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Abstract — These days there is great demand for automatizing
a visual inspection process in industrial companies since it is a
tedious and time-consuming task. Recent progress in deep
convolutional neural networks allowed to automatize visual
inspection procedure. However, currently available supervised
learning methods require large amount of labeled data, while
the unsupervised learning techniques suffer from lack of
accuracy. To address these problems, we propose a deep
learning-based unsupervised learning method that exhibits fast
and precise performance. The proposed unsupervised learning
method based pseudo-labeling algorithm using graph Laplacian
matrix that allows transferring computationally expensive
autoencoder problem to classification task, the proposed system
benefits from very fast convergence ability and significantly
outperforms currently available deep learning-based AVI
methods. In the conducted experiments using real-life fabric
image datasets, the proposed method outperformed the
currently available methods in terms of speed and accuracy.
Keywords—deep convolutional neural networks; fabric defect
detection; industrial quality inspection; unsupervised learning;

L.

In manufacturing, the process of visual inspection is closely
associated with quality of a product and prosperity of an
enterprise since fast and accurate exploration of abnormal
products eliminates the issue of visually qualitative defects.
Consequently, it leads to customer satisfaction and high
purchase rate by consumers. Traditional surface inspection
methods use human labor to detect defected items. However,
they are monotonous and tiresome activities. Moreover, they are
prone to wrong decisions due to human-related characteristics,
such as lack of concentration, optical illusion, subjective
assessment, and inclination to exhaustion. Additionally, human
inspectors require to obtain training and practice that demand
certain amount of time. Employee turnover is another
disadvantage of the manual labor. Thus, there has been a high
inclination to equip manufacturing plants with embedded
sensors to continuously monitor the equipment proper operation

[1].

Due to the relevance of fabric AVI (Visual Inspection
Process) techniques, there has been extensive research
conducted on this topic using computer vision-related
applications. Broadly, existing deep learning (DL)-based
techniques can be categorized into supervised semi-supervised,
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and unsupervised approaches [2]. In general, the existing DL-
based automated visual inspection (AVI) approaches have
several limitations. Specifically, supervised learning approaches
suffer from data scarcity and lack of correctly labeled training
data [3, 4, 5]. Moreover, semi-supervised learning methods
experience  computational complexity and lack of
generalizability [6, 7, 8, 9], while unsupervised learning
techniques require enormous training and inference time [10, 11,
12]. All these factors negatively impact on the performance of
AVI, which is supposed to be fast and precise.

Considering the aforementioned limitations of the currently
available approaches, we developed a compound end-to-end
model to detect anomalous fabric items based on unsupervised
learning. There are three distinct stages in the proposed models
pseudo-labeling of data with no annotations using an
unsupervised algorithm, training of deep convolutional neural
network (DCNN) to solve a binary classification problem by
detecting abnormal items. In fact, the proposed method
addresses the aforementioned problems of data shortage, lack of
labeled instances, and computational complexity. Moreover, it
is significantly faster than the existing DL-based approaches. In
general, the proposed method has the following contributions.

. The proposed method employs an unsupervised
clustering-based algorithm to distinguish the original data into
normal and abnormal images and pseudo-label the data based on
the clustering algorithm results; therefore, it requires no labeled

data, which deals with the problem of data annotation.

. The proposed method substitutes anomaly detection
(AD) solutions from autoencoders (AEs) with encoding and
decoding parts and expansion parts with a simple binary image
classification task. Also, it benefits from transfer learning, which
makes it significantly more resource and memory intensive as

well as fast for training and inference.

The rest of the manuscript has the following structure.
Section II comprises detailed explanation of the proposed
methodology. Section III provides comprehensive information
on the conducted experiments and their outcomes. Finally,
Section IV concludes this study and outlines future research
directions.

II. RELATED WORK

As discussed in Section I, there has been proposed great
number of methods to improve AVI systems so far. The
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currently available approaches can be classified into supervised,
semi-supervised, and unsupervised techniques.

Supervised learning approaches using DL methods require
availability of annotated datapoints. They learn to classify the
data into normal and anomaly instances in a training stage and
use the learned model to distinguish items in an inference phase.
For example, Erfani et al. presented a supervised learning model
that uses instances drawn from similar distributions and intrinsic
structures of labeled data to identify landmarks that are supposed
to be similar from different sources [3]. Liu et al. proposed an
approach to establish the link between the heuristic unmasking
procedure and multiple classifiers in statistical machine learning
[4]. Despite providing accurate detection of anomaly points, the
existing methods require a large amount of training time as input
data become more complex. In addition, owing to the data-
driven characteristics of DL models and shortage of real
annotated data in the real-world, supervised learning approaches
for AD are exploited less frequently compared with their semi-
supervised and unsupervised counterparts [5].

Semi-supervised techniques require a single target label.
These methods learn to distinguish normal and anomaly points
based on the feature representation of the raw input data
obtained from hidden layers of DCNN models. For example,
Perera et al. have proposed a DL-based one-class transfer
learning approach with two different loss functions[6].
Specifically, this method trains a CNN model based on
compactness and descriptiveness loss functions and uses
template matching during inference. Napoletano et al. have
presented a method to assess the anomaly degree for each region
of an image by computing DCNN-based visual similarity with
respect to fault-free image feature representations in the training
data [7]. It predicts anomaly images based on computation from
convolutional neural network (CNN)-based similarity with
respect to the trained model. Wang et al. have proposed
abnormal event detection framework that is composed of a
principal component analysis network and kernel principal
component analysis to address the problem of anomaly detection
[8]. Moreover, in[9] distribution-augmented contrastive learning
extending training distributions via data augmentation has been
proposed to obstruct the uniformity of contrastive
representations. In[13], a method that leverages the
descriptiveness of extracted features by CNNs to evaluate the
density using normalizing flows and employ a multi-scale
feature extractor to obtain better performance on high
dimensionality of industrial images. Li et al. have proposed a
two-step network to build anomaly detectors without using
anomaly images [14]. First, the deep representations are learned
using CutPaste data augmentation methods and then a generative
one-class classifier is built based on the learned representations
from the first stage. Although these techniques addressed the
problem of labeled data shortage for training DCNN models,
they inherit computational complexity from supervised learning
methods. Moreover, these models are more likely to experience
overfitting to normal instances due to a lack of training with
anomaly data points.

DL-based unsupervised learning methods are widely
exploited for AD due to the ability to generate powerful feature
representations from unlabeled data. The most common form of
unsupervised learning technique is AEs [15, 16, 17]. AE focuses
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on generating decision boundaries to separate normal data points
from anomalous ones based on the feature representations
obtained from training DCNN models. Haselmann et al. have
proposed an AE model trained on image patches of normal
samples, where central regions were cut out[10]. The model
could detect anomalous images since it was trained using pixel-
wise reconstruction loss on totally fault-free images. To address
the issues with slight localization inaccuracies Begmann et al.
have developed a model using a perceptual loss function
examining local image region internal dependencies considering
luminance, contrast, and structural information in contrast with
a simple pixel-wise comparison loss functions employed in the
existing methods[11]. Bergmann et al. have introduced a
powerful student-teacher network for precise anomaly
segmentation in industrial images using intrinsic uncertainty in
the student networks as an extra scoring function that shows
anomalies[12]. Although these models are commonly used in
AVI systems, they suffer from enormous time for training and
inference.

[II. PROPOSED METHODOLOGY

In this section, we describe the proposed model. Fig. 1 shows a
general overview of the proposed model. The model has two
essential steps for both training and inference phases.
Specifically, in training, input data pass through pre-processing,
pseudo-labeling, and training process stages.

A. Pre-Processing Step

In the pre-processing stage, unlabeled fabric images
experience integration stage, which means that raw data from
different sources are unified under identical requirements to
provide a smooth processing. Then, the images are extracted
from directories and represented as tensors since they ensure
more natural representations of multidimensional data. The
resulting tensor is 4D — X € RV where M, C, H, and
W are the total number of images, number of channels, image
height, and image width, respectively.

After obtaining the images in tensors, they are resized to
match the input size of DCNN later in a training process phase.
Finally, the resized image pixel values are standardized to follow
a standard normal distribution. In (1), X and X4 are original
and standardized data; while i and M are a particular data point
and the total number of instances, respectively.

1
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B. Pseudo-Labeling Step

Considering that the training data have no annotated labels,
we should bipartition it into normal and defective images. To
attain this goal, we use the power of an unsupervised learning
technique using the eigenvalues (EVL) and eigenvector (EVT)
of a graph Laplacian matrix (GLM). Specifically, we construct
adjacency (Mgq;) and degree (My,,) matrices that contain
distances between samples and the sum of weights from
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Figure 1: Graphical illustration of the proposed methodology. DNN stands for deep neural network.

instances, respectively. Mg is the difference of the formulated
matrices Mgy and My,

In the last step, we obtain the largest EVL and its
corresponding EVT of Mg, , which are equal to 0 and a
constant value, respectively.

Then, the largest EVL and its corresponding EVT are
stacked into a 1D vector and divided into two parts based on a
certain threshold value. The threshold value is selected to be 0.
This algorithm bi-partitions the input data into two groups,
normal and defective samples. Then, the obtained clustering
results are assessed using unsupervised learning evaluation
metrics, such as the Silhouette coefficient. Once satisfactory
scores are obtained from the evaluation metrics, the
aforementioned sample groups are pseudo-labeled as positive
and negative data points, respectively.

The output of the pseudo-labeling process cannot be
employed in real-time inference; Instead, it provides
annotations for the unlabeled data and ensures training a binary
classification model in as a supervised learning method.
Therefore, the output of this phase can be employed for training
DCNN in the next step of the proposed methodology.

C. Data Learning Step

Afterward, DCNN is trained to solve a binary classification
task and categorize them into normal and defective instances.
We use power of transfer learning approach to acquire
knowledge from DCNN trained on a significantly large
database to solve a more sophisticated classification problem to
obtain a fast, efficient, and accurate classification model. As a
DCNN model, we select an 18-layer residual network model
(ResNet-18) [18] pre-trained on the ImageNet dataset since it
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obtained the most optimal accuracy-time tradeoff compared
with other popular DCNN models in the experiments. Precisely,
we extract a vector of 512 values of the input features to the last
fully connected (classification) layer of the ResNet-18 that
exhibit complex and high-level representations of the ImageNet
images and formulate a deep neural network model (DNNM)
containing several fully connected layers. Specifically, the
latent representation vector for the pre-trained model first is
inputted into a fully connected (FC) layer and it outputs a 128D
vector followed by the WIB-ReLU activation function [19].
This block of operations is repeated until the final FC layer with
the sigmoid activation function outputs two values with
probabilities for normal and defective items. Considering that
the normal images significantly outnumbered abnormal ones,
we use a weighted binary cross-entropy loss (L,,pce) function.

110, + (—ic +1og(T;e4))

M
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In (2), M, ¢, and @ are the total number of instances, a
specific class, and weight value, respectively.

D. Inference Step

The trained model from the data learning step that contains
the extracted features from the datasets, is used in the inference
step to classify unseen data into normal and anomaly images.




IV. EXPERIMENTS AND RESULTS

In this section, we represent comprehensive information
about the conducted experiments and their results, as well as
provide a comparison of the proposed method’s experiment
results with the ones of the existing state-of-the-art models.

A. Datasets Description

Although there are numerous open-source datasets for AD,
we selected three real-life datasets containing normal and
defective fabric/nanofabric material items. Two of the datasets
were publicly available and open-source for research, namely
NanoTWICE and MVTec AD datasets. The third dataset was
provided by DWorld company located in Daegu, South Korea.
Table 1 summarizes the description of the considered datasets.

TABLE 1. OVERALL INFORMATION ON THE DATASETS FOR THE
EXPERIMENTS
Dataset Image Tmage Size Number of Images
Name Type Train | Validati Test
NanoTWICE | Nanofabric | 1024 X 700 30 5 10
MVTec AD* Fabric 512 X512 470 70 134
DWorld Fabric 1024X1024 | 1750 250 495

* Carpet and tile classes only.

From Table 1, we divided the considered datasets in the ratio
of 7:1:2 for training, validation, and test subsets to train, select
hyperparameters, and test the generalizability of the proposed
method, respectively. In addition, from Table 1, we can observe
that the currently available open-source datasets contained very
limited number of images. Specifically, NanoTWICE and
MVTEC datasets comprised only 45 and 674 images,
respectively. Because the existing datasets experience a shortage
of images, we obtained a novel fabric materials AD dataset,
called DWorld.

(©

(d)

Fig 2. (a), (b) normal and (c), (d) defected images from
DWorld dataset
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The images were collected with a line-scan charge coupled
device camera and exhibit various kinds of abnormalities. The
DWorld dataset contains 2,495 unlabeled images each with 1024
X 1024 pixel size. Fig 2 shows normal and defected images
from DWorld dataset.

B. Training Details

1)  Experiment Settings: We formulated the baseline and
proposed methods using Python version 3.6.9 and PyTorch
library version 1.4.0. The weight parameters were initialized
based on a standard normal distribution with a mean and
standard deviation of 0 and 1, respectively, to meet the
requirements of the WIB-ReLU activation function. All bias
parameters were zero-initialized. We used binary crossentropy
as the minimizing function and stochastic gradient descent as
the parameter optimizer for the proposed method. The
experiments were conducted using 32 GB NVIDIA Tesla
V100-SXM2 GPU with CUDA 10.0 with a mini-batch size of
eight for MVTec and DWorld and four for NanoTWICE
datasets.

2) Evaluation Metrics: We exploit several evaluation
metrics to assess the performance of the proposed model
compared with the one of baseline methods from different
angles. Specifically, we define accuracy score (AS), false
positive rate (FPR), true positive rate or recall score (TPR or
RS), precision score (PS), and F1 score (F1) for the evaluation
of the models’ performance.

3) We selected three existing methods as the baseline
models: Same Same But DifferNet (SSBD) [13], learning deep
features for one-class classification (LDFC)[6], and
Uninformed students: Student-teacher anomaly detection with
discriminative latent embeddings (UNST) [12]. All baseline
models and proposed method were trained under the same
circumstances.

C. Experiment Results

We also checked the baseline and proposed models'
generalization ability on the test set of the considered datasets
and the results are provided in Table II. From the table II, the
proposed model achieved the best performance in the AS, PS,
F1, and AUC evaluation metrics on the NanoTWICE dataset by
taking the least amount of time for inference. Regarding
MVTec AD, the proposed model has the best performance in
all of them, significantly outperforming its counterparts, which
barely achieved 90% accuracy, except for SSBD, LDFC, which
scores were somewhere at 95%. LDFC was also the fastest
model to train and outperformed the proposed method in terms
of speed. Finally, the proposed model largely outperformed the
baseline models in the test set of the DWorld dataset.
Specifically, our model achieved 99.6% for accuracy related
metrics, such as AS and F1. Also, it was the fastest model in
terms of training time by taking on average 5.530 seconds for
an epoch.

D. Computational Complexity

Table III represents execution time requirements of the
proposed method's steps in mean and standard deviation (STD)
using the test sets of the considered datasets.



TABLE IL

PERFORMANCE COMPARISON OF THE BASELINE AND PROPOSED METHODS ON THE TEST SET OF THE CONSIDERED DATASETS*

Dataset Name Model Name AS PS RS F1 AUC Time (s)

SSBD 0.942 0.926 0.978 0.952 0.870 2.034

NT LDFC 0.958 0.932 0.976 0.954 0.886 1.901
UNST 0.819 0.822 0.842 0.832 0.809 3.335

Ours 0.984 0.971 0.973 0.972 0.899 1.224

SSBD 0.970 0.968 0.960 0.964 0.910 7.920

MVAD LDFC 0.968 0.960 0.940 0.960 0.906 5.240
UNST 0.892 0.865 0.835 0.850 0.843 12.827

Ours 0.990 0.992 0.990 0.991 0.913 7.164

SSBD 0.972 0.921 0.939 0.930 0.892 8.802

LDFC 0.980 0.899 0.997 0.948 0.905 9.124
bw UNST 0.902 0.945 0.901 0.923 0.878 17.092
Ours 0.996 0.997 0.996 0.996 0.946 5.530

Observably, training and inference phase stages execution
times vary significantly. Specifically, in training stage, training
process took the longest time that was equal to 282.6 seconds.
Pseudo-labeling phase was relatively faster by requiring in
average 44.28 seconds. Regarding inference, the most time-
consuming phases in training, such as pseudo-labeling and
training process were not activated because inference time
employed trained DCNN model from the training stage;
therefore, inference phase was considerably faster than training
counterpart by requiring approximately 8 seconds for
completion. Considering that this short amount of time detected
and illustrated defected regions of the hundreds of abnormal
textile product items, the proposed method not only accurate but
also efficient and fast enough for its employment in real-time
textile manufacturing visual inspection applications. Notably,
the values in Table III were computed based on the experimental
results on the datasets from Section V-A and they may vary
depending on the number and complexity of the images in
different datasets.

TABLE III. AVERAGE TIME OF EXECUTION FOR EACH STAGE OF THE
PROPOSED METHOD*
Ste Mean STD Mean STD
P (Training) | (Training) | (Inference) | (Inference)
Pre-. 0.973 0.011 0.418 0. 007
Processing
Pseudo- 4428 0.782 0.000 0.000
Labeling
Training 282.6 1.477 0.000 0.000
Process
Anomaly 0.000 0.000 7.639 0215
Interpretation

* Results of the experiments on 32 GB NVIDIA Tesla V100-SXM2 GPU

V. CONCLUSION AND FUTURE WORK

This paper studied AVI system applications using deep
learning-based methods. Considering the limitations of the
existing methods, we developed an end-to-end unsupervised
deep-learning-based image classification system to detect
anomalies in fabric images. The proposed system comprised of
two main stages, such as pseudo-labeling and data learning. The
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* Results of the experiments on 32 GB NVIDIA Tesla V100-SXM2 GPU

main contribution of the proposed method is that it does not
require annotated data, which saves significant amount of time
and money. Based on the experimental results obtained from
training and inference on three fabric and nanofabric material
databases, the proposed method performed considerably better
than the currently available techniques in terms of accuracy and
time. In the future, we will focus on further improving the
proposed method by adding anomaly interpretation technique to
automatically detect and visualize the defected part of the
anomalous data.
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