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Abstract—Sophisticated traffic analytics, such as the encrypted
traffic analytics and unknown malware detection, emphasizes
the need for advanced methods to analyze the network traffic.
Traditional methods of using fixed patterns, signature matching,
and rules to detect known patterns in network traffic are being
replaced with AI (Artificial Intelligence) driven algorithms. How-
ever, the absence of a high-performance AI networking-specific
framework makes deploying real-time AI-based processing within
networking workloads impossible. In this paper, we describe
the design of Traffic Analytics Development Kits (TADK), an
industry-standard framework specific for Al-based networking
workloads processing. TADK can provide real-time Al-based
networking workload processing in networking equipment from
the data center out to the edge without the need for specialized
hardware (e.g., GPUs, Neural Processing Unit, and so on). We
have deployed TADK in commodity WAF and 5G UPF, and the
evaluation result shows that TADK can achieve a throughput
up to 35.3Gbps per core on traffic feature extraction, 6.5Gbps
per core on traffic classification, and can decrease SQLi/XSS
detection down to 4.5us per request with higher accuracy than
fixed pattern solution.

I. INTRODUCTION

Silicon and software technology advancements targeting Al
inference have lowered the barrier (compute cost and R&D
effort) to unleash the creativity and innovation of the network
application developers on the use of Al-advanced techniques
within their commercial solutions. Reports and analysis are
projecting the use of Al in Enterprise SD-WAN deployments
to increase from 5% in 2021 to 40% in 2025 [1].

Industry practices are introducing Al techniques using ar-
tificial intelligence (AI) and machine learning (ML) models
across network analytics approach. Here are some examples
of use cases: (1) Traffic analytics: Used to analyze encrypted
network traffic, to identify anomalies within networks [2];
(2) Malware Detection: Detecting malicious traffic such as
SQL injection or Cross-Site Script [3]; (3) User Behavior
analytics: Detecting relationships, identifying anomalies, and
conducting empirical assessments of security [4]-[6].

In order to support real-world workloads, an industry-
standard framework for real-time Al traffic analytics has to
meet the requirements for performance, accuracy, and scal-
ability. Based on previous research and discussion with our
customers and partners, we have identified several mutually
challenging as follows:
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o High Throughput: up to 3Gbps per core (rule-based
level) for Al-based traffic classification [7], [8]

o Low Latency: 5 ~ 10us per request for malicious traffic
detection [9]

o High Accuracy: > 95% accuracy

« Easy Deployment: deploying without the need for spe-
cialized hardware (e.g., GPU, NPU, FPGA)

o Easy Development: module-based development like
DPDK [10] and VPP [11]

To address above challenges, we have designed Traffic Ana-
lytics Development Kits (TADK), an industry-standard frame-
work specific for Al-based networking workloads processing.
TADK can provide real-time Al-based networking workload
processing in networking equipment from the data center out
to the edge without the need for specialized hardware [12].
Briefly speaking, TADK brings several advantages to Al-based
networking processing:

1) High Performance: TADK provides highly-optimized
library for real-time Al-based traffic analytics. We design
several novel algorithms to increase the performance.
From our benchmarking results, traffic classification can
achieve up to 6.5Gbps per core, which can fully support
real-time classification in most cases. Meanwhile, the
overall pipeline of SQLi/XSS detection can achieve up
to 4.5 ~ 6.1us per HTTP request, which is 2x faster
than the existing rule-based solution. Also, the accuracy
of traffic classification and SQLi/XSS detection is > 95%
in most cases [13]-[16].

2) Easy Deployment: The application developed with
TADK does not rely on any specialized hardware. TADK
fully utilizes modern CPU features such as AVX512 to
accelerate Al performance.

3) Easy Development: TADK offers a module-based de-
velopment environment. Developers can implement their
own Al-based traffic analytics application by combining
TADK’s modules like building block bricks [17].

The rest of the paper is organized as follows: we first give
the background and related work of Al-based traffic analytics
in Section II. In Section III, we will give the overview design
of TADK. Then, we will give some detail of our highly
optimized feature extraction algorithms in Section IV, and we
will evaluate TADK in two scenarios: traffic classification and
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Fig. 1. The overall design of TADK.

SQLi/XSS detection in Section V. We conclude in Section VI.

II. BACKGROUND AND RELATED WORK
A. Data Collection

A systematic survey has concluded a general pipeline of Al-
based traffic analytics [18]. The first step is data collection [4],
[5]. The Al-based solution needs historical data as the input
source to train the model. However, capturing and labeling
enough traffics is hard to conduct, mainly due to accuracy
and privacy concerns. It is reported that 60% of research is
using public non-encrypted traffic [18] and using DPI tools
to label traffic. In order to cover this issue, TADK provides a
labeling helper that can help users to label non-encrypted and
encrypted traffic with only one click.

B. Feature Extraction

The next step is called feature extraction. The most common
trend uses statistical-based features (e.g., inter-arrival time and
packet size with the minimum, maximum and average metrics)
since they can be used both on non-encrypted and encrypted
traffic analytics [19]-[21]. However, some open-source feature
extraction libraries [22] whose performance is as not good
as TADK’s library. Meanwhile, TADK can extract not only
statistical features but also lexical features from encrypted
traffic. It is proved that the combination of statistical and
lexical features can significantly increase the accuracy. The
flow extraction library of TADK has been utilized in Al
traffic analytics [13]-[16]. TADK provides a tokenizer that
is remarkably faster than existing solutions to extract lexical
features.

C. Al Inference

At the last step, an Al model or an ensemble of models
are needed for gathering analytics results [23], [24]. Both
supervised and unsupervised methods are widely deployed

in traffic analytics. Labeled datasets are used to train a
supervised model such as SVM, decision tree, and random
forest. Unsupervised models such K-Means are utilized in
anomalous traffic detection. Meanwhile, most solutions use the
unsupervised model to cluster encrypted traffics since labeling
encrypted traffics [25]-[27] is difficult. In TADK, we provide
an optimized random forest model for Al inference. We have
compared a variety of models and found the random forest is
well-balanced between accuracy and latency in traffic analytics
workload.

III. THE OVERALL DESIGN OF TADK

A. Core Libraries

TADK is composed of a series of core libraries, which are
corresponding to feature extraction and Al inference steps we
mentioned before. We show each component in Fig. 1. Flow
aggregator is used to aggregate traffics from packets (e.g.,
real-time packets or packet traces from PCAP files) by 5-
tuples. Protocol detection is used to identify protocols such
as TCP, TLS, QUIC, and so on. Feature extraction, which
is the competitiveness of TADK, has been well-designed to
support real-time Al-based traffic analytics. We will describe
some core algorithms in Section IV. Al engine is a wrapper
of a high-performance random forest, which is based on
Intel oneDAL [28]. Our Al engine supports both training and
inferencing, including automatic feature reduction.

B. Utilities

TADK brings some useful utilities for training. The data
cleaner and labeling helper provide an one-click solution for
traffic labeling. The user only needs to capture one or several
packet traces (e.g., PCAP files) as input of the labeling helper,
and the helper will cluster these packet traces into several
clusters. Each cluster will have a labeling tip. The only work

393



Length of payloads

o _--"

- Chunk of 16 elements ~-=

4 =4
| 208 T 320 [ 724 T 960 [ 129 J 1320 [ 1500 [ 88 ] 88 [ 88 [ 60 | 88 | 88 [ 88 | 88 [ 88 ]

length / 64: scale to 0 to 15

[T 5T+l 2T20l23 1T 1T 1Tol 1T 1T 1T1T11]

| cMPGT

( Vector Category A
Classifier FALSE B " oxt TRUE: all in the biggest bin
CONFLICT {sw-overfiow ==
CMPEQ
msk_uni == Oxffff
TRUE: all in
different bins
msk_uni has
only 1 active bit
TRUE: all in same bin
- J
FALSE: random distribution l
4 Category 1 N Category 2 N Category 3 N\ ( Category 4 A
GATHER/PERMUTE REDUCE_OR POPCNT POPCNT
ADD POPCNT ADD ADD
SCATTER GATHER/PERMUTE @
ADD
ADD payload length histogram payload length histogram
payload length histogram SCATTER
” payload length histogram
. L [ ;N  F e e L . o )
CRNC & & &S ra
N 2 - B I
N NN I
PP PP TP TR T IS
tength
- J

Fig. 2. The workflow of Advanced Vector Calculation with Vector Category Classifier

for the user is to label each cluster with tips and use labeled
traffic to train a model.

C. Reference Solutions

TADK provides some samples to show the reference usage
of TADK core libraries. The traffic classification sample can
monitor network traffic and identify different applications in
encrypted traffic. Either packet traces (PCAP files) or real-
time traffic can be the input of the traffic classification sample.
The SQL injection (SQLi)/Cross-Site Script (XSS) detection
sample can detect whether the payload of HTTP traffic con-
tains malicious code. TADK also provides a VPP plugin for
the traffic classification sample and ModSecurity plugin for
the SQLi/XSS detection sample. With these plugins, users can
directly integrate Al-based solutions into their existing pipeline
without any modification. We give the integration points in
Fig. 1.

IV. FEATURE EXTRACTION
A. SIMD-based Histogram

Histogram, such as the distribution characteristic of TCP
packet header length, payload length, and arriving time in-
tervals, etc., are mostly used as statistical features. Thus,
designing an efficient histogram algorithm is a critical issue.
We take histogram calculation of TCP packet payload length as
an example to illustrate the detailed implementation. A buffer
of lengths of packets as a shown example in Fig. 2 used to

store the payload length of each packet in a network flow (for
simplicity, 16 packets are considered here). The purpose of
the histogram is to count the number of each element in the
buffer belonging to a specific bin.

1) Existing Solution: Scalar Calculation (SC) is a widely
utilized method. It has been implemented in most feature
extraction libraries. SC is a loop-based method, which means
they use huge amounts of loop and branch (it has to process
and count each element one by one) for the histogram. In
order to cover the disadvantage, a loop-free design such as a
SIMD-based algorithm has been proposed.

2) Advanced Vector Calculation: We propose a SIMD-
based algorithm called Advanced Vector Calculation (AVC).
As shown in Fig. 2, we separate the input traffic into 4
categories:

1) Category 1: All elements are in different bins.

2) Category 2: All elements are random distribution.

3) Category 3: All elements are in one bin (except the
biggest bin).

4) Category 4: All elements are in the biggest bin.

Since each category needs a different algorithm to calculate,
we also propose a Vector Category Classifier (VCC) to identify
the category of input data. In order to prevent VCC to be
an overhead of histogram calculation, we use only up to 3
instructions to identify the category, which is also shown in
Fig. 2. We give define SIMD intrinsics in TABLE 1.
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TABLE I 1, 3, and 4 with up to 3 instructions, designing an algorithm

DEFINITION OF SIMD INTRINSICS [29]

Notation Description

CMPGT(@, b) Compare @ with b for greater-than

CONFLICT(a) Test each element of @ for equality

REDUCE_OR(a) | Reduce each element in @ by bitwise OR

CMPEQ(d, l_;) Compare @ with b for equal

Count the number of

POPCNT(a) logical 1 bits in each element in a

ADD(@, b) Add @ with b

GATHER(@, b)
PERMUTE(@G, b)

SCATTER(@, b)

Load b to @ with a specific order

Store @ to b with a specific order

Briefly speaking, we first use a CMPGT to identify whether
each element are larger than the biggest bin. If all elements
is larger than the biggest bin, it is category 4. Then, we
use CONFLICT to compute vec_conflict and msk_uni for
checking whether each element is unique. If all elements are
unique , it is category 1. At last, we can simply check whether
the msk_uni with only one active bit. If there is only one bit
in the msk_uni, it is category 3, otherwise, it is category 2.

Although it is easy to calculate the histogram in categories

for category 2 is the most challenging work. Thus, we propose
a novel algorithm to calculate the histogram in category 2. We
also give an example in Fig. 3. Algorithm 1 shows the pseudo-
code of AVC and VCC. We evaluate our proposed AVC for
histogram calculation. AVC can achieve up to 11.73x, 4.38x,
1.33x and 1.47x faster than the existing solution in categories
1,2,3,4 respectively.

B. DFA-based Tokenization

Web Browser
http://abc.com?password=1024%200r%201=1

Web Server DFA Based Tokenizer
Protocol Proc
i SQLi DFA
query string l DFA " Transition
password = 1024 1 =1"7 Engine Table
9063 x 256
token sequence
r’d
bareword op num num op num ~
Malware
Al
Model

Fig. 4. An example of SQLi detection with DFA-based tokenizer

Most Al-based traffic analytics (e.g, Next Generation Web
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Algorithm 1: Advanced Vector Calculation (AVC)

Input: length the buffer of payload length
Output: hist the histogram of payload length
Reset hist
Load length to vec_len
vec_bin < %{”
msk_overflow < CMPGE(vec_bin, 1_5)
if msk_overflow = Oxffff then
Category 4: all in the biggest bin
hist[15] < hist[15] + 16
return hist

[N - N N A S

9 Remove elements that is larger than 15 in vec_bin
10 vec_conflict <—CONFLICT (vec_bin)

11 Use CMPEQ to convert vec_conflict to msk_uni
12 if msk_uni = Oxffff then

13 Category 1: all in different bins

14 GATHER (vec_cnt, hist)

15 vec_cnt_added < ADD(vec_cnt, f)

16 SCATTER (hist,vec_cnt_added)

17 else if msk_uni BitAnd (msk_uni - 1) = O then

18 Category 3: all in the same bin

v | hist[vec_bin[0]] < hist[vec_bin[0]] + 16
20 else

21 Category 2: random distribution

22 msk_uni_rev < BitNot
REDUCE_OR(vec_conflict)

23 vec_popcnt < POPCNT (vec_conflict)

24 GATHER (vec_cnt, hist)

25 vec_cnt_tmp < ADD(vec_cnt, T)

26 vec_cnt_added <+ ADD(vec_cnt_tmp, vec_popcnt)
27 SCATTER (hist,vec_cnt_added)

Application Firewalls) needs tokenization to convert lexical
features (string-based information) into vectors as the input
of the Al-model. For lexical features, most tokenizers (e.g.,
OpenNMT) are branch-based, which means they use huge
amounts of [F-ELSE for tokenizing. A branch-based solution
is easy to implement, but it is unfriendly to the CPU’s pipeline,
and it may increase the number of cache misses. Thus, TADK
uses a DFA-based tokenizer and provides a generator that can
convert an easy-to-code profile into a specific DFA. We give
an example of SQLi detection with a DFA-based tokenizer in
Fig. 4. We also propose a training video [30] to describe how
the tokenizer works.

1) Generator: In order to support multiple language/file
formats, we propose a generator that can generate DFA from
user-defined profiles. We defines a DFA profile language which
can be easily maintained by our customers, and easy to extend
to add new tokens for emerging threats, and to support more
use cases. The generator also includes a DFA compiler to
compile the user-defined profile into its corresponding DFA
transition table. The DFA transition table is directly used by

the Tokenizer.

Algorithm 2: DFA engine
Input: T the transition table
V the input string
A the state table
Output: R the accept state
1 S < inital state
2 for i € the numbers of character C divide by V do

3 S« T[9][C]
4 if S is accept state then
5 L output A[S]

2) Tokenizer: The DFA transition table describes the tran-
sition behavior under every state and input character. Algo-
rithm 2 shows how the DFA engine works. The engine does
simple transitions in the main loop which makes it very fast.

V. EVALUATION
A. Environment

We implement TADK using GCC 7.5. Since TADK has
been deployed in several scenarios, such as WAF or 5G User
Plane Function (UPF), we have different CPU and RAM
environment. The 5G UPF uses ZTE 5300G4X, which is
based on Intel Xeon Gold 6330N CPU (Icelake) with 512GB
DDR4 RAM. Other evaluation is based on Xeon Gold 6148
CPU (Skylake) and Intel Xeon Platinum 8358 CPU (Icelake)
with 32G DDR4 RAM. We integrate our reference traffic
classification sample into ZTE 5G UPF to test its throughput
and accuracy. We use IXIA as a traffic generator to generate
traffic to test the maximum throughput with zero packet loss.

B. Data

Since we choose random forest as our Al inference model,
we evaluated the accuracy of random forest in both traffic
classification and malware detection. In traffic classification,
we have collected top applications in China (BAIDU, TMALL,
BILIBILI, TENCENT, TOUTIAO, KUAISHOU, QQ, HU-
OSHAN, QQNEWS, YOUKU, WECHAT) from the real-
world, for both training and inferencing. In malware detection,
we use SQLMAP [31] for SQLi and XSSTRIKE [32] for
XSS to gather data for both training and inferencing. We also
choose some public data for inferencing.

C. Traffic Classification

1) Accuracy: We give the confusion matrix of the model
that can classify 9 applications in Fig. 5. All precision and re-
calls are larger than 90%, and the average precision, recall, and
fl-score are 0.936,0.926,0.918. From the evaluation result we
can see that the accuracy for traffic classification is sufficient
for most scenarios. We also train a model to classify WeChat
image transfer traffic and WeChat video transfer traffic, which
are UDP traffic. We prepare 70 image transfer flows and 100
video transfer flows to train, and we give the accuracy detail
in TABLE II. The average precision, recall, and fl-score are
0.883,0.884, 0.883.
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Fig. 5. The confusion matrix of 9 applications

TABLE 1T
CLASSIFY WECHAT VIDEO AND IMAGE TRANSFER
Class Precision | Recall | Fl-score | Flows
WECHAT Video 0.903 0.875 0.889 32
WECHAT Image 0.862 0.893 0.877 28

2) Performance: We test our latency with the model that
can classify 2 applications (train and test by WECHAT with
1524 flows and YOUKU with 1551 flows). From Table III
we can see that our latency can achieve 10.7us per flow,
which is sufficient for most scenarios. Moreover, we also test
the latency of feature extraction for DNS, HTTP and TLS
in Table III. The average packets of DNS, HTTP, and TLS
are 2, 8 and 13. With the POPCNT instruction and the new
architecture, the latency has been reduced significantly. The
reason why TLS has lower latency than HTTP is TLS has
less lexical features to extract.

TABLE III
LATENCY PER FLOW

Traffic Classification Feature Extraction
Architecture | WECHAT | YOUKU DNS HTTP TLS
Skylake 12.9us 15.0us 1.3us | 3.3us | 2.5us
Icelake 10.7pus 12.2ps 0.9us | 2.6pus | 2.0us
Reduction 17% 19% 31% 21% 20%

We also test the throughput with YOUKU. The average
packets per flow is 20 and more than 99% flows are HTTP
and TLS flows. The throughput is 6.5Gbps (1,629kpps) per
core. Since the average packets per flow is 28 in Internet [33],
we can estimate our throughput can achieve 9.1Gbps in most
cases. Moreover, the throughput of feature extraction can
achieve 35.3Gbps.

3) Throughput in 5G UPF: We test our throughput with
models that can classify 3, 5, and 9 applications in 5G UPF
respectively in Fig. 6. The maximum throughput is 3.78Gbps
(618kpps) with 5 applications and can get 3.39Gbps (515kpps)
and 3.58Gbps (599pps) with 3 and 9 applications. The result

shows that the performance will not reduce with the increasing
number of applications. The reason why the throughput in
5G UPF cannot achieve our aforementioned throughput and
it has jitter is our naive flow table implementation and other
integration overhead.
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Fig. 6. Throughput Evaluation with IXIA

D. Malware Detection

1) Accuracy: We implement a ModSecurity plugin for
SQLi/XSS with TADK. We compare our plugin with the well-
utilized libinjection [9] in the same server environment (Nginx
with ModSecurity). We set an attacking client with SQLMAP
and XSSTRIKE to generate traffic to test the accuracy. TADK’s
plugin has higher accuracy (100% for SQLi and 99.8% for
XSS) than the libinjection and it has fewer false positives.

2) Latency: We evaluate the latency of SQLi/XSS plugin
in Table IV. TADK’s latency is 50% less than libinjection.
In conclusion, The Al-based solution has lower latency than
a rule-based solution in SQLi/XSS that makes real-time Al-
based malware detection possible.

VI. CONCLUSION

In this paper, we proposed TADK as a solution to ad-
dress real-time Al-based networking workloads processing.
The evaluation result shows that the application implemented
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TABLE IV
LATENCY PER REQUEST

Plugin SQL injection | Cross-Site Script
libinjection 14.4us 8.9us
TADK 6.1us 4.5us

with TADK can meet the requirements for real-time perfor-
mance (4.5us per request on malware detection, 6.5Gbps
and 35.3Gbps per core on traffic classification and feature
extraction), accuracy (> 95%), and scalability without any
specialized hardware. We have deployed our solution in WAF
and 5G UPF and we have evaluated it for real-world usage.

We

are currently working with our partners to improve the

reliability and missing features (e.g., GQUIC) required for
real-world deployment, and will be examined and used by the
public and community eventually.
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