
Ride-Hailing Service aware Electric Taxi Fleet
Management using Reinforcement Learning

Paul Silva†, YoungJoo Han§, Young-Chon Kim*‡, Dong-Ki Kang*‡
†Dept. of Information Technology, ‡Dept. of Computer Engineering, Jeonbuk National University, Jeonju, Korea.

{paulsilvap, yckim, dongkikang}@jbnu.ac.kr
§Car Cloud Development Group, Hyundai Motor Group, Seoul, Korea.

yjhan@hyundai.com,

Abstract—Recently, the adoption of electric taxis (e-taxis) has
become an essential option in many countries for the reduction
of carbon emissions from large cities. However, it is generally
not easy to design a sophisticated e-taxi management system
due to the complex mixture of charging overheads, ride-hailing
service quality for passengers, and uncertain traffic conditions.
This paper proposes an Intelligent E-taxi ride-Hailing Service
(I-EHS) controller that maximizes the satisfaction of served
passengers while guaranteeing reliable charging for each e-taxi.
Our controller integrates the reinforcement learning (RL) based
e-taxi dispatcher and the heuristic-based e-taxi allocator, so as
to derive the delicate e-taxi control with acceptable training
overhead. Through the experiments based on the OpenAI-Gym
framework, we show that our I-EHS controller efficiently finds
the solution without prior knowledge of the traffic environment.

Index Terms—Electric taxi, reinforcement learning, charging
scheduling, hailing service.

I. INTRODUCTION

Environmental concerns such as global warming and climate
change caused by the emission of greenhouse gases has
contributed to the adoption and development of clean energy
sources and technologies. Owing to the financial support
of governments that try to reduce the emission of CO2 to
the environment, many public transportation companies have
deployed electric taxis (e-taxis), with the gradual replacement
of gasoline-based vehicles [1]. However, despite the continu-
ous development of battery technology and the expansion of
charging infrastructures, the charging overhead is still a critical
concern in the rapid adoption of e-taxis. For example, the most
popular EV product, the Tesla Model3 with a battery capacity
of 50kWh has a range (based on the Environmental Protection
Agency, EPA) of 423km on a single charge [2]. This range
is still shorter than that of conventional gasoline vehicles.
Furthermore, the charging time of EVs is much longer than
the refueling time of gasoline vehicles. Common EVs require
more than 50 minutes to fully charge the battery even using the
DC-based high-speed battery charger (50kW). If using the AC-
based slow charger (5-7kW), EVs generally need 7-12 hours
to fully charge the battery. This frequent and long charging
slows down the adoption of EVs as e-taxis.

There are various studies for EV charging management. Li
et al. [3] presented the charging scheduling for EVs based on

* Corresponding authors: yckim@jbnu.ac.kr, dongkikang@jbnu.ac.kr

the dynamic traffic flow. The authors designed the microscopic
traffic flow model (MTFM) for spatiotemporal-based charging
management. Lv et al. [4] formulated a combined charging-
driving navigation (CCDN) model in order to find the optimal
EVs driving on the electrified highway network (EHN). The
authors presented the chronological searching approach to
minimize both the traveling cost and the traveling time. Long
et al. [5] proposed the real-time charging policy for plug-in
EVs. They developed an ordinal optimization (OO) approach
to enable scalable charging scheduling for multiple EVs.
Especially, there have been a number of studies on e-taxis
charging management. Yuan et al. [6] proposed the proactive
partial charging (p2Charging) in order to optimize the e-taxis
charging schedule based on the dynamic passenger demand.
The authors presented the mixed-integer programming (MIP)
based formulation to match the passenger demand and the
e-taxi supply. However, they assumed perfect knowledge of
passenger behavior and e-taxi traveling patterns, which is
impractical. Cilio et al. [7] presented an approach to allocate
charging stations (CS) to urban areas for e-taxis in order to
achieve rapid charging. They integrated the iterative cluster-
ing algorithm and the numerical optimization technique to
maximize CS utilization. However, they did not consider the
temporal uncertainty of e-taxis mobility and did not cover the
dynamic charging scheduling problem. Ma et al. [8] investi-
gated the characteristic of the charging problem involving CS
and networked e-taxis. They designed the Stackelberg game-
theoretic model to find the relationship between CS and e-
taxis. However, they did not explicitly consider the service
quality of served e-taxi passengers.

Recently, machine learning-based methods for EV charging
have been studied to solve the uncertainty of the environment.
Wan et al. [9] proposed the reinforcement learning (RL)-based
data-driven method for optimal single residential EV charging.
They designed the Markov Decision Process (MDP) model
that penalizes the economic cost of EV charging schedules.
Qian et al. [10] presented the EV charging navigation control
using RL. Their proposed method can derive the optimal EV
navigation that minimizes the traveling time and the charging
cost under uncertain traffic conditions and charging prices. Lin
et al. [11] solved the EV routing problem with time windows
(EVRPTW) by using deep reinforcement learning (DRL).
They integrated the Attention model with a graph embedding

427978-1-6654-8550-0/22/$31.00 ©2022 IEEE ICUFN 2022

component to improve the quality of generated solutions for
EVRPTW. Unfortunately, all of them require a large dataset
and long learning time, due to the complex structure of neural
network (NN) models and the heavy reliance on RL.

In this paper, we propose the ride-hailing service aware e-
taxi fleet management using a RL method. The goal of our
work is to maximize the ride-hailing service quality for e-
taxi passengers while guaranteeing the charging of e-taxis on
time, under uncertain environments such as irregular traffic
conditions. Compared to existing works, the contribution of
our paper is as follows:

• We present an explicit formulation considering both
charging demands and ride-hailing service quality simul-
taneously. Our work is able to find the proper trade-off
between reliable charging and service satisfaction.

• We adopt a Deep-Q-Network (DQN), to solve the uncer-
tainty of traffic conditions, CS occupancy, and passenger
requests that are difficult to model deterministically.

• We design an hybrid approach using both RL and an
heuristic approach, for e-taxi control. In our proposed
controller, the e-taxi allocator uses heuristics to map
CS/passengers to e-taxis meanwhile the e-taxi dispatcher
uses RL for e-taxi deployment. This structure enables to
decrease the RL training overhead.

In order to investigate the performance of our work, we
implement an e-taxi management simulator based on the
OpenAI-Gym framework [12]. Upon a grid-shaped road net-
work, we show that our I-EHS controller is able to derive the
acceptable service quality of randomly generated passengers
while ensuring reliable charging for each e-taxi.

II. ARCHITECTURE OF PROPOSED SYSTEM

Fig. 1: Structure of Intelligent E-Taxi Ride-Hailing Service
(I-EHS) Controller.

Fig. 1 shows the structure of our proposed Intelligent E-Taxi
Ride-Hailing Service (I-EHS) controller interacting with the
Intelligent Transportation System (ITS), for e-taxi driving and
charging management. There are two modules in the I-EHS
controller: the e-taxi allocator and the e-taxi dispatcher. The
e-taxi allocator carries out two roles by checking the state-of-
charge (SoC) of e-taxis and the ride-hailing service requests.
First, if there is an e-taxi that needs to be charged, the e-taxi
allocator finds the nearby CS, and lets the e-taxi move to that
CS. Second, given the service requests, the e-taxi allocator
assigns each passenger to each e-taxi if these have enough
battery. The e-taxi dispatcher controls the moving direction
of each e-taxi. The RL agent of the dispatcher finds optimal
actions for e-taxi deployment, based on the current SoC of
e-taxis, CS occupancy, traffic condition, and request arrival
pattern. We present the role of each object as follows:

• E-Taxi: At the initial time step, each e-taxi departs from
a certain starting point among the roads (e.g., location of
e-taxi company). All the e-taxis traverse the roads to serve
passengers. The e-taxi allocator in the I-EHS controller
receives ride-hailing service requests from passengers and
then maps the requests to the e-taxis that have enough
SoC level, by using the pre-defined heuristics. The e-
taxis that accept the requests, start to drive to the assigned
passengers and take them to their destination. After then,
the e-taxis start to traverse and wait for requests again.
Whenever the e-taxi allocator finds a certain e-taxi that
is running out of electricity, it sends the e-taxi to the CS.
If the SoC level is too low, the e-taxi may fail to reach
the CS and be stranded on the road with a dead battery.

• Passenger: Passengers on roads send the ride-hailing
service requests to the I-EHS controller. The request
contains the current location of the passenger and the
destination. Note that the passengers have their distinct
patience level which is the indicator of how long they can
wait for the e-taxi to arrive. If the expected arrival time is
too long, the passenger may cancel his/her request which
will degrade the e-taxi company’s service quality.

• Charging Station (CS): There is a fixed number of
CS in the whole city. Each CS has a limited number
of charging slots. Note that not only our controlled e-
taxi tries to charge at CS, but also other EVs use the
charging service of CS. The e-taxi has to wait a while
if all the charging slots of the CS are fully occupied.
Obviously, the distribution of slot occupancy ratio of CS
has spatiotemporal characteristics [1]. An elaborate policy
for CS selection is essential to prevent the e-taxi from
often waiting at a busy CS.

• Traffic Condition: We define the traffic condition as the
required driving time to pass through the road. The traffic
condition of all the roads dynamically changes over time.
We also assume that the I-EHS controller is able to collect
the traffic condition status from the ITS, in real-time.

With respect to the continuously retrieved information (i.e.,
traffic condition, ride-hailing service request, SoC level, and

428

Fig. 2: Procedures of E-Taxi Dispatcher

Fig. 3: Procedures of E-Taxi Allocator

CS occupancy ratio), the e-taxi dispatcher of the I-EHS
controller finds the optimal e-taxi deployment. To do this, the
e-taxi dispatcher adopts the method of single-agent reinforce-
ment learning (SARL). The environment repeatedly collects
the transportation status in the city and provides it as the
state variable to the RL agent. In the training phase, the RL
agent updates the weight parameters of the approximated Q-
function and improves the policy. In the inference phase, the
RL agent derives the Q-function values for action selection
corresponding to the state variable. The training phase and the
inference phase can be carried out alternatively, in an online
manner. We unfold the procedures of the I-EHS controller
in detail. Step 1) the e-taxis traverse the roads based on
the policy of the RL agent. Step 2) the arbitrary passengers
randomly appear on certain locations of roads, and send the
ride-hailing service requests to the I-EHS controller. Step 3)
the e-taxi allocator in the I-EHS controller seeks the available
e-taxis to assign the requests and maps the idle e-taxis to
the waiting passengers. Step 4) the RL agent in the e-taxi
dispatcher selects the action based on the state variable. Step
5) the RL agent integrates the new sample data into the replay
memory for continuous online learning. Fig. 2 and 3 show the
e-taxi dispatcher and e-taxi allocator, respectively. The detailed
routing path can be determined by using conventional routing
algorithms. To do this, we exploit the Dijkstra algorithm [13].

III. MARKOV DECISION PROCESS (MDP) MODEL AND
PROBLEM FORMULATION

Our main goal is to find the optimal policy of the RL agent
of the I-EHS controller, so as to maximize the ride-hailing
service quality for passengers. In order to design the RL agent

policy improvement, we present the detailed Markov Decision
Process (MDP) model as follows:

• State: The state vector at time step t is defined as st =
(e1t , · · · , eN

e

t , u1
t , · · · , uNu

t , l1t , · · · , lN
l

t , c1t , · · · , cN
c

t)
contains the state of each e-taxi e, the state of each
passenger u, the state of each road l, and the state of
each CS c, where eit = (pit, b

i
t, w

i
t), u

j
t = (srcjt , dstjt , o

j
t).

For the i-th e-taxi at time step t, pit is the road position,
bit is the SoC level, and wi

t is the working status:
traversing, serving, and charging. For the j-th passenger,
srcjt is the current road position, dstjt is the destination’s
road position, and oj

t is the passenger’s status: standing,
served, and no exist. lkt is the required driving time to
pass the k-th road and cqt is the waiting time for charging
at the q-th CS.

• Action: The action vector at time step t is defined as
at = (a1t , · · · , aN

e

t) where ait = (nli,1t , · · · , nli,MAX
t).

nli,idx
t represents the idx-th neighbor road of the current

position pit. MAX is the possible biggest number of
neighbor roads for all the road positions.

• Reward: The RL agent gets the reward rt corresponding
to the pair of (st = s, at = a). The reward rt is
represented as follows:

rt =

Ne∑
i

vit +

Nu∑
j

gjt , (1)

vit =

{
α · (L(pit, srcjt))

−1, if Au(j; st) = i,

0, if Ac(i; st) > 0,
(2)

gjt =

{
−δ, if Au(j; st) = −1 ∀j,
0, otherwise.

(3)

Here, L(A,B) is the sum of required driving time to
cover the roads from position A to B which is determined
by the optimal routing algorithm as represented in Figure
3. Au and Ac are output functions of the e-taxi allocator.
α and δ are predefined positive coefficients.

• State transition probability: In this paper, we assume a
stochastic environment where the next state vector st+1

is influenced by not only the pair of (st, at) but also the
randomness of the traffic condition and the waiting time
at the CS. Obviously, the SoC level b and road position
p of the e-taxi are iteratively updated every time step.

In Algorithm 1, the e-taxi allocator maps a certain CS to
the e-taxi that needs to be charged. In line 03, bi

t and η are
predefined minimum SoC level and the threshold value for
charging, respectively. In line 04, the e-taxi allocator finds the
best CS that minimizes the sum of driving time and waiting
time for charging, corresponding to the state of the associated
e-taxi. ϵ, locq and D(pit, locq) are unit energy usage, location
of the q-th CS and the physical distance from pit to locq ,
respectively. In Algorithm 2, the e-taxi allocator maps a certain
passenger to the traversing e-taxi. In line 04, for the j-th

429

Algorithm 1 CS Allocation
INPUT: st
OUTPUT: Ac(i; st), ∀i
01: for i = 1, · · · , Ne do
02: Ac(i; st) = −1
03: if bit < bit + η & wi

t == traversing then
04: q∗ = argminq(L(pit, locq) + cqt) : ϵ ·D(pit, locq) ≤ bit
05 : Ac(i; st) = q∗

06 : wi
t ← charging

07 : end if
08 : end for

Algorithm 2 Passenger Allocation
INPUT: st
OUTPUT: Au(j; st), ∀j
01: for j = 1, · · · , Nu do
02: Au(j; st) = −1
03: if oj

t == standing then
04 : i∗ = argminiL(pit, srcjt) :

ϵ · (D(pit, srcjt) +D(srcjt , dstjt)) < bit + η,
Ac(i; st) < 0 & wi

t == traversing.
05: Au(j; st) = i∗

06 : wi∗
t ← serving

07 : ojt ← served
08 : end if
09 : end for

passenger, the e-taxi allocator searches the best e-taxi that
achieves the minimum waiting time of the passenger. The
constraint terms in line 04 prevent an e-taxi with an insufficient
SoC level to accept the passenger request.

IV. REINFORCEMENT LEARNING WITH DEEP Q-NETWORK

In order to evaluate the policy, we define the Q-function
value, Qπ(s, a) given the state s and the action a as follows:

Qπ(s, a) = Eπ[rt + γQπ(st+1, at+1)|st = s, at = a], (4)

where E is the expectation over the state-action trajectories,
and Q∗ = maxπ(s, a) is the optimal Q-function value for the
pair of (s, a). π is the policy for e-taxis control, that is the
mapping given state s to the certain action a. γ is the discount
factor used to penalize the delayed rewards. We use the deep
Q-learning [14] where exploits the deep neural network (DNN)
as the function approximator. Given the parameter θ, we can
estimate the true Q-function value as Q(s, a; θ) ≈ Q∗(s, a).
We present the loss function L(θ) as follows:

L(θ) = Es,a∼ρ[(y −Q(s, a; θ))2]. (5)

The target value is y = Es′ [r+γ·argmaxa′Q(s′, a′; θ)|(s, a)]
where s′, a′, and ρ are next state, next action, and the
probability distribution over pairs of (s, a), respectively. Ev-
ery time step, the RL agent collects the sample transition
(s, a, r, s′) and inserts it to the experience replay D. The
detailed procedures for training are shown in Algorithm 3.
After the e-taxi dispatcher completes the training, the I-EHS

Algorithm 3 RL Agent Training
01: Initialize D and θ
02 : for episode = 1, · · · do
03 : for t = 1, · · ·T do
04 : select at by DQN using ε-greedy
05 : conduct at and get st+1

06 : get rt by Ac(i; st),Au(j; st) ∀i, j
07 : st+1 ← st
08 : insert transition (st, at, rt, st+1) to D
09 : sample minibatch of H transitions from D
10 : get yh = rh + γmaxaQ(sh+1, a; θ) ∀h = 1, · · · , H
11 : update θ by minimizing

∑
∀h E[(yh−Q(sh, ah; θ))

2]
12 : end for
13 : end for

Algorithm 4 E-Taxi Control
INPUT: st, θ
OUTPUT : at,Ac(i; st),Au(i; st) ∀i, j
01 : at ←− argmaxaQ(st, a; θ), by the e-taxi dispatcher
02 : Ac(i; st) ∀i ←− Algorithm 1, by the e-taxi allocator
03 : Au(j; st) ∀j ←− Algorithm 2, by the e-taxi allocator

controller would be able to conduct the inference for e-
taxi control. Given the state vector st and the parameter θ,
the I-EHS controller derives the optimal driving action, CS
allocation, and passenger allocation for each e-taxi in the city.
The control steps are presented in Algorithm 4.

V. EVALUATION

To evaluate our work, we implemented the e-taxi manage-
ment simulator following design patters from OpenAI-Gym.
Both the simulator and the I-EHS controller were implemented
in Python. All experiments are performed on an Intel Core i7-
4790 CPU @ 3.60GHZ with 16 GB RAM and Nvidia GTX
1080Ti GPU.

A. Environment Settings

We considered a 10 ∗ 10 grid scenario that contains 100
intersections and 180 roads with four CS in the following
grid locations [4,4], [0,9], [9,0] and [9,9]. Five passenger
requests are randomly generated across the grid with different
positions with the maximum patience level per passenger being
of one hour. So, if no passenger request is selected during this
period of time, a new set of 5 passenger requests is again
randomly generated. The battery capacity for our e-taxi was
set to b = 24kWh, similar to a Nissan Leaf, while the battery
consumption was set as ϵ = 0.4kW. The charging rate is 20kW
and the e-taxi will perform a full charge every time it visits
a CS. In the case of the traffic condition, we assigned driving
times dynamically bounded between 1 and 6 minutes, which
updates every 10 steps. In a similar way, the waiting time at a
CS follows a uniform distribution bounded between 0 and 72
minutes. Each episode in our simulation starts with the I-EHS
controller having access to the state vector and concludes in
the following two cases: the e-taxi fully depletes its battery

430

(a) (b) (c)

Fig. 4: Behaviour of I-EHS Controller during Training

because it failed to reach a CS on time or the maximum
number of time steps is reached. Each time step is equal to
6 minutes and the maximum number of steps per episode is
240, which represents a total of 24 hours. We considered an
episode to last this long, given that is common for taxis to
work a double shift [15]. The E-Taxi dispatcher is trained
for 100,000 episodes to learn the optimal e-taxi deployment
management strategy which takes approximately 6 hours to
complete. We set the learning rate at 0.001, γ at 0.9 and
implemented a decaying epsilon strategy that starts at 1.0 and
decreases with time all the way down to 0.05 where it remains
constant until the training is completed. This favor exploration
at the beginning and exploitation at the last stages. The DNN
inside the DQN contains 2 hidden layers and each layer has 64
units. The parameters of the network are initialized randomly
and are optimized by using RMSprop during training. The
experience replay D stores up to 100000 sample transitions
and the DQN samples randomly batches of size 32.

B. Experimental Results Analysis

We defined the following 4 evaluation metrics:
• The e-taxi operation time measures total time serving

a passenger + total time charging at CS + total time
traversing the roads.

• The passenger waiting time measures the average time
that a passenger has a standing status during an episode.

• The number of served passengers measures the total
number of passengers that reached served status during
an episode.

• The number of charges measures the total number of
times an e-taxi reached charging status during an episode.

Fig. 4 shows the results of the training part. We are using
an exponential moving average (EMA) with an α = 0.95
for better visualization. As seen in fig. 4a, during the first
40,000 episodes we can observe the effect of the decaying
epsilon strategy on the training, then the model converges
around episode 60,000. The e-taxi operation time and the
number of served passengers have a strong correlation with
the way the model converges, as seen in fig. 4b. At the
beginning of training, the agent failed to complete a full
working day given that at that point it has no idea of which
was the optimal policy. Not completing the working day also
meant that the number of served passengers was small. As the

training continues, the agent becomes better at understanding
the rules of the environment given that a better policy is being
learnt. This translates into the agent being able to complete a
full working day which in turns means more time for the e-taxi
to serve a passenger. And, as it turns out, the number of served
passengers did increase, as expected. On the other hand, in Fig.
4c we can observe the passenger waiting time and the e-taxi
number of charges. At the beginning, the waiting time of the
passenger was high because the agent did not understand how
the traffic conditions affected its environment. As the agent
becomes better and better at understanding the traveling time
between the e-taxi position and the passenger position, the
passenger waiting time starts to gradually decrease.

To verify the efficiency of our approach at inference time,
we compared it with the following baselines for 1000 episodes:

• Random: the controller randomly selects the serving,
charging, or moving actions for the e-taxi.

• Greedy-CS: the controller assigns the e-taxi to serve the
closest passenger request to the center and sends it to
charge to the closest CS.

• Greedy-P: the controller assigns the e-taxi to serve the
passenger request with the minimum travel time and
sends it to charge to closest CS.

Fig. 5 shows the overall performance of the I-EHS controller
against the baselines with respect to the operation time, served
passengers and number of charges, which are better understood
from the e-taxi perspective. All graphs show as well the
standard deviation of the samples collected during the duration
of the test. As seen in fig. 5a, the I-EHS controller made sure
that the e-taxi completed a full working day which is not the
case for the rest of the baselines. Greedy-P and Greedy-CS
were not even able to complete one work shift, most of the
time. Completing a double work shift allowed the e-taxi to
serve a higher number of passengers during the episode but
it also means that the e-taxi needed to charge more times,
otherwise it would have run out of battery, as seen in the
results in fig. 5b and 5c. The opposite is not necessarily true,
charging more times do allow the e-taxi to be available to serve
more passengers, but without a strategy, as confirmed by the
random baseline, the e-taxi won’t fulfill that purpose. It would
move around aimlessly depleting the battery. On the other
hand, for the Greedy-P and Greedy-CS baselines the number
of served passengers is high compared to the Operation Time.

431

(a) (b) (c)

Fig. 5: Performance Comparison - E-Taxi Perspective

Fig. 6: Performance Comparison - Passenger Perspective

This is due to the fact that these strategies prioritize serving
passengers over reliable charging which, in the view of an
e-taxi operator, might not be beneficial as they end up with
several units without enough battery to serve future passengers.

Fig. 6 shows the performance with respect to the passenger
waiting time. With the I-EHS controller strategy, the passenger
waiting time was around 30 minutes and did not perform as
well as the Greedy-P and Greedy-CS baselines. These results
may imply that our strategy is not optimal, but that is not
the case. Our aim was always to find the proper trade-off
between service satisfaction and reliable charging. By using
our strategy, the I-EHS controller learnt an optimal policy
that confirms that the e-taxi has enough battery to continue
serving passengers. This does not happen with the Greedy-
P and Greedy-CS baselines. They might be faster to take a
passenger request but the overall service satisfaction is affected
by the fact that later in the day, there will not be enough e-taxis
to fulfill passenger requests, which is not optimal.

VI. CONCLUSION

In this paper, we have proposed a I-EHS controller to
optimize both the quality of ride-hailing service and reli-
able charging in an e-taxi fleet management. We developed
a control approach that integrates a heuristic-based e-taxi
allocation and a DRL-based e-taxi dispatching. Simulations
show the effectiveness of our proposed controller. We aimed
for simplicity and hope to add more decision variables in

the future to increase the realism of the environment such
as historical traffic conditions, real-life road network topology
and electricity price. In the same way, the implementation of
a multi-agent environment is left for a future update.

ACKNOWLEDGMENT

This work was supported by the National Research Founda-
tion of Korea (NSF) grant funded by the Korean Government
(2021R1I1A305872911)

REFERENCES

[1] Y. Yuan, D. Zhang, F. Miao, J. Chen, T. He, and S. Lin, “p2charging:
Proactive partial charging for electric taxi systems,” in 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS),
pp. 688–699, 2019.

[2] “Tesla.” https://www.tesla.com/. Online.
[3] Y. Li, X. Liu, F. Wen, X. Zhang, L. Wang, and Y. Xue, “Dynamic charg-

ing scheduling for electric vehicles considering real-time traffic flow,” in
2018 IEEE Power & Energy Society General Meeting (PESGM), pp. 1–
5, IEEE, 2018.

[4] S. Lv, Z. Wei, G. Sun, S. Chen, and H. Zang, “Ev charging-driving
navigation in electrified highway network,” in 2020 IEEE Power &
Energy Society General Meeting (PESGM), pp. 1–5, IEEE, 2020.

[5] T. Long, Q.-S. Jia, G. Wang, and Y. Yang, “Efficient real-time ev
charging scheduling via ordinal optimization,” IEEE Transactions on
Smart Grid, vol. 12, no. 5, pp. 4029–4038, 2021.

[6] Y. Yuan, D. Zhang, F. Miao, J. Chen, T. He, and S. Lin, “pˆ 2charging:
proactive partial charging for electric taxi systems,” in 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS),
pp. 688–699, IEEE, 2019.

[7] L. Cilio and O. Babacan, “Allocation optimisation of rapid charging
stations in large urban areas to support fully electric taxi fleets,” Applied
Energy, vol. 295, p. 117072, 2021.

[8] K. Ma, X. Hu, J. Yang, Z. Yue, B. Yang, Z. Liu, and X. Guan, “Electric
taxi charging strategy based on stackelberg game considering hotspot
information,” IEEE Transactions on Vehicular Technology, 2022.

[9] Z. Wan, H. Li, H. He, and D. Prokhorov, “A data-driven approach for
real-time residential ev charging management,” in 2018 IEEE Power &
Energy Society General Meeting (PESGM), pp. 1–5, IEEE, 2018.

[10] T. Qian, C. Shao, X. Wang, and M. Shahidehpour, “Deep reinforcement
learning for ev charging navigation by coordinating smart grid and
intelligent transportation system,” IEEE transactions on smart grid,
vol. 11, no. 2, pp. 1714–1723, 2019.

[11] B. Lin, B. Ghaddar, and J. Nathwani, “Deep reinforcement learning
for the electric vehicle routing problem with time windows,” IEEE
Transactions on Intelligent Transportation Systems, 2021.

[12] “Openai-gym, taxi-v3.” https://gym.openai.com/envs/Taxi-v3/. Online.
[13] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,”

Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.
[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-

stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[15] “Uitp.” https://www.uitp.org/publications/global-taxi-benchmarking-
study-2019/. Online.

432

