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Abstract— Object tracking is a fundamental problem in the field 

of computer vision. The object tracking methods proposed so far can 
be divided into a „discriminative correlation filter‟ and a „deep 
learning‟ based methods with a complex structure and a lot of 
computation. In this paper, we propose an algorithm for tracking 
objects with a simple structure while maintaining tracking 
performance using a convolutional variational auto-encoder, external 
memory, and a Siamese network. As a result of an experiment with 
an RT (real-time) data set to measure real-time, the result was a 
precision of 0.546 and a success rate of 0.527. 

Keywords— deep learning; object tracking; variational auto-
encoder; external memory; Siamese network 

I. INTRODUCTION 
Object tracking, which automatically tracks a specified 

target in a changing video sequence, is a fundamental problem 
in many computer vision fields, such as visual surveillance, 
traffic monitoring, and automatic driving. The object tracking 
methods proposed so far can be largely divided into a 
„discriminative correlation filter‟ and a „deep neural network‟ 
based methods. 

Existing object tracking algorithms have developed into 
complex structures to utilize image feature information or time-
dependent information. In this paper, we propose a new object 
tracking method that surpasses the latest object tracking 
algorithms in a real-time object tracking environment by 
increasing the processing speed by introducing a simple and 
efficient algorithm as shown in Fig. 1. The proposed method 
can be applied to low computing power environments such as 
embedded environments when applied to aerial imaging 
devices such as vehicle image collecting device on the road or 
drones. 

II. BACKGROUND THEORY 

A. Variaational Auto-encoder 
Variational auto-encoder (VAE) [1] inherited the 

characteristics of auto-encoder. However, the hidden layer h  
of the auto-encoder is simply a value that appears in the middle 
of the calculation without any special relation to the training 
data x , whereas the VAE has the difference that the hidden 
layer h  is a random variable with a continuous distribution. 

The distribution of this hidden layer h  is learned from data in 
the learning process. The hidden layer h  has a probability 
distribution determined by the mean and standard deviation. As 
shown in Fig. 2, the VAE can be expressed as the probability 
 |p h x  that the encoder obtains the hidden layer h  from the 

given data x , and the probability  |p x h  that the decoder 

obtains the data x  from the hidden layer h . 
Initialization 

 

tracking phase part 1 

 

tracking phase part 2 

 

Fig. 1. Implementation of the proposed object tracking. 
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Fig. 2. Structure of a variable auto-encoder. 

The decoder of the VAE is an artificial neural network that 
generates data x  from the hidden layer h . To know the 
probability distribution  p x  of the result x , the decoder 

learns  |p x h . In terms of a manifold,  |p x h  can be 

described as a function    |f x p x h  that projects an input 
x  into the manifold space. Since the decoder is a generative 
model, it generates semantically similar results as the value of 
the hidden layer h  changes. 

The encoder of the VAE is an artificial neural network that 
obtains the hidden layer h  from the input data x . Given the 
input data x , the probability distribution  |p h x  of the 
hidden layer h  is called the posterior distribution, and its value 
is difficult to calculate directly. Therefore, a method of 
approximating by  |q h x  is used by introducing a variational 
inference method. 

The goal of learning of VAE is to find the probability 
distribution of real data,  p x . For convenience of calculation, 
if  p x  is converted into a log format, the lower bound cost 
function of  log p x  using maximum likelihood estimation 
(MLE)  E x : 

   log p x L x                           

          | log | | ||KLq h xE x p x h D q h x p h


          

The first term in Eq. (2) tells how efficiently the decoder 
reconstructs data x  from the hidden layer h  as a 
reconstruction error. The second term in Eq. (2) is the 
Kullback-Leibler divergence (K-L divergence) regularization 
term, which is a standard function that measures how different 
two different probability distributions  |q h x  and  p h  are. 
In variational inference,  q h  is defined as a normal 
distribution. 

    2,q qq h N                           

However, when the input data x  is of high dimensionality, if 
q  is defined as in Eq. (3), one normal distribution with the 

same mean and variance is assumed for all data, so it is very 
difficult to learn the network. To solve this problem, the VAE 
puts the parameters q  and q  of q  as functions of x  as 
follows. 

      | ,q qq h x N x x                   

If the learning of the VAE is a simple maximum likelihood 
estimation problem, it can be solved with the artificial neural 
network's gradient-ascent algorithm. However, in order to put 
h  as the input of the decoder, sampling is required because h  
is a random variable. To solve this problem, a method called 
re-parameterization is used. This method is a method of 
changing the stochastic property of the hidden layer h  to 
deterministic by adding a random noise   from the outside. 
Fig. 3 shows the re-parameterization process of the VAE. 
Diamond means a variable with a re-deterministic property, 
and a circle means a variable with a probabilistic property. 

 

Fig. 3. Reparameterization of variable autoencoders. 

B. Neural Turing Machine 
A neural Turing machine (NTM) [2] refers to an artificial 

neural network that can be connected to an external memory. 
The structure of the NTM includes two components, a neural 
network controller and a memory bank, as shown in Fig. 4. 
Like most artificial neural networks, the controller interacts 
with the outside world through input and output vectors. Unlike 
standard artificial neural networks, it uses selective read and 
write operations to interact with the memory matrix. Similar to 
a Turing machine, the output of an artificial neural network can 
be variable using a „head‟. All components of a NTM can be 
differentiated, so we can train directly with gradient descent. 
Since the degree of interaction with the memory is sparse, the 
degree of interaction between read and write is determined by 
the weight size. Due to the read and write heads each have 
weights, each location can read and write as much information 
to memory as desired. 

 

Fig. 4. Structure of a neural turing machine. 
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C. Siamese network 
The Siamese network [3] has a structure as shown in Fig. 5, 

and consists of two identical sub-networks performing 
embedding and one cost function. The input to the network is a 
pair of samples and labels. Each input is embedded through a 
sub-network to produce two outputs. The cost function 
combines the label with the embedded output. The slope of the 
cost function for the parameter vectors controlling the two sub-
networks is calculated through back propagation. The 
parameter vector is updated in a stochastic gradient descent 
method using the sum of the gradients provided by the two 
sub-networks. 

 

Fig. 5. The structure of the siamese network. 

Let 1x  and 2x  be a pair of samples. If the samples 1x  and 

2x  belong to the same class, y  can be defined as 0y   as the 
binary label of the pair of samples; otherwise, it can be defined 
as 1y  . Let W  be the weight to be learned, and let the two 
points in the low-dimensional space created by projecting 1x  
and 2x  be  1WG x  and  2WG x , respectively. Then, the cost 
function  1 2,WE x x  that measures the similarity between the 
pair samples 1x  and 2x  can be defined as in Eq. (9). 

     1 2 1 2,W W WE x x G x G x               

The Siamese network is a network that learns the 
embedding function WG  using a sample set  1 2, ,..., nx x x x  
by a deep learning method having multi-layers, and has a non-
linear structure. Therefore, the analysis performance is superior 
to that of linear distance metric learning such as linear 
discriminant analysis. 

III. REAL-TIME OBJECT TRACKING USING CVAE AND 
EXTERNAL MEMORY 

In this chapter, we will describe a real-time object tracking 
method using a convolutional variational auto-encoder (CVAE), 
an external memory, and a Siamese network. 

The structure and execution process of the proposed object 
tracking algorithm are shown in Fig. 1 and Table 1. The 
proposed object tracking algorithm takes as inputs a video 
sequence V , ground-truth gt , and the number of video 
sequences n . The proposed object tracking algorithm is 
divided into three steps: initialization (Lines 5 to 8 of Table 1), 

tracking phase part 1 (Lines 11 to 14 of Table 1), and tracking 
phase part 2 (Lines 15 to 17 of Table 1). 

TABLE I.  PSEUDOCODE OF THE PROPOSED OBJECT TRACKING 
ALGORITHM 

Notation 
V  = video sequence 
n  = # of video sequence 
gt  = ground truth 
b  = result bounding box 
F  = field image 

embedF  = embedded field image 

 
C  = candidate image 

embedC  = embedded candidate image 
M  = external memory 

FS  = size of field image 

CS  = size of candidate image 
corr  = correlation map 

1 procedure Proposed tracker 

2 Input : V , gt , n  
3 Output : b  
4 /* Initialization */ 

5 
1b  = 1gt  

6 crop C  from 1V  using 1b  with CS  
7 

embedC  = VAE_embedding( C ) 
8 M  = embedC  
9 /* Tracking video frame */ 

10 for t  = 2 to n  
11 crop F  from tV  using 1tb   with FS  
12 

embedF  = VAE_embedding( F ) 
13 corr  = siamese_network ( embedF , M ) 
14 

tb  = ,arg maxx y corr  
15 crop C  from tV  using tb  with CS  
16 

embedC  = VAE_embedding( C ) 
17 M  = Controller( M , embedC ) 
18 return b  

A. Low-dimensional Embedding of Images Using CVAE 
The CVAE proposed in this paper reduces the number of 

parameters to be trained by replacing the fully connected 
network (FCN) in the encoder and decoder of the VAE with a 
convolutional neural network (CNN). In addition, it has the 
advantage of being able to more effectively project the image 
onto the manifold space by extracting two-dimensional features 
using a convolution filter. In order to extract features from 
candidate and field images of different sizes using the VAE, all 
fully connected networks in the encoder part of the existing 
VAEs should be replaced with convolutional neural networks. 
Fig. 6(a) shows the sampling method used in the existing VAE. 
Transform the tensor of the last feature extraction layer of the 
VAE into a vector using flatten operation. After that, it is 
reduced to a vector of a desired dimension ( d -dim) using a 
fully concatenated operation. In this way, the mean and 
standard deviation to obtain the probability  p x  of the data 
are obtained, and the data are sampled using these. However, 
Fig. 6(b) is a method that allows sampling regardless of the 
size of the input image because it consists only of the 
convolution operation without the flatten operation. This makes 
it possible to apply the VAE to tracking objects based on 
Siamese networks with different candidates and field sizes. If 
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the convolution operation is performed on the tensor of the last 
feature extraction layer of the VAE using d  filters having the 
same size as the tensor, a tensor with a size of 1×1× d  can be 
obtained as a result. As in Fig. 6(a), the average and standard 
deviation of the probability of the data can be obtained and the 
data can be sampled using these. 

 

 

(a) Sampling method of CVAE (b) CVAE's sampling method 
Fig. 6. Two different sampling methods for VAE. 

In order to explain the concept of the CVAE above, the 
case where the result of the convolutional encoder auto-
encoder is a tensor of size 1×1× d  was described. However, for 
images with high resolution, the dimensionality of the manifold 
space must also be increased. Therefore, it is possible to apply 
to the encoder structure of the VAE by changing all various 
convolutional neural networks such as ALexNet[4], LeNet[5], 
ZFNet[6], GoogleNet[7], VGGNet[8], ResNet[9], and 
DenseNet[10], which has proven the performance of feature 
extraction in previous studies, into a structure that can perform 
variational inference. 

Due to the characteristics of video, even the same object 
exhibits various shapes, sizes, and colors over time due to 
factors such as lighting change, size change, occlusion, 
deformation, motion blur, fast motion, in-plane rotation, out-of-
plane rotation, and background confusion. However, the same 
temporally adjacent object has a very similar appearance 
despite the interference of various factors over time. Therefore, 
if the moving picture is divided into frames and projected onto 
the manifold space using the VAE, each frame will be located 
in a very close manifold space. 

As shown in Fig. 7, the proposed CVAE structure uses the 
ALexNet variational inference method as an encoder and has a 
newly defined decoder attached. The CVAE is used for pre-
training the parameters of the object tracking algorithm using 
the Siamese network. 

B. External Memory Update 
Recurrent neural network (RNN), a kind of artificial neural 

network, has the concept of a kind of internal memory that 
remembers information according to time by introducing a 
directed circle that receives the output of the unit itself as input 
again. Therefore, RNN are introduced to object tracking to take 
advantage of these internal memory characteristics. However, 
since the RNN does not allow differential reception of 
information, it is difficult to track objects with properties such 
as long-term occlusion or out-of-screen. In this paper, we 

propose object tracking using an external memory that allows 
differential acceptance of information. 

The proposed object tracking algorithm copies the low-
dimensional embeddings of the candidate to the external 
memory in the initialization phase. However, when tracking 
starts, the controller updates the external memory with a 
constant weight ratio of the candidate's low-dimensional 
embeddings, as shown in line 17 of Table 1. 

       11t t tM i w M i wC i               

Where,  tM i  is the external memory value of position i  at 
time t ,  tC i  is the low-dimensional embedding value of the 
candidate at position i  at time t , and w  is the update weight. 

 

Fig. 7. Detailed structure of CVAE. 

C. Object Tracking Using Siamese Network 
The detected object of the moving picture 1t   frame is 

called a candidate, and the image of the t  frame extracted 
within a sufficient range centered on the object position of the 
moving picture 1t   frame is called a field. Although the t -
frame object is included in the field, it is difficult to include an 
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object of the same type as the environment changes with time 
as described above. Therefore, it is necessary to find the most 
similar part within the field as a candidate for the t -frame. As 
mentioned above, since the CVAE has a structure that removes 
all the structures of a fully connected neural network, it is 
possible to obtain low-dimensional embeddings of images of 
various sizes. When the candidate and the field pass through 
the CVAE, low-dimensional embeddings with the same 
number of dimensions but different widths and heights are 
extracted. Of these two features, the low-dimensional 
embedding of the volunteer is used to update the external 
memory. A correlation map can be obtained by inputting the 
updated external memory and performing a convolution 
operation using the low-dimensional embedding of the field as 
a filter. The part where the value of the correlation map is large 
is the part where the probability of the location of the object is 
high. This position becomes the position of the object of frame 
t . 

IV. EXPERIMENTS AND RESULTS 
The experiment is performed on a RT (real time) dataset 

prepared by hand for real-time performance evaluation. For a 
fair comparison of the tracking results, an object tracking 
algorithm capable of direct experimentation was selected from 
among the object tracking algorithms with excellent 
performance and the experiment was conducted. 

A. Dataset 
The RT data set is a data set directly constructed to evaluate 

the real-time performance of the object tracking algorithm. As 
shown in Table 2, it is a data set obtained by extracting the 
images of objects with elements suitable for tracking among 
the videos collected at a height of 5m from the Honam Jeilmun 
Overpass located in Jeonju, Jeollabuk-do at the rates of 1FPS, 
6FPS, and 30FPS. 

TABLE II.  REAL-TIME DATA SETS 

Data Name Video Length Extraction FPS 
CowShed1 1m 34s 1, 6, 30 
CowShed2 1m 1, 6, 30 
CowShed3 33s 1, 6, 30 

HonamGate1 34s 1, 6, 30 
HonamGate2 26s 1, 6, 30 
HonamGate3 27s 1, 6, 30 

B. Quantitative Evaluation Indices 
Evaluation is based on two metrics: precision and success 

rate. 

  count ED gt_bbox,tr_bbox <threshold
precision=

count(total)
   

 

  count IoU gt_bbox,tr_bbox >threshold
success rate=

count(total)
 

 

In Eq. 11 and 12, gt_box  is the bounding box of the ground-
truth, tr_box  is the bounding box of the detection result, IoU  
is the intersection over union, and ED  is Euclidean distance. 
As shown in Eq. 11, the precision shows the ratio of frames in 
which the distance between the center position of the boundary 
box of the actual measurement data and the center position of 
the boundary box of the tracking result is less than the 
threshold value. Representative precision is considered when 
the threshold value is 50 pixels. As shown in Eq. 12, the 
success rate represents the ratio of the intersection among the 
unions of the area of the bounding box of the actual 
measurement data and the detection result. In order to measure 
the real-time performance of the object tracking algorithm, the 
speed as well as the accuracy of the algorithm is a necessary 
comparison factor. 

C. Experimental Environment 
The object tracking algorithm proposed in this paper is 

implemented using Python's Tensor-Flow-Slim library. In 
addition, all experiments were performed in a PC environment 
equipped with intel(R) Core(TM) i7-6700k CPU @ 4.00GHz, 
and NVIDIA GeForce GTX TITAN X GPU and CUDA 9.0 
installed. When the implementation language of various object 
tracking algorithms used for comparison is Python, the 
experiment was conducted in the same environment as the 
proposed algorithm, and when the implementation language 
was Matlab, it was performed in the environment of Visual 
Studio 2015 for Matlab R2018a and Mex C++ compiler use. 

 

 

 
Fig. 8. HonamGate3 object tracking result image of RT data set. 
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D.  Experiment Result 
In the experimental process, MDNet[11], an object tracking 

algorithm with a speed of 1 FPS, is first tested with data with 
an image extraction FPS of 1 of the RT data set. Second, 
ECO[12] is tested with data with an image extraction FPS of 6 
of the RT data set. Finally, the proposed object tracking 
algorithm, which has the best performance among the object 
tracking algorithms that crosses the real-time boundary, is 
tested with data with an image extraction FPS of 30 of the RT 
data set. 

Fig. 8 is an object tracking result image of HonamGate3 of 
RT data set. In the case of HonamGate3, it can be seen that the 
proposed object tracking algorithm, ECO, and MDNet follow 
the passenger car properly until blockage occurs by the cargo 
truck in front of the passenger car, which is the object to be 
tracked. However, after the occlusion occurred, MDNet 
showed that the tracking object was lost. The reason why 
MDNet failed to track even though it was a relatively simple 
video is that the size change occurs as the object approaches 
the camera, but at 1FPS, the tracking speed of MDNet, the size 
change is believed to have adversely affected object tracking. 

Fig. 9 shows the evaluation result of the object tracking 
algorithm using the RT data set. As a result of experimenting 
with data suitable for the speed of each object tracking 
algorithm, it can be confirmed that both MDNet and ECO 
object tracking algorithms have lower performance than the 
proposed object tracking algorithms. 

 
(a) Precision plot of RT dataset 

 
(b) Success rate plot for RT dataset 

Fig. 9. Precision Plots and Success Rate Plots for the RT Dataset. 

V. CONCLUSIONS AND FUTURE CHALLENGES 
In this paper, high-dimensional image data is converted into 

a low-dimensional embedding (manifold) using a CVAE to 
track the object of a video in real time. Algorithm for tracking 
an object by projecting it into space, storing this information 
using an external memory, and finding a correlation map, 
which is the degree of similarity between the external memory 

and object candidates, using a Siamese network has been 
proposed. 

As a result of an experiment with an RT (real-time) dataset 
to measure real-time, the latest object tracking algorithm, 
ECO's precision 0.506, success rate 0.516, and MDNet's 
precision 0.472, success rate 0.414 and higher precision 0.546 
and success rate 0.527 were obtained. It was proved that the 
real-time performance was excellent. 

The object tracking algorithm proposed in this paper is a 
deep learning network trained using general-purpose video 
image data. The CVAE, which is a component of the network, 
has the ability to project data with a limited domain, such as a 
human face, a car, or a designated livestock, into a manifold. 
Therefore, in order to apply the proposed object tracking 
algorithm to a specific field, it is expected that it can be used as 
an object tracking network specialized in that field if it is re-
learned and applied using fine-tuning learning with a data set 
corresponding to that field. 
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