtain the probability p(x) of the data

are obtained, and the data are sampled using these. However,
Fig. 6(b) is a method that allows sampling regardless of the
size of the input image because it consists only of the
convolution operation without the flatten operation. This makes
it possible to apply the VAE to tracking objects based on
Siamese networks with different candidates and field sizes. If



the convolution operation is performed on the tensor of the last
feature extraction layer of the VAE using d filters having the
same size as the tensor, a tensor with a size of 1xX1xd can be
obtained as a result. As in Fig. 6(a), the average and standard
deviation of the probability of the data can be obtained and the
data can be sampled using these.

(a) Sampling method of CVAE (b) CVAE's sampling method
Fig. 6. Two different sampling methods for VAE.

In order to explain the concept of the CVAE above, the
case where the result of the convolutional encoder auto-
encoder is a tensor of size 1x1x d was described. However, for
images with high resolution, the dimensionality of the manifold
space must also be increased. Therefore, it is possible to apply
to the encoder structure of the VAE by changing all various
convolutional neural networks such as ALexNet[4], LeNet[5],
ZFNet[6], GoogleNet[7], VGGNet[8], ResNet[9], and
DenseNet[10], which has proven the performance of feature
extraction in previous studies, into a structure that can perform
variational inference.

Due to the characteristics of video, even the same object
exhibits various shapes, sizes, and colors over time due to
factors such as lighting change, size change, occlusion,
deformation, motion blur, fast motion, in-plane rotation, out-of-
plane rotation, and background confusion. However, the same
temporally adjacent object has a very similar appearance
despite the interference of various factors over time. Therefore,
if the moving picture is divided into frames and projected onto
the manifold space using the VAE, each frame will be located
in a very close manifold space.

As shown in Fig. 7, the proposed CVAE structure uses the
ALexNet variational inference method as an encoder and has a
newly defined decoder attached. The CVAE is used for pre-
training the parameters of the object tracking algorithm using
the Siamese network.

B.  External Memory Update

Recurrent neural network (RNN), a kind of artificial neural
network, has the concept of a kind of internal memory that
remembers information according to time by introducing a
directed circle that receives the output of the unit itself as input
again. Therefore, RNN are introduced to object tracking to take
advantage of these internal memory characteristics. However,
since the RNN does not allow differential reception of
information, it is difficult to track objects with properties such
as long-term occlusion or out-of-screen. In this paper, we
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propose object tracking using an external memory that allows
differential acceptance of information.

The proposed object tracking algorithm copies the low-
dimensional embeddings of the candidate to the external
memory in the initialization phase. However, when tracking
starts, the controller updates the external memory with a
constant weight ratio of the candidate's low-dimensional
embeddings, as shown in line 17 of Table 1.

M, [i] « (1-w)M_ [i]+wC,[i]

Where, M, [i] is the external memory value of position i at

time 7, C,[i] is the low-dimensional embedding value of the

candidate at position i attime ¢, and w is the update weight.
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Fig. 7. Detailed structure of CVAE.

C. Object Tracking Using Siamese Network

The detected object of the moving picture t—1 frame is
called a candidate, and the image of the ¢ frame extracted
within a sufficient range centered on the object position of the
moving picture #—1 frame is called a field. Although the ¢ -
frame object is included in the field, it is difficult to include an



object of the same type as the environment changes with time
as described above. Therefore, it is necessary to find the most
similar part within the field as a candidate for the ¢ -frame. As
mentioned above, since the CVAE has a structure that removes
all the structures of a fully connected neural network, it is
possible to obtain low-dimensional embeddings of images of
various sizes. When the candidate and the field pass through
the CVAE, low-dimensional embeddings with the same
number of dimensions but different widths and heights are
extracted. Of these two features, the low-dimensional
embedding of the volunteer is used to update the external
memory. A correlation map can be obtained by inputting the
updated external memory and performing a convolution
operation using the low-dimensional embedding of the field as
a filter. The part where the value of the correlation map is large
is the part where the probability of the location of the object is
high. This position becomes the position of the object of frame
t.

IV. EXPERIMENTS AND RESULTS

The experiment is performed on a RT (real time) dataset
prepared by hand for real-time performance evaluation. For a
fair comparison of the tracking results, an object tracking
algorithm capable of direct experimentation was selected from
among the object tracking algorithms with excellent
performance and the experiment was conducted.

A. Dataset

The RT data set is a data set directly constructed to evaluate
the real-time performance of the object tracking algorithm. As
shown in Table 2, it is a data set obtained by extracting the
images of objects with elements suitable for tracking among
the videos collected at a height of 5Sm from the Honam Jeilmun
Overpass located in Jeonju, Jeollabuk-do at the rates of 1FPS,
6FPS, and 30FPS.

TABLE 1L REAL-TIME DATA SETS
Data Name Video Length Extraction FPS
CowShed1 1m 34s 1,6, 30
CowShed2 1m 1,6, 30
CowShed3 33s 1,6,30
HonamGatel 34s 1, 6,30
HonamGate2 26s 1, 6,30
HonamGate3 27s 1,6, 30

B.  Quantitative Evaluation Indices

Evaluation is based on two metrics: precision and success
rate.

count (ED ( gt_bbox,tr_bbox ) <threshold)

count(total)

precision=

count (IoU (gt_bbox,tr_bbox )>threshold )

count(total)

success rate=
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In Eq. 11 and 12, gt box is the bounding box of the ground-
truth, tr box is the bounding box of the detection result, IoU

is the intersection over union, and ED is Euclidean distance.
As shown in Eq. 11, the precision shows the ratio of frames in
which the distance between the center position of the boundary
box of the actual measurement data and the center position of
the boundary box of the tracking result is less than the
threshold value. Representative precision is considered when
the threshold value is 50 pixels. As shown in Eq. 12, the
success rate represents the ratio of the intersection among the
unions of the area of the bounding box of the actual
measurement data and the detection result. In order to measure
the real-time performance of the object tracking algorithm, the
speed as well as the accuracy of the algorithm is a necessary
comparison factor.

C. Experimental Environment

The object tracking algorithm proposed in this paper is
implemented using Python's Tensor-Flow-Slim library. In
addition, all experiments were performed in a PC environment
equipped with intel(R) Core(TM) 17-6700k CPU @ 4.00GHz,
and NVIDIA GeForce GTX TITAN X GPU and CUDA 9.0
installed. When the implementation language of various object
tracking algorithms used for comparison is Python, the
experiment was conducted in the same environment as the
proposed algorithm, and when the implementation language
was Matlab, it was performed in the environment of Visual
Studio 2015 for Matlab R2018a and Mex C++ compiler use.

Fig. 8. HonamGate3 object tracking result image of RT data set.



D. Experiment Result

In the experimental process, MDNet[11], an object tracking
algorithm with a speed of 1 FPS, is first tested with data with
an image extraction FPS of 1 of the RT data set. Second,
ECO[12] is tested with data with an image extraction FPS of 6
of the RT data set. Finally, the proposed object tracking
algorithm, which has the best performance among the object
tracking algorithms that crosses the real-time boundary, is
tested with data with an image extraction FPS of 30 of the RT
data set.

Fig. 8 is an object tracking result image of HonamGate3 of
RT data set. In the case of HonamGate3, it can be seen that the
proposed object tracking algorithm, ECO, and MDNet follow
the passenger car properly until blockage occurs by the cargo
truck in front of the passenger car, which is the object to be
tracked. However, after the occlusion occurred, MDNet
showed that the tracking object was lost. The reason why
MDNet failed to track even though it was a relatively simple
video is that the size change occurs as the object approaches
the camera, but at 1FPS, the tracking speed of MDNet, the size
change is believed to have adversely affected object tracking.

Fig. 9 shows the evaluation result of the object tracking
algorithm using the RT data set. As a result of experimenting
with data suitable for the speed of each object tracking
algorithm, it can be confirmed that both MDNet and ECO
object tracking algorithms have lower performance than the
proposed object tracking algorithms.
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(a) Precision plot of RT dataset
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(b) Success rate plot for RT dataset
Fig. 9. Precision Plots and Success Rate Plots for the RT Dataset.

V. CONCLUSIONS AND FUTURE CHALLENGES

In this paper, high-dimensional image data is converted into
a low-dimensional embedding (manifold) using a CVAE to
track the object of a video in real time. Algorithm for tracking
an object by projecting it into space, storing this information
using an external memory, and finding a correlation map,
which is the degree of similarity between the external memory
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and object candidates, using a Siamese network has been
proposed.

As a result of an experiment with an RT (real-time) dataset
to measure real-time, the latest object tracking algorithm,
ECO's precision 0.506, success rate 0.516, and MDNet's
precision 0.472, success rate 0.414 and higher precision 0.546
and success rate 0.527 were obtained. It was proved that the
real-time performance was excellent.

The object tracking algorithm proposed in this paper is a
deep learning network trained using general-purpose video
image data. The CVAE, which is a component of the network,
has the ability to project data with a limited domain, such as a
human face, a car, or a designated livestock, into a manifold.
Therefore, in order to apply the proposed object tracking
algorithm to a specific field, it is expected that it can be used as
an object tracking network specialized in that field if it is re-
learned and applied using fine-tuning learning with a data set
corresponding to that field.
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