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Abstract—Prevalent recurrent autoencoders for time series
anomaly detection often fail to model time series since they have
information bottlenecks from the fixed-length latent vectors. In this
paper, we propose a conceptually simple yet experimentally effective
time series anomaly detection framework called temporal
convolutional autoencoder (TCAE). Our model imposes dilated causal
convolutional neural networks to capture temporal features while
avoiding inefficient recurrent models. Also, we utilize bypassing
residual connections in encoded vectors to enhance the temporal
features and train the entire model efficiently. Extensive evaluation on
several real-world datasets demonstrates that the proposed method
outperforms strong anomaly detection baselines.
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L.

Time series anomaly detection refers to distinguish
unexpected deviation that differs significantly from the other
observations. It is crucial to detect abnormal events in modern
applications, ranging from industrial processes to healthcare
systems [1]. For example, detecting anomalous intrusion can
prevent potential dangers in many digitalized applications as
smart factories, big data centers, and environmental systems [2,
3]. Also, monitoring time series records, including
electrocardiography signals, are directly connected to patients,
and detecting deviations in those signals can alert critical issues
in advance of critical problems [4].

INTRODUCTION

Recent deep learning techniques pave and advance the
anomaly detection methods, as learning complex patterns and
non-linear features in time series through flexible representation
inside neural methods [5]. Due to the lack of labeled anomalies
in real-world applications, the unsupervised learning scheme is
a prevalent learning method to capture normal behaviors using
neural networks. In particular, reconstruction-based methods
encode the given time series into the low-dimensional latent
vectors that include core information to reconstruct the original
time series [6, 7]. Thus, the models can detect unexpected
deviation by calculating errors between decoded and original
time series. The main assumption behind this approach is that
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the low-dimensional and compact codes are forced to contain
information related to the normal behaviors, not anomalous
effects.

Most existing anomaly detection methods based on neural
networks utilize recurrent neural networks (RNNs) owing to the
structural advantages for modeling sequential data. Especially,
autoencoder architectures comprising two different RNNs for
encoder and decoder are considered a natural starting point for
the time series reconstruction method [8]. Indeed, proposed
studies based on RNN autoencoders show significant advances
in detecting anomalies on real-world benchmarks [6, 9].
Previous studies have been developed in the context of
improving temporal dependencies in the recurrent models using
skip connections or ensemble methods. [10] proposed ensemble
of encoders with skip connections to encode longer sequences
using several skip lengths. Also, [11] introduced multiple RNN-
based decoders with different resolutions in an ensemble manner.
However, information inside canonical recurrent models is
prone to fade as the sequence gets longer. Also, existing
sequence-to-sequence architectures rely on the fixed-length
vectors between the encoders and decoders, which causes severe
information bottlenecks.

In this paper, we present a novel temporal convolutional
autoencoder (TCAE) for time series anomaly detection. TCAE
comprises convolutional neural networks (CNN5s) to encode and
reconstruct temporal features, avoiding inefficient recurrent
models. Recent studies show strong evidence that simple CNNs
outperform RNNs on sequential modeling tasks including
representation learning. Our model imposes dilated kernels to
enlarge the receptive field for long sequences. Also, our model
learns latent vectors at each time step to address the information
bottleneck from the fixed-length vectors between encoders and
decoders. Furthermore, we construct bypass connections for
encoded vectors to enhance the temporal features and train the
stacked model efficiently. The main contributions in this paper
can be summarized as follows:

e We propose a novel temporal convolutional autoencoder,
named TCAE, for time series anomaly detection. Our
model captures temporal dependencies and internal
relationships between time series based on convolution

operations.
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Fig. 1. Overview of Temporal Convolutional Autoencoder (TCAE)

e We prove that TCAE can avoid information bottlenecks
from fixed-length vectors by capturing temporal features
at each step with residual connections. Subsequently, our
model reconstructs time series in a non-autoregressive
manner based on the latent vectors while keeping

causality by causal convolutions.

We conduct extensive experiments on real-world
datasets for time series anomaly detection. Our results
demonstrate that TCAE detects anomalies more
accurately than solid baselines.

II. RELATED WORK

In this section, we briefly review previous studies, including
reconstruction-based approaches for time series anomaly
detection. Also, we discuss related studies using convolutional
neural networks in the time series domain.

A. Time Series Anomaly Detection using Autoencoders

The major challenge in anomaly detection tasks is the
unbalanced characteristics of time series, i.€., the lack of labeled
anomalies [5]. Accordingly, direct supervision from the small
amount of anomalies is not a viable option. Instead, most
anomaly detection methods are trained based on only normal
points in an unsupervised manner. For this reason,
reconstruction-based methods are prevalent to identify
deviations in time series.

Recently, anomaly detection based on neural methods has
become a field of interest, owing to the expressive and flexible
ability to represent information. In particular, autoencoders
(AEs) [12] are widely used models to detect anomalies by
reconstructing each datapoint. Extending AEs, one of the well-
known approaches to model sequential data is a sequence-to-
sequence model [13]. The sequence-to-sequence approaches

generally have two distinct models called encoders and decoders.

These modules serve different roles; encoders learn hidden
representation (codes) in a low-dimensional vector space, and
decoders reconstruct the original datapoint from the codes.

The sequence-to-sequence approaches using RNNs have
become favored choices due to recurrent behaviors of sequential
data. Several existing studies adopt these approaches that encode
time series using a long short-term memory (LSTM) into low
dimensional space and then decode them in time-reverse order
to alleviate the time lag problem in RNNs [6, 9]. There have
been several attempts to enhance temporal dependencies and
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mitigate the inherent long-term dependency problems in RNNs
[14, 9]. For instance, [10] utilized several sparsely connected
RNNs with different skip lengths as encoders. Similarly, [11]
introduced multiple RNN decoders with various resolutions to
reconstruct time series.

However, previous sequence-to-sequence models using
RNNSs are inevitably limited to having the fixed-length codes in
the middle between encoder and decoder. These bottlenecks can
cause loss of temporal features for sequential data since long
sequence are compressed into a single low-dimensional vector.
Attention mechanism has been studied to deliver information
from encoders to decoders efficiently [15, 16]. Nevertheless,
RNNs are being replaced by models that do not have long-term
dependency problems such as CNNs due to their fundamental
flaws [17].

B. Convolutional Networks for Time Series

Similar to computer vision which is dominated by CNNs,
deep convolutional neural networks have shown competitive
performance in sequential modeling. In recent studies on time
series domain, CNNs have been explosively studied owing to
their powerful feature extraction performance using local
kernels. Indeed, CNN-based models have achieved prominence
in various time series problems [18, 19, 20].

Moreover, there is convincing evidence that dilated
convolutional operations can further enhance the performance of
sequence modeling such as forecasting, generation, and
representation learning, even outperforming sequence-to-
sequence models [21, 22, 23]. This is due to the fact that dilated
convolutions with exponentially increasing kernels can
efficiently enlarge receptive fields for long sequences.

III. PROPOSED METHOD

In this paper, we introduce a simple yet effective
autoencoder model for time series anomaly detection, a temporal
convolutional autoencoder (TCAE). As shown in Fig. 1, the
main approaches our model are 1) to leverage compressed codes
to reconstruct at each time step, and 2) to alleviate inefficient
autoregressive decoding steps in RNN-based decoders.

Since we aim to reconstruct the given time series, not to
generate future values, our model can safely utilize the entire
latent vectors at all time steps instead of a limited fixed-length
vector. Also, our model can reconstruct time series without
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Fig. 2. Overview of Dilated Causal CNN

(b) Example of Dilated Causal Convolutions

autoregressive decoding while maintaining causality in dilated
causal CNN.

A. Problem Formulation

We use a bold capital letter to represent a set of time series,
Y € R¥*T for N number of time series with Tnumber of time
steps. Each vector y, € RNrepresents all variables at time step
t. Also, given a window size w, we use Y,,, for train and test the

model, i.e., Yy = {¥e, ¥es1, ) Verw-1}:

The goal of time series anomaly detection is to identify
anomalous time steps in test sets. Following previous anomaly
detection methods, we train our model with solely normal data
and inference on labeled test sets to compare performance. We
mark label as 1 for anomaly and 0 otherwise.

B. Dilated Causal CNN

For encoder and decoder architecture in TCAE, we employ
a dilated causal convolutional network (DC-CNN) [21]. The
DC-CNN imposes exponentially growing dilation filters at each
1D convolutional layer. Also, to keep causality at time step t,
the filter only convolves the time step t and the earlier inputs.
With this causal convolution, the network does not learn from
future values at the given time step. The Fig. 2 (b) illustrates the
example of a stack of dilated causal convolutional layers.

We use two dilated convolutional layers with weight
normalization, LeakyReLU as non-linear activation, and
residual connections to form a convolutional block. Based on
this core block, we stack M convolutional blocks for a dilated
causal CNN, as depicted in Fig. 2 (a). Since each block has two
dilated convolutional layers, the network can see exponentially
longer past observations with stacked blocks. For simplicity, we
denote the dilated causal CNN as T°(-).

C. Encoder

Autoencoders stand on the idea that encoders compress the
vectors into the codes, and decoders reconstruct the original
vectors from the codes. Based on this simple solid concept,
TCAE aims to encode time series into T number of codes and
decode them into the original series in a non-autoregressive
manner.

To reconstruct the given time series, we first generate non-
overlapping subsets Y,, with window size w. Then, DC-CNN
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encoder extracts feature maps from Y, using k kernels to
capture temporal dependencies and relationships between
variables. Note that we use paddings to match the extracted
length of feature maps to the original Y,,. Also, we add the
residual connection to the feature maps with linear
transformation f(:) of Y,, . Finally, we employ a linear
transformation to feature maps to generate compressed codes.
The entire process can be formulated as follows:

(M

Ey = Tencoder (Yw)

Z; = Wz(et +f(Yt)) )
where E € R¥*W and e, denote extracted feature maps from
DC-CNN, and a feature map at time step t respectively. k is the
number of kernels in DC-CNN. Also, z, and W, denote a latent
vector at time steep t and free parameters in the linear
transformation in (2).

D. Decoder

Since TCAE targets reconstructing the given time series, not
generating future values, decoders can safely utilize the entire
latent vectors at all time steps instead of a limited fixed-length
vector. In particular, encoders have already extracted necessary
information for normal behavior using the historical lookback
(i.e., the past observations) at each time step t. Thus, the
decoded output at t would not critically affect reconstructing the
normal value at the t + 1 time step. Hence the model does not
consider the previous outputs to reconstruct the current time step.

Instead, we feed the latent vector at time step t, and those at
the past time steps into the DC-CNN in the decoder to obtain the
hidden representation D. In this way, our model can reconstruct
time series without autoregressive decoding while maintaining
causality in dilated causal CNN.

Dy, = Tgecoder (Zw) 3

h, = LeakyReLU(BatchNorm(dt)) 4
Where D,, € R¥*" hidden states from DC-CNN in decoder.
We apply Batch normalization and LeakyReLU as an activation
function to compute final representations (4). Then, the
reconstructed series ¥, can be obtained using time step-wise
feedforward g(-):

y: = g(hy) (%)
where feedforward function g(-) is performed at each time step
separately, but shared weights.

We supervise the entire model with Mean Absolute Error
between the true time series and the reconstructed series:

1 w n
Ly = mz Z(YE - 37;)

t=1i=1

(6)

where y! denotes i-th time series at time step t.



TABLE L. STATISICS OF THE REAL-WORLD DATASETS

Dataset # of Train # of Test Anomaly (%)
ECG

(A) chfdb_chf0l 275 1,833 1,841 14.61

(B) chfdb_chfl3_45590 2,439 1,287 12.35

(C) chfdbchfls 10,863 3,348 4.45

(D) ltstdb_20221_43 2,610 1,121 11.51

(E) ltstdb_20321_240 2,011 1,447 9.61

(F) mitdb_100_180 2,943 2,225 8.38
Gesture 8,451 2,800 24.63
Power demand 1,513 1,596 11.44

E. Anomaly Scoring

Similar to the previous studies, we define the reconstruction
error a,, as ¥, — ¥,. In the validation set, we fit the Gaussian
distribution N (u, Z) for all a,, to detect anomalies in the test
set. We estimate g and X using empirical mean and variance for
the reconstruction errors in the validation dataset. Based on the
estimation, we define anomaly score at time t in test set as
follows:

s =(a,— W2 (a, —p) @

We predict the time step t as an anomaly if the anomaly
score S, is greater than a threshold. To dampen an additional
hyperparameter, we compute the area under the ROC and
Precision-Recall curves, which are widely used measures for
anomaly detection.

IV. EXPERIMENTS

A. Datasets

To evaluate TCAE in real-world datasets with labeled
anomalies, we obtained publicly available eight benchmark
datasets (Table 1) from [9]. Since test sets that contain a small
number of anomalies are provided separately, we do not need to
divide the test sets. On the other hand, we divide the training
datasets, which consist of only normal datapoints, into 70% for
train and 30% for validation sets. Also, we scale all datasets
using standard normalization.

e Electrocardiograms (ECG): ECG dataset is a collection
of six bivariate time series for heart beating records from

six people.

Gesture: Gesture dataset has bivariate time series for the
X and Y coordinates of the actor’s hand while
manipulating a replica gun in the video images.
Anomalies are marked if the actor misses the gun in the
repetitive movements.

Power Demand: Power demand dataset contains
univariate time series for power consumption, recorded
by Dutch Research Institute.
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B. Baselines

We compare our model against five state-of-the-art baselines
for time series anomaly detection: RAE [6], RAE-Ensemble [10],
RRN [9], and RAMED [11]. RAE is comprised of an
autoencoder with the recurrent model. RAE-Ensemble exploits
an ensemble method for encoders and decoders in which have
sparse connections. RRN utilizes self-attention to enhance the
encoder-decoder framework. Also, RAMED builds multiple
decoders to decode time series in different resolutions.

C. Evaluation Metrics

To avoid introducing specific thresholds in measuring the
performance, we use three standard metrics for anomaly
detection: AUROC (area under the ROC curve), AUPRC (area
under the precision-recall curve), and the highest F1 score. The
highest F1 score is chosen among the scores computed using 500
thresholds which are evenly spaced in the interval from zero to
the maximum score.

D. Implementation Details

We set the window size w to 256 for all datasets and the size
of the kernel to 7 for each convolutional layer. The number of
kernels varies depending on the datasets; we conduct grid search
from {8, 16, 32}. Similarly, the size of the latent vector is chosen
from {4, 8, 16} and the number of stacked dilated causal
convolution (M) is chosen from {2, 4, 6}. We train the whole
model using Adam optimizer with a learning rate of le-3 and
early stop the training with the patience of 10.

E. Anomaly Detection Performance

Table 2 summarizes the experimental results of AUROC,
AUPRC, and the best F1 (F1) for all baselines and TCAE on
eight datasets. We report published results in [11] since we have
the same experimental setting, i.e., train and test sets are
provided separately for all datasets. As shown in the table, the
proposed TCAE model consistently outperforms all baselines,
achieving the best performance on 20 cases of a total of 21 test
cases. It shows that the proposed model clearly advances the
state-of-the-art time series anomaly detection methods.

In particular, TCAE shows significant performance
improvements (about 10% on average) compared to the previous
best RNN-based reconstruction methods. This demonstrates that
temporal convolution is beneficial to reconstruct the given time
series even though it does not have the architectural advantages
of being recurrent. In effect, the most of anomaly detection
models that impose recurrent neural models need particular
technique such as sparse connections, time-reverse decoding, or
ensemble approaches to make efficient modeling for temporal
dependencies. This indicates that our model is able to learn
better representations than other baselines.

Furthermore, we highlight that our model is not sensitive for
training and test window, while RAMED [11], the previous best
model, uses a relatively short window (64 for ECG and Gesture,
and 512 for Power demand datasets).



TABLE II. ANOMALY DETECTION RESULTS IN TERMS OF AUROC, AUPRC, AND F1 SCORES

Metrics Models A B C ECG ) E F Gesture d}::?nv;ird
RAE 0.673 0.750 0.829 0.545 0.797 0.472 0.760 0.612
RRN 0.639 0.762 0.741 0.632 0.810 0.453 0.753 0.661
AUROC RAE-Ensemble 0.688 0.779 0.857 0.640 0.804 0.523 0.781 0.659
RAMED 0.713 0.855 0.874 0.647 0.883 0.640 0.784 0.679
TCAE 0.723 0.873 0.858 0.709 0.904 0.725 0.820 0.704
RAE 0.550 0.425 0.500 0.144 0.213 0.090 0.498 0.135
RRN 0.856 0.565 0.414 0.165 0.321 0.083 0.487 0.145
AUPRC RAE-Ensemble 0.555 0.477 0.526 0.203 0.280 0.095 0.529 0.140
RAMED 0.580 0.701 0.549 0.220 0.378 0.125 0.533 0.163
TCAE 0.603 0.746 0.577 0.267 0.445 0.150 0.589 0.255
RAE 0.548 0.474 0.505 0.219 0.389 0.158 0.530 0.280
RRN 0.544 0.550 0.454 0.262 0.455 0.156 0.524 0.293
F1 RAE-Ensemble 0.548 0.502 0.533 0.274 0.391 0.160 0.551 0.268
RAMED 0.576 0.687 0.554 0.347 0.486 0.209 0.563 0.293
TCAE 0.602 0.758 0.582 0.372 0.508 0.258 0.568 0.351

TABLE III. VARYING WINDOW SIZE w ON GESTURE DATASET

TABLE IV. VARYING THE NUMBER OF STACKS M ON GESTURE DATASET

Window size w AUROC AUPRC Fl1 # of stacks M AUROC AUPRC F1
w = 64 0.747 0.515 0.551 M= 0.702 0.519 0.448
w =128 0.785 0.539 0.567 M=4 0.754 0.529 0.536
w = 256 0.788 0.589 0.568 M=6 0.788 0.589 0.568
w =512 0.782 0.560 0.566

F. Hyperparameter Sensitivity Study

To further investigate our model, we conducted additional
experiments on Gesture dataset to study hyperparameter
sensitivity. Since TCAE mainly imposes 1D CNNs inside the
encoder and decoder, we consider the relationships between the
input window size and the number of stacks in dilated CNN.
Unlike RNNSs, in which the performance is highly dependent on
the length of the input window, 1D CNNs are not affected by the
size since CNNs mainly learn the kernels by striding. However,
the receptive field on the top of the stacked CNN's matters to the
performance since it represents how far the models look back.

Table 3 shows the performance with different input window
size w while fixing M=6. We vary the window size w=64, 128,
256, and 512. We observe that small window 64 slightly degrade
the anomaly detection performance, indicating that small input
window size may not be helpful due to a large number of
paddings for dilation.

On the contrary, Table 4 reports the anomaly detection
results using different M =2, 4, 6 with w=256. We clearly
confirm that a small number of stacks (M=2) degrades the
performance results, owing to insufficient lookback for the
available window size. From the results, we recommend using
at least four stacks for a window size of 256.

V. CONCLUSION

In this paper, we propose an effective method named
Temporal Convolutional Autoencoder, which imposes
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convolutional networks as encoders and decoders. Our model
leverages the entire latent vectors at all time steps to reconstruct
the given time series while maintaining causality by dilated
causal convolutional operations. Our model utilizes latent
vectors as the information for the previous steps instead of the
outputs of decoders to eliminate autoregressive decoding.
Experiments on real-world datasets demonstrate that our model
outperforms baselines with a large margin. Future work includes
reconstructing high-dimensional time series for anomaly
detection.
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