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Abstract—A variety of Internet congestion control algorithms
have been developed to overcome the ever-increasing diversity
of the Internet. As a result, more than ten different congestion
control algorithms co-exist on the current Internet. Therefore,
flows with different congestion control algorithms must compete
with the bottleneck link, causing unfair bandwidth share. In this
paper, we aim to improve per-flow fairness in such situations.
In the proposed method, a flow estimates congestion control
algorithms of competing flows by a machine learning-based
estimation and majority vote algorithm. It then changes its
congestion control algorithm based on the estimation results. We
evaluated the performance of the proposed method by extensive
experiments and found that the estimation accuracy of the
proposed method was significantly larger than the chance level
and that the per-flow fairness was improved by at most 77.9 [%].

Index Terms—Congestion Control, Transmission Control Pro-
tocol (TCP), Fairness, Machine Learning

I. INTRODUCTION

The Internet is becoming increasingly diverse due to the
spread of mobile communication terminals such as smart-
phones and tablet PCs and the growing scale and speed of
the network. Congestion control is the source of stability
and robustness of the Internet. Therefore, various congestion
control algorithms have been developed in response to changes
in the Internet. Many of them are rule-based methods designed
by the researchers and based on heuristic approaches. Some
of these congestion control algorithms are designed for global
Internet environments [1]-[3], while others are designed for
specific environments [4]-[6].

CUBIC [1] and BBR [2] are the leading congestion control
algorithms on the current Internet. In [7], the authors reported
that CUBIC has the highest share of 36 [%], followed by
BBR with a share of 22 [%]. In other words, the remaining
42 [%] flows employ different congestion control algorithms.
In addition, 17 different congestion control algorithms are
implemented in the kernel of the Linux OS. Also, congestion
control algorithms based on machine learning have been stud-
ied extensively in recent years [8]-[11]. Most of them build
the learned model for optimal congestion window control from
observed parameters on the network environment. Existing
machine learning-based methods such as Remy [9] and TCP-
Drinc [10] have achieved higher throughput and lower latency
than rule-based methods in some network environments.
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In light of the above-mentioned background, we believe that
it will be difficult to consolidate congestion control algorithms
used on the Internet into one in the future. Therefore, situations
are inevitable where multiple flows with different congestion
control algorithms compete with each other at network bottle-
necks. The performance of such flows in terms of throughput
and round-trip time (RTT) depends on the combination of
algorithms and network environmental parameters, sometimes
causing large unfairness. In the past literature [12]-[14], meth-
ods to improve the fairness among different congestion control
algorithms have been considered. However, most of them have
been limited to specific combinations of algorithms and in
particular environments. Essentially, it is difficult to maintain
fairness among different congestion control algorithms.

The objective of this paper is to improve per-flow fairness
in such situations. In the proposed method, a flow estimates
congestion control algorithms of competing flows. It then
changes its congestion control algorithm based on the es-
timation results. The proposed method exploits a machine-
learning algorithm to determine congestion control algorithms
of competing flows based on observations of the network
and flow states. We employ an online estimation method that
performs the estimation continuously in an active flow. To
assess the performance of the proposed method, we conduct
extensive experiments with the emulated network environment.
We evaluate the proposed estimation method’s accuracy and
per-flow fairness when changing the congestion control algo-
rithm based on the estimation results.

The remainder of this paper is organized as follows. We first
summarize the related work and motivations of this work in
Section 2. Section 3 describes an online estimation method of
congestion control algorithms of competing flows. In Section
4, fairness improvement is evaluated by changing the conges-
tion control algorithm based on the estimation results. Finally,
Section 5 summarizes this study and discusses future issues.

II. RELATED WORK AND MOTIVATIONS

A. Fairness among congestion control algorithms

Most of the existing congestion control algorithms can be
classified into loss-based and delay-based methods. Loss-based
methods continuously increase the data sending rate while no
packet loss occurs and decrease it when packet losses are

ICUFN 2022



detected. Therefore, when network congestion occurs, packets
accumulate in the output buffer of the bottleneck link, causing
the increased queuing delay. On the other hand, delay-based
methods observe RTTs of sending packets to regulate the
data transmission rate. When the RTT increases, the sender
decreases the data transmission rate and vice versa. Typical
loss-based methods include NewReno [3] and CUBIC. Vegas
[15], BBR, and Copa [16] are delay-based methods. These
methods perform well when used exclusively, meaning that
all flows competing with the bottleneck link use the same
algorithm. However, when flows with loss-based and delay-
based algorithms co-exist in the bottleneck link, the significant
unfairness can be observed [12], [13]. Furthermore, even when
flows use the same type of algorithm (loss-based or delay-
based), we cannot avoid an unfair share of the bottleneck link
bandwidth when they employ different algorithms [17], [18].

Figure 1 shows the experimental results on fairness between
two flows competing for the bottleneck link. In the experiment,
a flow uses BBR, and another flow chooses one algorithm from
BBR, Vegas, CUBIC, and NewReno. The bottleneck link speed
is 10 [Mbps], and the output buffer size is 100 [packets] or
300 [packets]. The RTT of both flows without queueing delay
is 20 [msec]. The graph in Fig. 1 plots the goodput of the two
flows. As shown in this figure, when a BBR flow and another
flow with a different algorithm share the bottleneck link, the
goodput share differs depending on the characteristics of the
bottleneck link and the combination of co-existing algorithms.

Much research has been done to improve fairness among
flows using various congestion control algorithms. In [12],
Modest BBR is proposed to maintain fairness against compet-
ing CUBIC flows by configuring the data sending rate lower
than the observed available bandwidth. The authors in [13]
introduce BBR-CWS, which improves the fairness between
BBR and CUBIC flows, especially when the buffer size of the
bottleneck link is small. ArtaVegas, proposed in [14], improves
the fairness of Vegas flows competing with Reno flows by
modifying the congestion window behavior. These studies
focus on the fairness between two specific algorithms, and it
is difficult to be deployed on the Internet, where a variety of
congestion control algorithms co-exist. In addition, congestion
control methods based on machine learning-based algorithms
[9]-[11], [19] aim to optimize the performance of their flows,
and fairness with competing flows is not considered.

B. Estimation of congestion control algorithms

As a study on the estimation of flow congestion control
algorithms, Vegas+ proposed in [20] normally behaves as
Vegas and changes to Reno when a flow detects competing
Reno flows. Compound TCP (CTCP) proposed in [21] is
a hybrid method that combines loss-based and delay-based
methods. A CTCP flow switches its algorithm from delay-
based to loss-based when it detects competing loss-based flows
by observing RTTs. The method in [22] exploits supervised
machine learning to estimate whether the competing flow’s
algorithm is BBR or CUBIC. Most of these studies focus on
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fairness between two specific algorithms and do not consider
fairness with other congestion control algorithms.

In [23], a method for estimating a congestion control algo-
rithm of a flow by observing packets passing through inter-
mediate nodes is proposed. However, since the observation is
performed at intermediate nodes, it is difficult to be deployed
as compared with sender-based methods.

III. ESTIMATING COMPETING FLOWS  CONGESTION CONTROL
ALGORITHM

A. Overview

We consider a situation where two flows share the bottleneck
link, as shown in Fig. 2. Flow 1 from sl to rl estimates the
congestion control algorithm of flow 2 from s2 to r2. The
proposed method is online: flow 1 continuously observes the
state of the flow itself and the network condition and conducts
the machine learning-based estimation. We then determine the
congestion control algorithm of flow 2 by the majority vote
algorithm from the recent estimation results.

B. Machine learning-based estimation

We exploit the Random Forest algorithm [24] for the
estimation due to its simpleness and fast calculation speed.
Table I summarizes the features of the proposed estimation
method. We take an exponential weighted moving average
for each feature. Note that all features can be obtained from
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TABLE 1
FEATURES FOR RANDOM FOREST ESTIMATION

The ratio of the largest SRTT (smoothed RTT)

to the smallest RTT during the last kRTT (k times the duration of RTT)
The ratio of the largest goodput to the smallest goodput

during the last kRTT

The ratio of the latest observed RTT to sRTT

The ratio of the latest observed goodput to the average goodput.

The number of packets sent during the last kRTT

The number of retransmitted packets during the last k\RTT

The transmission interval of packets

The reception interval of acknowledgment packets

the observation by a sender host. The features on RTT and
goodput are chosen because they are directly related to the
fairness among flows. Also, such values fluctuate depending
on the combination of the congestion control algorithms of
competing flows and network conditions. The feature value
calculation and the estimation are conducted every time the
sender receives a new acknowledgment packet.

C. Majority vote algorithm

Since the estimation results with the method mentioned
above fluctuate by estimation errors, and we continuously
obtain estimation results during the flow, we introduce the
majority vote algorithm to determine the competing flow’s
congestion control algorithm. Figure 3 depicts the algorithm,
where B, V, C, and N represent BBR, Vegas, CUBIC, and
NewReno, respectively. We select the most frequently es-
timated algorithm from the recent estimation results with
window size w.

D. Evaluation settings

We conducted extensive experiments and evaluated the accu-
racy of the estimation method. The experiments are conducted
with the network emulator Mininet [25]. The network topology
is depicted in Fig. 2, and the parameters are summarized in
Tab. II. In each experiment, we randomly set the bandwidth, one-
way propagation delay, and output buffer size of the bottleneck
link between two switches, S1 and S2. Then two flows transmit
data packets for 60 [sec]. Flows 1 and 2 use the congestion
control algorithm selected from BBR, Vegas, CUBIC, and
NewReno. The features are calculated from the packet capture
at the network interface of the sender s1.

We executed 2,000 experiments and collected 100 sets of
features from each experiment. We extracted training and
validation data from 1,000 experiments and test data from
the remaining 1,000 experiments. The training and validation
data were generated by randomly selecting 80 [%] and 20 [%]
of feature sets from 1,000 experiments, respectively. In the
model validation, we used the grid search to choose the
hyperparameters of the number of trees and the tree depth from
10-600 and 1-30, respectively. Note that the estimation model
is constructed for each congestion control algorithm of flow 1.

TABLE II
NETWORK PARAMETER SETTINGS

Access link

Bandwidth [Mbps] 20
One-way propagation delay time [ms] 1
Buffer Size [packets] 20000

Loss rate [%] 0

Bottleneck link

Bandwidth [Mbps] 1-10

One-way propagation delay time [ms] 1-100
Buffer Size [Bandwidth-Delay Product] | 10°-107
Loss rate [%] 0

E. Evaluation results and discussions

Table III summarizes the average estimation accuracy of
the Random Forest algorithm described in Subsection III-B.
We can see from these results that the estimation accuracy is
much higher than the chance level (=25 [%]) regardless of the
combination of the congestion control algorithms of flows 1
and 2. It means that the machine learning-based algorithm has
enough performance. Especially, when flow 1 uses Vegas, the
estimation accuracy is better than other three algorithms. This is
because the performance of Vegas can be easily affected by the
behavior of competing flows due to its conservative congestion
window control. Figure 4 plots the distribution of the estimation
accuracy when the congestion control algorithm of flow 1 is
BBR. We can see from this figure that the accuracy distribution
is quite different when the congestion control algorithm of flow 2
changes. This is because the network environmental parameters,
such as the bandwidth, propagation delay, and buffer size of the
bottleneck link, affect the estimation accuracy.

Table IV summarizes the accuracy of determining the
congestion control algorithm of flow 2 by the majority vote
algorithm explained in Subsection III-C when the congestion
control algorithm of flow 1 is BBR. Note that w=1 means that
the majority vote algorithm is not used. From these results,
we can observe that the estimation accuracy improves by
introducing the majority vote. Figure 5 plots the distribution
of the estimation accuracy with the majority vote algorithm. We
can see from this figure that when the accuracy of the Random
Forest algorithm is higher, the majority vote algorithm much
improves the estimation accuracy. However, when the accuracy
of the Random Forest algorithm is lower, the majority vote
algorithm degrades the estimation accuracy. The threshold of the
two behaviors is around 30 [%] of the accuracy. Consequently,
we should avoid such lower accuracy of machine learning-based
algorithms to take advantage of the majority vote algorithm.

IV. EVALUATION OF PER-FLOW FAIRNESS

In this section, we present the evaluation results of per-flow
fairness when a flow changes its congestion control algorithm
to be identical to the estimated algorithm of the competing flow.

A. Evaluation methodology

The evaluation environment for the evaluation is identical to
that in Section 3, where two flows share the bottleneck link
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TABLE III TABLE IV

AVERAGE ESTIMATION ACCURACY

Accuracy [%]
flow2
BBR | Vegas | CUBIC | NewReno
BBR 58.1 55.4 46.2 40.3
fowl Vegas 65.8 68.5 55.3 54.2
CUBIC 53.4 50.0 45.6 58.1
NewReno 56.1 48.8 43.8 49.5
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Fig. 4. Distribution of estimation accuracy of the Random Forest algorithm

between two nodes, as depicted in Fig. 2. Flow 1 continuously
estimates the congestion control algorithm according to the
algorithm described in Subsections III-A, III-B, and III-C. We
then calculate the goodput of flows 1 and 2 when flow 1 changes
its congestion control algorithm to identical to the estimated
algorithm of flow 2. In detail, the goodputs of flows 1 and 2
when the congestion control algorithm of flow 2, indicated by
J, is either BBR, Vegas, CUBIC, or NewReno are denoted as
G}. and G?, respectively. They are calculated according to the
following equations:

g

Lo
Z810.J) M

i=BBR, Vegas, CUBIC, NewReno
2 L ..
G Z ?g 2(1, J)
i=BBR, Vegas, CUBIC, NewReno

2

AVERAGE ACCURACY OF THE MAJORITY VOTE ALGORITHM

Accuracy [%]
w =1 50.0
w =10 53.3
w =20 55.2
w =30 56.3
w =40 57.0
w =50 57.6
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60 90
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Accuracy [%]

Fig. 5. Distribution of estimation accuracy of the majority vote algorithm

where T is the duration of the experiment and 7; is the duration
in which the congestion control algorithm of flow 1 isi. g; (i, j)
and g»(i, j) are the goodput of flows 1 and 2 obtained by the
experiments where the congestion control algorithms of flows 1
and 2 are i and j, respectively, where i and j are BBR, Vegas,
CUBIC, or NewReno. For these calculations, we conducted
experiments for all combinations of two congestion control
algorithms of flows 1 and 2, and obtained g (i, j) and g»(i, j)
for all combinations of i and j. We assume that the congestion
control algorithm of flow 1 is randomly selected when the data
transmission starts.

We then evaluate the fairness between two flows using the
following two metrics. One is goodput difference as defined in
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the following equation:
1 2
G;-Gj

=— 3)
1 2
Gj+Gj

This metric ranges from -1 to 1, and when it equals zero,
the fairness between two flows is perfect: the goodput of two
flows is identical. Otherwise, when it is -1 or 1, flow 2 or
flow 1 completely occupies the bottleneck link bandwidth,
respectively. Another metric is absolute goodput difference,
defined as | D|. When it is zero, the fairness between two flows is
perfect. Otherwise, the larger value means the degraded fairness,
regardless of either flow 1 or 2 occupies the bottleneck link.

In the following results, we set w to 10, or 50. For comparative
purposes, we show the evaluation results of w=1, meaning that
the majority vote is not used.

B. Evaluation results and discussions

Figure 6 plots the distribution of goodput difference defined
in Eq. (3) when the congestion control algorithm of flow 2
is BBR, Vegas, CUBIC, and NewReno. The distributions are
presented as box plots, where 0, 25, 50, 75, and 100 [%]-values
are plotted. The graph includes the results with three values for
w, and those when the proposed method is not used, meaning
that flow 1 does not change the congestion control algorithm
during the experiment.

Overall, when flow 2 uses Vegas, flow 1 outperforms flow 2.
On the other hand, when flow 2 uses CUBIC or NewReno,
flow 2 obtains better goodput than flow 1. This is consistent
with previous works on the fairness between loss-based and
delay-based algorithms [20], [21].

Comparing the results without the proposed method (“Not
used” in the graph) and those of the proposed method without
the majority vote algorithm (“w=1"), we can observe that the
introduction of the machine learning-based estimation signifi-
cantly improves the fairness between the two flows especially
when flow 2 uses Vegas. However, when flow 2 uses CUBIC or
NewReno, the 50 [%] value of goodput difference degrades,
while its variance becomes small. When the majority vote
algorithm is applied (“w=10" and “w=50"), the throughput
difference approaches zero in all cases of the congestion control
algorithm of flow 2. These results exhibit the effectiveness of the
combination of machine learning-based estimation and majority
vote algorithms.

Figure 7 plots the average values of absolute goodput
difference. From this figure, we can see that the proposed method
significantly improves the fairness between two flows, regardless
the majority vote algorithm is used or not. In addition, when
introducing the majority vote algorithm, the fairness is further
enhanced, especially when the window size for the majority
vote, w, is set to a larger value. In detail, the absolute throughput
difference is enhanced by 77.9 [%] when flow 2 uses BBR and
w=50. However, in general, the large value of w would degrade
the transient behavior of the proposed method, especially when
the congestion control algorithm of competing flow changes.
The appropriate setting of w is one of our future works.

V. CONCLUSION AND FUTURE WORK

This paper proposed a method to improve per-flow throughput
fairness by introducing machine learning-based estimation of
competing flow’s congestion control algorithm. The proposed
method exploits the Random Forest algorithm for the estimation
from observation of the network conditions and flow states. It
then determines the congestion control algorithm of the compet-
ing flow by the majority vote algorithm. Extensive experiments
and numerical evaluations revealed that the estimation accuracy
is much higher than the chance level, and the fairness can
be improved by up to 77.9 [%] when the congestion control
algorithm is changed to the estimated one.

In future work, the evaluation of the proposed method
in more realistic situations is essential. Specifically, we will
estimate the number of flows when the competing flows increase.
Furthermore, the evaluation will be performed on complex
networks. Also, we plan to construct a novel congestion control
algorithm based on the proposed method in this paper.
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