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Abstract — These days there is great demand for automatizing 
a visual inspection process in industrial companies since it is a 
tedious and time-consuming task. Recent progress in deep 
convolutional neural networks allowed to automatize visual 
inspection procedure. However, currently available supervised 
learning methods require large amount of labeled data, while 
the unsupervised learning techniques suffer from lack of 
accuracy. To address these problems, we propose a deep 
learning-based unsupervised learning method that exhibits fast 
and precise performance. The proposed unsupervised learning 
method based pseudo-labeling algorithm using graph Laplacian 
matrix that allows transferring computationally expensive 
autoencoder problem to classification task, the proposed system 
benefits from very fast convergence ability and significantly 
outperforms currently available deep learning-based AVI 
methods. In the conducted experiments using real-life fabric 
image datasets, the proposed method outperformed the 
currently available methods in terms of speed and accuracy. 

Keywords—deep convolutional neural networks; fabric defect 
detection; industrial quality inspection; unsupervised learning;  

I.  INTRODUCTION  
In manufacturing, the process of visual inspection is closely 

associated with quality of a product and prosperity of an 
enterprise since fast and accurate exploration of abnormal 
products eliminates the issue of visually qualitative defects. 
Consequently, it leads to customer satisfaction and high 
purchase rate by consumers. Traditional surface inspection 
methods use human labor to detect defected items. However, 
they are monotonous and tiresome activities. Moreover, they are 
prone to wrong decisions due to human-related characteristics, 
such as lack of concentration, optical illusion, subjective 
assessment, and inclination to exhaustion. Additionally, human 
inspectors require to obtain training and practice that demand 
certain amount of time. Employee turnover is another 
disadvantage of the manual labor. Thus, there has been a high 
inclination to equip manufacturing plants with embedded 
sensors to continuously monitor the equipment proper operation 
[1].  

Due to the relevance of fabric AVI (Visual Inspection 
Process) techniques, there has been extensive research 
conducted on this topic using computer vision-related 
applications. Broadly, existing deep learning (DL)-based 
techniques can be categorized into supervised semi-supervised, 

and unsupervised approaches [2]. In general, the existing DL-
based automated visual inspection (AVI) approaches have 
several limitations. Specifically, supervised learning approaches 
suffer from data scarcity and lack of correctly labeled training 
data [3, 4, 5]. Moreover, semi-supervised learning methods 
experience computational complexity and lack of 
generalizability [6, 7, 8, 9], while unsupervised learning 
techniques require enormous training and inference time [10, 11, 
12]. All these factors negatively impact on the performance of 
AVI, which is supposed to be fast and precise.  

Considering the aforementioned limitations of the currently 
available approaches, we developed a compound end-to-end 
model to detect anomalous fabric items based on unsupervised 
learning. There are three distinct stages in the proposed models 
pseudo-labeling of data with no annotations using an 
unsupervised algorithm, training of deep convolutional neural 
network (DCNN) to solve a binary classification problem by 
detecting abnormal items. In fact, the proposed method 
addresses the aforementioned problems of data shortage, lack of 
labeled instances, and computational complexity. Moreover, it 
is significantly faster than the existing DL-based approaches. In 
general, the proposed method has the following contributions.  

 The proposed method employs an unsupervised 
clustering-based algorithm to distinguish the original data into 
normal and abnormal images and pseudo-label the data based on 
the clustering algorithm results; therefore, it requires no labeled 
data, which deals with the problem of data annotation.  

 The proposed method substitutes anomaly detection 
(AD) solutions from autoencoders (AEs) with encoding and 
decoding parts and expansion parts with a simple binary image 
classification task. Also, it benefits from transfer learning, which 
makes it significantly more resource and memory intensive as 
well as fast for training and inference.  

The rest of the manuscript has the following structure. 
Section II comprises detailed explanation of the proposed 
methodology. Section III provides comprehensive information 
on the conducted experiments and their outcomes. Finally, 
Section IV concludes this study and outlines future research 
directions. 

II. RELATED WORK 
As discussed in Section I, there has been proposed great 

number of methods to improve AVI systems so far. The 
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currently available approaches can be classified into supervised, 
semi-supervised, and unsupervised techniques.  

Supervised learning approaches using DL methods require 
availability of annotated datapoints. They learn to classify the 
data into normal and anomaly instances in a training stage and 
use the learned model to distinguish items in an inference phase. 
For example, Erfani et al. presented a supervised learning model 
that uses instances drawn from similar distributions and intrinsic 
structures of labeled data to identify landmarks that are supposed 
to be similar from different sources [3]. Liu et al. proposed an 
approach to establish the link between the heuristic unmasking 
procedure and multiple classifiers in statistical machine learning 
[4]. Despite providing accurate detection of anomaly points, the 
existing methods require a large amount of training time as input 
data become more complex. In addition, owing to the data-
driven characteristics of DL models and shortage of real 
annotated data in the real-world, supervised learning approaches 
for AD are exploited less frequently compared with their semi-
supervised and unsupervised counterparts [5]. 

Semi-supervised techniques require a single target label. 
These methods learn to distinguish normal and anomaly points 
based on the feature representation of the raw input data 
obtained from hidden layers of DCNN models. For example, 
Perera et al. have proposed a DL-based one-class transfer 
learning approach with two different loss functions[6]. 
Specifically, this method trains a CNN model based on 
compactness and descriptiveness loss functions and uses 
template matching during inference. Napoletano et al. have 
presented a method to assess the anomaly degree for each region 
of an image by computing DCNN-based visual similarity with 
respect to fault-free image feature representations in the training 
data [7]. It predicts anomaly images based on computation from 
convolutional neural network (CNN)-based similarity with 
respect to the trained model. Wang et al. have proposed 
abnormal event detection framework that is composed of a 
principal component analysis network and kernel principal 
component analysis to address the problem of anomaly detection 
[8]. Moreover, in[9] distribution-augmented contrastive learning 
extending training distributions via data augmentation has been 
proposed to obstruct the uniformity of contrastive 
representations. In[13], a method that leverages the 
descriptiveness of extracted features by CNNs to evaluate the 
density using normalizing flows and employ a multi-scale 
feature extractor to obtain better performance on high 
dimensionality of industrial images. Li et al. have proposed a 
two-step network to build anomaly detectors without using 
anomaly images [14]. First, the deep representations are learned 
using CutPaste data augmentation methods and then a generative 
one-class classifier is built based on the learned representations 
from the first stage. Although these techniques addressed the 
problem of labeled data shortage for training DCNN models, 
they inherit computational complexity from supervised learning 
methods. Moreover, these models are more likely to experience 
overfitting to normal instances due to a lack of training with 
anomaly data points.  

DL-based unsupervised learning methods are widely 
exploited for AD due to the ability to generate powerful feature 
representations from unlabeled data. The most common form of 
unsupervised learning technique is AEs [15, 16, 17]. AE focuses 

on generating decision boundaries to separate normal data points 
from anomalous ones based on the feature representations 
obtained from training DCNN models. Haselmann et al. have 
proposed an AE model trained on image patches of normal 
samples, where central regions were cut out[10]. The model 
could detect anomalous images since it was trained using pixel-
wise reconstruction loss on totally fault-free images. To address 
the issues with slight localization inaccuracies Begmann et al. 
have developed a model using a perceptual loss function 
examining local image region internal dependencies considering 
luminance, contrast, and structural information in contrast with 
a simple pixel-wise comparison loss functions employed in the 
existing methods[11]. Bergmann et al. have introduced a 
powerful student-teacher network for precise anomaly 
segmentation in industrial images using intrinsic uncertainty in 
the student networks as an extra scoring function that shows 
anomalies[12]. Although these models are commonly used in 
AVI systems, they suffer from enormous time for training and 
inference. 

III. PROPOSED METHODOLOGY 
In this section, we describe the proposed model. Fig. 1 shows a 
general overview of the proposed model. The model has two 
essential steps for both training and inference phases. 
Specifically, in training, input data pass through pre-processing, 
pseudo-labeling, and training process stages.   

A. Pre-Processing Step 
In the pre-processing stage, unlabeled fabric images 

experience integration stage, which means that raw data from 
different sources are unified under identical requirements to 
provide a smooth processing. Then, the images are extracted 
from directories and represented as tensors since they ensure 
more natural representations of multidimensional data. The 
resulting tensor is  4D − X ∈  𝑀𝑀×𝐶𝐶×𝐻𝐻×𝑊𝑊 , where M, C, H, and 
W are the total number of images, number of channels, image 
height, and image width, respectively.  

After obtaining the images in tensors, they are resized to 
match the input size of DCNN later in a training process phase. 
Finally, the resized image pixel values are standardized to follow 
a standard normal distribution. In (1), X and 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠   are original 
and standardized data; while i and M are a particular data point 
and the total number of instances, respectively. 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝑋𝑋 −  1

𝑀𝑀 ∑ 𝑥𝑥𝑖𝑖
𝑀𝑀
𝑖𝑖=1

√ 1
𝑀𝑀 ∑ (𝑥𝑥𝑖𝑖 −  1

𝑀𝑀 ∑ 𝑥𝑥𝑖𝑖
𝑀𝑀
𝑖𝑖=1  )2𝑀𝑀

𝑖𝑖=1     
 

                             

(1) 

 

B. Pseudo-Labeling Step 
Considering that the training data have no annotated labels, 

we should bipartition it into normal and defective images. To 
attain this goal, we use the power of an unsupervised learning 
technique using the eigenvalues (EVL) and eigenvector (EVT) 
of a graph Laplacian matrix (GLM). Specifically, we construct 
adjacency ( 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 ) and degree ( 𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑 ) matrices that contain 
distances between samples and the sum of weights from  
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instances, respectively. 𝑀𝑀𝐺𝐺𝐺𝐺 is the difference of the formulated 
matrices 𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑  and 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎  .  

In the last step, we obtain the largest EVL and its 
corresponding EVT of   𝑀𝑀𝐺𝐺𝐺𝐺 , which are equal to 0 and a 
constant value, respectively. 

Then, the largest EVL and its corresponding EVT are 
stacked into a 1D vector and divided into two parts based on a 
certain threshold value. The threshold value is selected to be 0. 
This algorithm bi-partitions the input data into two groups, 
normal and defective samples. Then, the obtained clustering 
results are assessed using unsupervised learning evaluation 
metrics, such as the Silhouette coefficient. Once satisfactory 
scores are obtained from the evaluation metrics, the 
aforementioned sample groups are pseudo-labeled as positive 
and negative data points, respectively.  

The output of the pseudo-labeling process cannot be 
employed in real-time inference; Instead, it provides 
annotations for the unlabeled data and ensures training a binary 
classification model in as a supervised learning method. 
Therefore, the output of this phase can be employed for training 
DCNN in the next step of the proposed methodology. 

C. Data Learning Step 
Afterward, DCNN is trained to solve a binary classification 

task and categorize them into normal and defective instances. 
We use power of transfer learning approach to acquire 
knowledge from DCNN trained on a significantly large 
database to solve a more sophisticated classification problem to 
obtain a fast, efficient, and accurate classification model. As a 
DCNN model, we select an 18-layer residual network model 
(ResNet-18) [18] pre-trained on the ImageNet dataset since it 

obtained the most optimal accuracy-time tradeoff compared 
with other popular DCNN models in the experiments. Precisely, 
we extract a vector of 512 values of the input features to the last 
fully connected (classification) layer of the ResNet-18 that 
exhibit complex and high-level representations of the ImageNet 
images and formulate a deep neural network model (DNNM) 
containing several fully connected layers. Specifically, the 
latent representation vector for the pre-trained model first is 
inputted into a fully connected (FC) layer and it outputs a 128D 
vector followed by the WIB-ReLU activation function [19]. 
This block of operations is repeated until the final FC layer with 
the sigmoid activation function outputs two values with 
probabilities for normal and defective items. Considering that 
the normal images significantly outnumbered abnormal ones, 
we use a weighted binary cross-entropy loss (𝐿𝐿𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)  function. 

𝐿𝐿𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =  
∑ ∅𝑐𝑐𝑖𝑖

𝑀𝑀
𝑖𝑖=1 + (−𝑖𝑖𝑐𝑐 + log(∑ 𝑒𝑒𝑖𝑖𝑗𝑗𝑗𝑗 ))

∑ ∅𝑐𝑐𝑖𝑖
𝑀𝑀
𝑖𝑖=1

 
 

(2) 

 
In (2), M, c, and Φ are the total number of instances, a 

specific class, and weight value, respectively. 

D. Inference Step 
The trained model from the data learning step that contains 

the extracted features from the datasets, is used in the inference 
step to classify unseen data into normal and anomaly images. 

 
Figure 1: Graphical illustration of the proposed methodology. DNN stands for deep neural network. 
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IV. EXPERIMENTS AND RESULTS 
In this section, we represent comprehensive information 

about the conducted experiments and their results, as well as 
provide a comparison of the proposed method’s experiment 
results with the ones of the existing state-of-the-art models. 

A. Datasets Description 
Although there are numerous open-source datasets for AD, 

we selected three real-life datasets containing normal and 
defective fabric/nanofabric material items. Two of the datasets 
were publicly available and open-source for research, namely 
NanoTWICE and MVTec AD datasets. The third dataset was 
provided by DWorld company located in Daegu, South Korea. 
Table 1 summarizes the description of the considered datasets. 

TABLE I.  OVERALL INFORMATION ON THE DATASETS FOR THE 
EXPERIMENTS 

Dataset 
Name 

Image 
Type Image Size Number of Images 

Train Validation Test 
NanoTWICE Nanofabric 1024  700 30 5 10 
MVTec AD* Fabric 512 512 470 70 134 

DWorld Fabric 10241024 1750 250 495 
* Carpet and tile classes only. 

From Table 1, we divided the considered datasets in the ratio 
of  7 : 1 : 2 for training, validation, and test subsets to train, select 
hyperparameters, and test the generalizability of the proposed 
method, respectively. In addition, from Table 1, we can observe 
that the currently available open-source datasets contained very 
limited number of images. Specifically, NanoTWICE and 
MVTEC datasets comprised only 45 and 674 images, 
respectively. Because the existing datasets experience a shortage 
of images, we obtained a novel fabric materials AD dataset, 
called DWorld.  

 
(a)                                 (b) 

 
(c)                                 (d) 

Fig 2. (a), (b) normal and (c), (d) defected images from 
DWorld dataset 

The images were collected with a line-scan charge coupled 
device camera and exhibit various kinds of abnormalities. The 
DWorld dataset contains 2,495 unlabeled images each with 1024 
 1024 pixel size. Fig 2 shows normal and defected images 
from DWorld dataset. 

B. Training Details 
1) Experiment Settings: We formulated the baseline and 

proposed methods using Python version 3.6.9 and PyTorch 
library version 1.4.0. The weight parameters were initialized 
based on a standard normal distribution with a mean and 
standard deviation of 0 and 1, respectively, to meet the 
requirements of the WIB-ReLU activation function. All bias 
parameters were zero-initialized. We used binary crossentropy 
as the minimizing function and stochastic gradient descent as 
the parameter optimizer for the proposed method. The 
experiments were conducted using 32 GB NVIDIA Tesla 
V100-SXM2 GPU with CUDA 10.0 with a mini-batch size of 
eight for MVTec and DWorld and four for NanoTWICE 
datasets. 

2) Evaluation Metrics: We exploit several evaluation 
metrics to assess the performance of the proposed model 
compared with the one of baseline methods from different 
angles. Specifically, we define accuracy score (AS), false 
positive rate (FPR), true positive rate or recall score (TPR or 
RS), precision score (PS), and F1 score (F1) for the evaluation 
of the models’ performance. 

3) We selected three existing methods as the baseline 
models: Same Same But DifferNet (SSBD) [13], learning deep 
features for one-class classification (LDFC)[6], and 
Uninformed students: Student-teacher anomaly detection with 
discriminative latent embeddings (UNST) [12]. All baseline 
models and proposed method were trained under the same 
circumstances. 

C. Experiment Results 
 We also checked the baseline and proposed models' 

generalization ability on the test set of the considered datasets 
and the results are provided in Table II. From the table II, the 
proposed model achieved the best performance in the AS, PS, 
F1, and AUC evaluation metrics on the NanoTWICE dataset by 
taking the least amount of time for inference. Regarding 
MVTec AD, the proposed model has the best performance in 
all of them, significantly outperforming its counterparts, which 
barely achieved 90% accuracy, except for SSBD, LDFC, which 
scores were somewhere at 95%. LDFC was also the fastest 
model to train and outperformed the proposed method in terms 
of speed. Finally, the proposed model largely outperformed the 
baseline models in the test set of the DWorld dataset. 
Specifically, our model achieved 99.6% for accuracy related 
metrics, such as AS and F1. Also, it was the fastest model in 
terms of training time by taking on average 5.530 seconds for 
an epoch. 

D. Computational Complexity 
Table III represents execution time requirements of the 

proposed method's steps in mean and standard deviation (STD) 
using the test sets of the considered datasets.  
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Observably, training and inference phase stages execution 
times vary significantly. Specifically, in training stage, training 
process took the longest time that was equal to 282.6 seconds. 
Pseudo-labeling phase was relatively faster by requiring in 
average 44.28 seconds. Regarding inference, the most time-
consuming phases in training, such as pseudo-labeling and 
training process were not activated because inference time 
employed trained DCNN model from the training stage; 
therefore, inference phase was considerably faster than training 
counterpart by requiring approximately 8 seconds for 
completion. Considering that this short amount of time detected 
and illustrated defected regions of the hundreds of abnormal 
textile product items, the proposed method not only accurate but 
also efficient and fast enough for its employment in real-time 
textile manufacturing visual inspection applications. Notably, 
the values in Table III were computed based on the experimental 
results on the datasets from Section V-A and they may vary 
depending on the number and complexity of the images in 
different datasets. 

V. CONCLUSION AND FUTURE WORK 
 This paper studied AVI system applications using deep 

learning-based methods. Considering the limitations of the 
existing methods, we developed an end-to-end unsupervised 
deep-learning-based image classification system to detect 
anomalies in fabric images. The proposed system comprised of 
two main stages, such as pseudo-labeling and data learning. The 

main contribution of the proposed method is that it does not 
require annotated data, which saves significant amount of time 
and money. Based on the experimental results obtained from 
training and inference on three fabric and nanofabric material 
databases, the proposed method performed considerably better 
than the currently available techniques in terms of accuracy and 
time. In the future, we will focus on further improving the 
proposed method by adding anomaly interpretation technique to 
automatically detect and visualize the defected part of the 
anomalous data. 
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