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Abstract—In motor imagery-based brain-computer interface (MI-
BCI), the variants of convolutional neural networks (CNNs) have been
increasingly received attention due to relatively outstanding decoding
performance. However, the growing network size for high decoding
performance and the inefficient procedures of BCI systems lead to lim-
ited availability in real-life MI-BCI systems. To tackle these issues, we
propose an end-to-end neural network named lightweight EEG-incep-
tion squeeze-and-excitation network (LiteEEG-ISENet). The architec-
ture is built to remedy the two parts: 1) depthwise convolution is
adopted to reduce the computational complexity of the network and
train the intrinsic features for each channel of the MI dataset; 2) In
addition to the previous motivation, the squeeze-and-excitation (SE)
blocks are employed to recalibrate channel-wise feature response
adaptively. The experimental results on the public dataset widely used
in the MI-BCI study demonstrate that the proposed method outper-
forms the existing method in terms of decoding performance and neu-
ral network memory efficiency.
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A motor imagery-based brain-computer interface (MI-BCI)
is a system that communicates and controls various surrounding
devices by decoding electroencephalography (EEG) signals
with the implicit intention of the user. In such MI-BCI systems,
it has been an open challenge to decode the user’s intention in
that EEG signals possess statistical complexity and are easily
distorted by artifacts, movements, eye blinks, and so on [1]. Re-
cently, numerous neural networks motivated by the original con-
volutional neural networks (CNNs) have shown record-breaking
performances compared with the existing methods [2-4].

INTRODUCTION

In general, the realization of BCI systems consists of signal
acquisition, preprocessing, feature extraction, classification, and
transferring the output of classification into control command.
However, it is time-consuming and laborious to choose suitable
feature extraction and classification methods for high classifica-
tion accuracy in a dynamic background environment. Due to the
recent advent of deep learning, several end-to-end CNN-based
neural networks with high performance and simple architecture
have been introduced [5, 6]. Recently, Zhang et al. presented the
CNN model for MI-BCI based on an inception-time network
with an efficient and accurate time-series decoding capacity,
named an EEG-inception [7]. This network has been designed
to capture high-quality time-series features by deep blocks and
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multi-branch inception structures corresponding to multiple time
windows. However, large-scale neural networks, including
EEG-inception, are unavailable for real-life MI-BCI systems
due to limited computing resources.

In this study, we propose a lightweight end-to-end neural
network while improving decoding performance, which is called
a lightweight EEG-inception squeeze-and-excitation network
(LiteEEG-ISENet). We focus on two issues: (1) designing a
memory-efficient neural network architecture in a resource-con-
strained environment (2) considering the relatively low-perfor-
mance problem in the light model. To deal with the former issue,
we adopt the depthwise convolution that saves computation by
operating for each channel of input data [8]. In addition, from a
neurophysiological point of view, some channels have a more
critical effect on MI tasks [9]. In the latter issue, to further rein-
force channel-wise dependencies, the attention mechanism of
squeeze-and-excitation (SE) blocks is utilized, which contrib-
utes to improving the classification accuracy by capturing the
channel-wise features related to MI tasks [10]. The proposed
method was evaluated by the BCI competition IV dataset 2a
widely used in MI-BCI studies. Based on the experiment results,
LiteEEG-ISENet demonstrates its superiority by showing high
classification accuracy in most subjects despite about 10x fewer
parameters.

II. METHODS

In this section, we describe the proposed method and back-
ground. First, we introduce depthwise convolution and SE
blocks used in this study. Then, we illustrate the overall scheme
of the proposed model base on the previous methods, which is
summarized in Figure 1.

A. Depthwise Convolution

The depthwise convolution approach is the most often used
method for reducing the number of parameters and processing
cost of a normal convolution-based neural network. Here the
convolution operations in each channel of input data are sepa-
rately performed. Therefore, the number of parameters in the
model can be diminished from d?k to dk where k isthe ker-
nel width. The output of the depthwise convolution is given by
[8, I11]:

DepthwiseConv(X, W i, c) = Z;-;l Wi -X(H]._[g])c (D
=)
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Fig. 1. Overall visualization of the LiteEEG-ISENet architecture
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where w € R%*¥ indicate weight for element i and c is out-
put dimension.

B. Squeeze-and-Excitation Network (SENet)

According to [10], the squeeze-and-excitation network (SE-
Net) is comprised of SE blocks that adaptively recalibrate a
channel relationship by squeezing the features using global av-
erage pooling, which has shown the compelling performance for
the ImageNet database. SENet consists of two steps, squeeze
and excitation. In the first step, all features along the channel
axis are converted into a one-dimensional vector with condensed
channel-wise representations. Then, the multi fully-connected
layers in the excitation step can be obtained channel-wise
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Fig. 2. Overall architecture of the proposed initial module and intermediate
module in LittEEG-ISENet. Here, the initial and intermediate inception
modules have the input data depth of 22 and 288, respectively.

attention from the output of the squeeze step. A more detailed
description is provided in [10].

C. A Lightweight EEG-Inception Squeeze-and-Excitation
Network (LiteEEG-ISENet)

We propose a light and more robust end-to-end neural net-
work by introducing depthwise convolution and SE block into
the cornerstone network of our study, EEG-inception [7]. As
shown in Fig. 1., the proposed LiteEEG-ISENet consists of one
initial inception module, five intermediate modules, five SE
blocks, five residual modules. Each inception module includes a
bottleneck layer, multiple 1D convolutional layers, a 1D max-
pooling layer, a batch normalization, and a ReLU activation
function. The overall scheme is employed in the identical struc-
ture as in [7]. The bottleneck layer with [1x 1] kernel matrix ex-
pands the dimension of the time-series EEG input data from 22
to 48. Then, to reduce the computational complexity of the net-
work, we replace all standard 1D convolutional layers after the
bottleneck layer with the 1D depthwise convolution layers, and
the detailed architecture is illustrated in Fig. 2. The five depth-
wise convolution operations include the kernel sizes of [25 x 1],
[75 x 1], [125 x 1], [175 x 1], and [225 x 1], respectively. Each
kernel size indicates the size of the window along the time axis,
i.e., 0.15,0.35s,0.5s,0.7s,and 0.9 s. The pooling layer is ap-
plied to collect the various feature by downsampling for features.
The different features extracted by multiple branches are concat-
enated, which are followed by batch normalization and ReLLU
activation function.

The small-scale neural network generally tends to reveal rel-
atively low performance than the large-scale neural network. We
attach the SE block after every intermediate module to comple-
ment this fault. In the SE block, in turn, channel-wise attention
is obtained, and the channel reduction ratio is set to 8. Then, the
outputs of the SE block and intermediate module are calculated
by channel-wise multiplication.

The residual module is employed to tackle the learning deg-
radation problem generated in deep neural networks. In addition,
this module consists of a convolutional layer, a batch normali-
zation, and a ReL.U activation function. It is applied after every
intermediate inception block.



TABLE L. COMPARISON OF THREE NEURAL NETWORKS

Networks Parameters FLOPs
EEG-inception 8.88M 2.56G
LiteEEG-inception 417.99k 140M
LiteEEG-SE-inception 858.52k 235M
TABLE II. THE SUBJECT-INDEPENDENT CLASSIFICATION ACCURACY
(%) BY DIFFERENT NETWORKS ON BCI COMPETITION IV DATASET 2A
Networks (%)
Subjects EEG-inception -ﬂiﬁﬁﬁl 1_‘;;555
S1 75.86 77.58 79.31
S2 57.76 64.65 57.75
S3 85.34 92.24 87.93
S4 56.89 60.34 62.93
S5 68.1 65.51 75.86
S6 62.07 59.48 59.48
S7 87.93 87.93 91.37
S8 82.76 86.2 90.51
S9 75.86 76.72 83.62
Average 72.51 74.51 76.52

Finally, the time-wise dimensionality reduction in output of
the fifth intermediate block is performed by average pooling.
The average pooling is followed by a fully connected layer hav-
ing four outputs corresponding to four MI tasks.

III. EXPERIMENTAL RESULTS

A. Datasets

To evaluate the proposed method, we have utilized BCI
competition IV dataset 2a. The nine subjects participated in the
experiment including a total of two sessions with 288 trials per
session. Each trial has 22 EEG channels, a sampling rate of 250
Hz, and four MI tasks (left hand, right hand, feet, and tongue).
Here, we only utilized MI periods between 3 s and 6 s to classify
the four MI tasks.

In the experiment, the evaluation dataset is split into five
folds (four for training and one for test). Then, to train the pro-
posed method, the training dataset has performed by 10-fold
cross-validation.

B. Evaluation Performance

All the experiments are implemented on Ubuntu 18.04.6
LTS, CPU: AMD Ryzen Threadripper 3960X 24-Core Proces-
sor, GPU: Nvidia Geforce RTX 3090, RAM: 64 GB, Python:
3.8.12, PyTorch: 1.10.1.

Table I reports the results of the number of parameters and
of the computation for EEG-inception and the proposed methods
with the same input size. Here, FLOPs indicate floting points
operations. For each result, the proposed LiteEEG-ISENet
shows 90.33% and 90.8% less than that of the EEG-inception.
Note that the number of parameters and of the computation for
proposed LiteEEG-inception is much smaller than that of the
other networks, while there is a low decoding performance than
LiteEEG-ISENet, which is shown in Table II.
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In Table II, the results for subject-independent classification
accuracy are summarized. From the table, we can confirm the
superiority of the proposed LittEEG-ISENet in that it results in
high classification accuracy across most subjects. Notably, it
shows more than enhanced classification accuracy for subjects 5
and 7. Moreover, in terms of the average classification accuracy,
LiteEEG-ISENet has achieved a 4.01% higher than the baseline
method.

IV. CONCLUSION

In this paper, we present the LittEEG-ISENet, which is mo-
tivated to capture channel-wise dependencies while diminishing
the size of the network. The experimental results show the po-
tentiality of the proposed method in that it achieves improved
classification accuracies across multiple subjects on the public
MI evaluation dataset. In addition, the proposed LiteEEG-ISE-
Net reduces the computational cost of the EEG-inception base
model by about 10x and does not require inconvenient proce-
dures such as preprocessing and feature extraction. Conse-
quently, the proposed end-to-end neural network may provide a
more suitable tool for real-life MI-BCI systems.
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