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Abstract—Prevalent recurrent autoencoders for time series 
anomaly detection often fail to model time series since they have 
information bottlenecks from the fixed-length latent vectors. In this 
paper, we propose a conceptually simple yet experimentally effective 
time series anomaly detection framework called temporal 
convolutional autoencoder (TCAE). Our model imposes dilated causal 
convolutional neural networks to capture temporal features while 
avoiding inefficient recurrent models. Also, we utilize bypassing 
residual connections in encoded vectors to enhance the temporal 
features and train the entire model efficiently. Extensive evaluation on 
several real-world datasets demonstrates that the proposed method 
outperforms strong anomaly detection baselines. 

Keywords—time series; anomaly detection; neural networks; 
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I.  INTRODUCTION 
Time series anomaly detection refers to distinguish 

unexpected deviation that differs significantly from the other 
observations. It is crucial to detect abnormal events in modern 
applications, ranging from industrial processes to healthcare 
systems [1]. For example, detecting anomalous intrusion can 
prevent potential dangers in many digitalized applications as 
smart factories, big data centers, and environmental systems [2, 
3]. Also, monitoring time series records, including 
electrocardiography signals, are directly connected to patients, 
and detecting deviations in those signals can alert critical issues 
in advance of critical problems [4]. 

Recent deep learning techniques pave and advance the 
anomaly detection methods, as learning complex patterns and 
non-linear features in time series through flexible representation 
inside neural methods [5]. Due to the lack of labeled anomalies 
in real-world applications, the unsupervised learning scheme is 
a prevalent learning method to capture normal behaviors using 
neural networks. In particular, reconstruction-based methods 
encode the given time series into the low-dimensional latent 
vectors that include core information to reconstruct the original 
time series [6, 7]. Thus, the models can detect unexpected 
deviation by calculating errors between decoded and original 
time series. The main assumption behind this approach is that 

the low-dimensional and compact codes are forced to contain 
information related to the normal behaviors, not anomalous 
effects. 

Most existing anomaly detection methods based on neural 
networks utilize recurrent neural networks (RNNs) owing to the 
structural advantages for modeling sequential data. Especially, 
autoencoder architectures comprising two different RNNs for 
encoder and decoder are considered a natural starting point for 
the time series reconstruction method [8]. Indeed, proposed 
studies based on RNN autoencoders show significant advances 
in detecting anomalies on real-world benchmarks [6, 9]. 
Previous studies have been developed in the context of 
improving temporal dependencies in the recurrent models using 
skip connections or ensemble methods. [10] proposed ensemble 
of encoders with skip connections to encode longer sequences 
using several skip lengths. Also, [11] introduced multiple RNN-
based decoders with different resolutions in an ensemble manner. 
However, information inside canonical recurrent models is 
prone to fade as the sequence gets longer. Also, existing 
sequence-to-sequence architectures rely on the fixed-length 
vectors between the encoders and decoders, which causes severe 
information bottlenecks. 

In this paper, we present a novel temporal convolutional 
autoencoder (TCAE) for time series anomaly detection. TCAE 
comprises convolutional neural networks (CNNs) to encode and 
reconstruct temporal features, avoiding inefficient recurrent 
models. Recent studies show strong evidence that simple CNNs 
outperform RNNs on sequential modeling tasks including 
representation learning. Our model imposes dilated kernels to 
enlarge the receptive field for long sequences. Also, our model 
learns latent vectors at each time step to address the information 
bottleneck from the fixed-length vectors between encoders and 
decoders. Furthermore, we construct bypass connections for 
encoded vectors to enhance the temporal features and train the 
stacked model efficiently. The main contributions in this paper 
can be summarized as follows: 

 We propose a novel temporal convolutional autoencoder, 
named TCAE, for time series anomaly detection. Our 
model captures temporal dependencies and internal 
relationships between time series based on convolution 
operations. 
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 We prove that TCAE can avoid information bottlenecks 
from fixed-length vectors by capturing temporal features 
at each step with residual connections. Subsequently, our 
model reconstructs time series in a non-autoregressive 
manner based on the latent vectors while keeping 
causality by causal convolutions. 

 We conduct extensive experiments on real-world 
datasets for time series anomaly detection. Our results 
demonstrate that TCAE detects anomalies more 
accurately than solid baselines. 

II. RELATED WORK 
In this section, we briefly review previous studies, including 

reconstruction-based approaches for time series anomaly 
detection. Also, we discuss related studies using convolutional 
neural networks in the time series domain. 

A. Time Series Anomaly Detection using Autoencoders 
The major challenge in anomaly detection tasks is the 

unbalanced characteristics of time series, i.e., the lack of labeled 
anomalies [5]. Accordingly, direct supervision from the small 
amount of anomalies is not a viable option. Instead, most 
anomaly detection methods are trained based on only normal 
points in an unsupervised manner. For this reason, 
reconstruction-based methods are prevalent to identify 
deviations in time series. 

Recently, anomaly detection based on neural methods has 
become a field of interest, owing to the expressive and flexible 
ability to represent information. In particular, autoencoders 
(AEs) [12] are widely used models to detect anomalies by 
reconstructing each datapoint. Extending AEs, one of the well-
known approaches to model sequential data is a sequence-to-
sequence model [13]. The sequence-to-sequence approaches 
generally have two distinct models called encoders and decoders. 
These modules serve different roles; encoders learn hidden 
representation (codes) in a low-dimensional vector space, and 
decoders reconstruct the original datapoint from the codes.  

The sequence-to-sequence approaches using RNNs have 
become favored choices due to recurrent behaviors of sequential 
data. Several existing studies adopt these approaches that encode 
time series using a long short-term memory (LSTM) into low 
dimensional space and then decode them in time-reverse order 
to alleviate the time lag problem in RNNs [6, 9]. There have 
been several attempts to enhance temporal dependencies and 

mitigate the inherent long-term dependency problems in RNNs 
[14, 9]. For instance, [10] utilized several sparsely connected 
RNNs with different skip lengths as encoders. Similarly, [11] 
introduced multiple RNN decoders with various resolutions to 
reconstruct time series. 

However, previous sequence-to-sequence models using 
RNNs are inevitably limited to having the fixed-length codes in 
the middle between encoder and decoder. These bottlenecks can 
cause loss of temporal features for sequential data since long 
sequence are compressed into a single low-dimensional vector. 
Attention mechanism has been studied to deliver information 
from encoders to decoders efficiently [15, 16]. Nevertheless, 
RNNs are being replaced by models that do not have long-term 
dependency problems such as CNNs due to their fundamental 
flaws [17]. 

B. Convolutional Networks for Time Series 
Similar to computer vision which is dominated by CNNs, 

deep convolutional neural networks have shown competitive 
performance in sequential modeling. In recent studies on time 
series domain, CNNs have been explosively studied owing to 
their powerful feature extraction performance using local 
kernels. Indeed, CNN-based models have achieved prominence 
in various time series problems [18, 19, 20]. 

Moreover, there is convincing evidence that dilated 
convolutional operations can further enhance the performance of 
sequence modeling such as forecasting, generation, and 
representation learning, even outperforming sequence-to-
sequence models [21, 22, 23]. This is due to the fact that dilated 
convolutions with exponentially increasing kernels can 
efficiently enlarge receptive fields for long sequences. 

III. PROPOSED METHOD 
In this paper, we introduce a simple yet effective 

autoencoder model for time series anomaly detection, a temporal 
convolutional autoencoder (TCAE). As shown in Fig. 1, the 
main approaches our model are 1) to leverage compressed codes 
to reconstruct at each time step, and 2) to alleviate inefficient 
autoregressive decoding steps in RNN-based decoders.  

Since we aim to reconstruct the given time series, not to 
generate future values, our model can safely utilize the entire 
latent vectors at all time steps instead of a limited fixed-length 
vector. Also, our model can reconstruct time series without 

 
Fig. 1. Overview of Temporal Convolutional Autoencoder (TCAE) 
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autoregressive decoding while maintaining causality in dilated 
causal CNN. 

A. Problem Formulation 
We use a bold capital letter to represent a set of time series, 

𝐘𝐘 𝐘 𝐘�×�  for 𝑁𝑁 number of time series with 𝑇𝑇number of time 
steps. Each vector 𝒚𝒚� ∈ℝ �represents all variables at time step 
𝑡𝑡. Also, given a window size 𝑤𝑤, we use 𝐘𝐘� for train and test the 
model, i.e., 𝐘𝐘� = {𝒚𝒚�, 𝒚𝒚���, … , 𝒚𝒚�����}. 

The goal of time series anomaly detection is to identify 
anomalous time steps in test sets. Following previous anomaly 
detection methods, we train our model with solely normal data 
and inference on labeled test sets to compare performance. We 
mark label as 1 for anomaly and 0 otherwise. 

B. Dilated Causal CNN 
For encoder and decoder architecture in TCAE, we employ 

a dilated causal convolutional network (DC-CNN) [21]. The 
DC-CNN imposes exponentially growing dilation filters at each 
1D convolutional layer. Also, to keep causality at time step 𝑡𝑡, 
the filter only convolves the time step t and the earlier inputs. 
With this causal convolution, the network does not learn from 
future values at the given time step. The Fig. 2 (b) illustrates the 
example of a stack of dilated causal convolutional layers. 

We use two dilated convolutional layers with weight 
normalization, LeakyReLU as non-linear activation, and 
residual connections to form a convolutional block. Based on 
this core block, we stack 𝑀𝑀 convolutional blocks for a dilated 
causal CNN, as depicted in Fig. 2 (a). Since each block has two 
dilated convolutional layers, the network can see exponentially 
longer past observations with stacked blocks. For simplicity, we 
denote the dilated causal CNN as 𝒯𝒯(⋅). 

C. Encoder 
Autoencoders stand on the idea that encoders compress the 

vectors into the codes, and decoders reconstruct the original 
vectors from the codes. Based on this simple solid concept, 
TCAE aims to encode time series into T number of codes and 
decode them into the original series in a non-autoregressive 
manner. 

To reconstruct the given time series, we first generate non-
overlapping subsets 𝐘𝐘�  with window size 𝑤𝑤. Then, DC-CNN 

encoder extracts feature maps from 𝐘𝐘�  using 𝑘𝑘  kernels to 
capture temporal dependencies and relationships between 
variables. Note that we use paddings to match the extracted 
length of feature maps to the original 𝐘𝐘� . Also, we add the 
residual connection to the feature maps with linear 
transformation 𝑓𝑓(⋅)  of 𝐘𝐘� . Finally, we employ a linear 
transformation to feature maps to generate compressed codes. 
The entire process can be formulated as follows: 

 𝐄𝐄� = 𝒯𝒯�������(𝐘𝐘�) (1) 

 𝒛𝒛� = 𝑾𝑾��𝒆𝒆� + 𝑓𝑓(𝒚𝒚�)� (2) 

where 𝐄𝐄 𝐄𝐄 �×�  and 𝒆𝒆�  denote extracted feature maps from 
DC-CNN, and a feature map at time step 𝑡𝑡 respectively. 𝑘𝑘 is the 
number of kernels in DC-CNN. Also, 𝒛𝒛� and 𝐖𝐖� denote a latent 
vector at time steep 𝑡𝑡  and free parameters in the linear 
transformation in (2). 

D. Decoder 
Since TCAE targets reconstructing the given time series, not 

generating future values, decoders can safely utilize the entire 
latent vectors at all time steps instead of a limited fixed-length 
vector. In particular, encoders have already extracted necessary 
information for normal behavior using the historical lookback 
(i.e., the past observations) at each time step 𝑡𝑡 . Thus, the 
decoded output at t would not critically affect reconstructing the 
normal value at the 𝑡𝑡 𝑡 𝑡 time step. Hence the model does not 
consider the previous outputs to reconstruct the current time step. 

Instead, we feed the latent vector at time step 𝑡𝑡, and those at 
the past time steps into the DC-CNN in the decoder to obtain the 
hidden representation 𝐃𝐃. In this way, our model can reconstruct 
time series without autoregressive decoding while maintaining 
causality in dilated causal CNN. 

 𝐃𝐃� = 𝒯𝒯�������(𝐙𝐙�) (3) 

 𝒉𝒉� = LeakyReLU�BatchNorm(𝒅𝒅�)� (4) 

Where 𝐃𝐃� ∈ℝ �×�  hidden states from DC-CNN in decoder. 
We apply Batch normalization and LeakyReLU as an activation 
function to compute final representations (4). Then, the 
reconstructed series  𝒚𝒚��  can be obtained using time step-wise 
feedforward 𝑔𝑔(⋅): 

 𝒚𝒚�� = 𝑔𝑔(𝒉𝒉�) (5) 

where feedforward function 𝑔𝑔(⋅) is performed at each time step 
separately, but shared weights. 

We supervise the entire model with Mean Absolute Error 
between the true time series and the reconstructed series: 

 ℒ� =
1

|𝑤𝑤| � ��𝑦𝑦�
� − 𝑦𝑦��

��
�

���

�

���

 (6) 

where 𝑦𝑦�
�  denotes 𝑖𝑖-th time series at time step 𝑡𝑡. 

 
Fig. 2. Overview of Dilated Causal CNN 
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TABLE I. STATISICS OF THE REAL-WORLD DATASETS 

E. Anomaly Scoring 
Similar to the previous studies, we define the reconstruction 

error 𝒂𝒂� as 𝒚𝒚� − 𝒚𝒚�� . In the validation set, we fit the Gaussian 
distribution 𝒩𝒩(𝝁𝝁, 𝚺𝚺) for all 𝒂𝒂�  to detect anomalies in the test 
set. We estimate 𝝁𝝁 and 𝚺𝚺 using empirical mean and variance for 
the reconstruction errors in the validation dataset. Based on the 
estimation, we define anomaly score at time 𝑡𝑡  in test set as 
follows:  

 𝒔𝒔� = (𝒂𝒂� − 𝝁𝝁)�𝚺𝚺��(𝒂𝒂� − 𝝁𝝁) (7) 

We predict the time step 𝑡𝑡  as an anomaly if the anomaly 
score 𝒔𝒔�  is greater than a threshold. To dampen an additional 
hyperparameter, we compute the area under the ROC and 
Precision-Recall curves, which are widely used measures for 
anomaly detection. 

IV. EXPERIMENTS 

A. Datasets 
To evaluate TCAE in real-world datasets with labeled 

anomalies, we obtained publicly available eight benchmark 
datasets (Table 1) from [9]. Since test sets that contain a small 
number of anomalies are provided separately, we do not need to 
divide the test sets. On the other hand, we divide the training 
datasets, which consist of only normal datapoints, into 70% for 
train and 30% for validation sets. Also, we scale all datasets 
using standard normalization.  

 Electrocardiograms (ECG): ECG dataset is a collection 
of six bivariate time series for heart beating records from 
six people. 

 Gesture: Gesture dataset has bivariate time series for the 
X and Y coordinates of the actor’s hand while 
manipulating a replica gun in the video images. 
Anomalies are marked if the actor misses the gun in the 
repetitive movements. 

 Power Demand: Power demand dataset contains 
univariate time series for power consumption, recorded 
by Dutch Research Institute.  

B. Baselines 
We compare our model against five state-of-the-art baselines 

for time series anomaly detection: RAE [6], RAE-Ensemble [10], 
RRN [9], and RAMED [11]. RAE is comprised of an 
autoencoder with the recurrent model. RAE-Ensemble exploits 
an ensemble method for encoders and decoders in which have 
sparse connections. RRN utilizes self-attention to enhance the 
encoder-decoder framework. Also, RAMED builds multiple 
decoders to decode time series in different resolutions. 

C. Evaluation Metrics 
To avoid introducing specific thresholds in measuring the 

performance, we use three standard metrics for anomaly 
detection: AUROC (area under the ROC curve), AUPRC (area 
under the precision-recall curve), and the highest F1 score. The 
highest F1 score is chosen among the scores computed using 500 
thresholds which are evenly spaced in the interval from zero to 
the maximum score. 

D. Implementation Details 
We set the window size 𝑤𝑤 to 256 for all datasets and the size 

of the kernel to 7 for each convolutional layer. The number of 
kernels varies depending on the datasets; we conduct grid search 
from {8, 16, 32}. Similarly, the size of the latent vector is chosen 
from {4, 8, 16} and the number of stacked dilated causal 
convolution (𝑀𝑀) is chosen from {2, 4, 6}. We train the whole 
model using Adam optimizer with a learning rate of 1e-3 and 
early stop the training with the patience of 10. 

E. Anomaly Detection Performance 
Table 2 summarizes the experimental results of AUROC, 

AUPRC, and the best F1 (F1) for all baselines and TCAE on 
eight datasets. We report published results in [11] since we have 
the same experimental setting, i.e., train and test sets are 
provided separately for all datasets. As shown in the table, the 
proposed TCAE model consistently outperforms all baselines, 
achieving the best performance on 20 cases of a total of 21 test 
cases. It shows that the proposed model clearly advances the 
state-of-the-art time series anomaly detection methods. 

In particular, TCAE shows significant performance 
improvements (about 10% on average) compared to the previous 
best RNN-based reconstruction methods. This demonstrates that 
temporal convolution is beneficial to reconstruct the given time 
series even though it does not have the architectural advantages 
of being recurrent. In effect, the most of anomaly detection 
models that impose recurrent neural models need particular 
technique such as sparse connections, time-reverse decoding, or 
ensemble approaches to make efficient modeling for temporal 
dependencies. This indicates that our model is able to learn 
better representations than other baselines. 

Furthermore, we highlight that our model is not sensitive for 
training and test window, while RAMED [11], the previous best 
model, uses a relatively short window (64 for ECG and Gesture, 
and 512 for Power demand datasets). 

Dataset # of Train # of Test Anomaly (%) 

ECG    

(A)  chfdb_chf01_275 1,833 1,841 14.61 

(B)  chfdb_chf13_45590 2,439 1,287 12.35 

(C)  chfdbchf15 10,863 3,348 4.45 

(D)  ltstdb_20221_43 2,610 1,121 11.51 

(E)  ltstdb_20321_240 2,011 1,447 9.61 

(F)  mitdb_100_180 2,943 2,225 8.38 

Gesture 8,451 2,800 24.63 

Power demand 1,513 1,596 11.44 
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F. Hyperparameter Sensitivity Study 
To further investigate our model, we conducted additional 

experiments on Gesture dataset to study hyperparameter 
sensitivity. Since TCAE mainly imposes 1D CNNs inside the 
encoder and decoder, we consider the relationships between the 
input window size and the number of stacks in dilated CNN. 
Unlike RNNs, in which the performance is highly dependent on 
the length of the input window, 1D CNNs are not affected by the 
size since CNNs mainly learn the kernels by striding. However, 
the receptive field on the top of the stacked CNNs matters to the 
performance since it represents how far the models look back. 

Table 3 shows the performance with different input window 
size 𝑤𝑤 while fixing 𝑀𝑀=6. We vary the window size 𝑤𝑤=64, 128, 
256, and 512. We observe that small window 64 slightly degrade 
the anomaly detection performance, indicating that small input 
window size may not be helpful due to a large number of 
paddings for dilation. 

On the contrary, Table 4 reports the anomaly detection 
results using different 𝑀𝑀 =2, 4, 6 with 𝑤𝑤 =256. We clearly 
confirm that a small number of stacks (𝑀𝑀=2) degrades the 
performance results, owing to insufficient lookback for the 
available window size. From the results, we recommend using 
at least four stacks for a window size of 256. 

V. CONCLUSION 
In this paper, we propose an effective method named 

Temporal Convolutional Autoencoder, which imposes 

convolutional networks as encoders and decoders. Our model 
leverages the entire latent vectors at all time steps to reconstruct 
the given time series while maintaining causality by dilated 
causal convolutional operations. Our model utilizes latent 
vectors as the information for the previous steps instead of the 
outputs of decoders to eliminate autoregressive decoding. 
Experiments on real-world datasets demonstrate that our model 
outperforms baselines with a large margin. Future work includes 
reconstructing high-dimensional time series for anomaly 
detection. 
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