978-1-6654-8550-0/22/$31.00 ©2022 IEEE

Leveraging Vehicular Communications in Automatic
VRUs Accidents Detection

Bruno Ribeiro, Maria Joao Nicolau and Alexandre Santos
Algoritmi Center, Department of Informatics,

University of Minho, Campus de Gualtar,
4710-057 Braga, Portugal
bruno.ribeiro @di.uminho.pt, joao@dsi.uminho.pt, alex@di.uminho.pt

Abstract—As technology advances on the field of Vehicular Ad
hoc Networks (VANETS), there is a growing concern within the
research community regarding the safety of the the Vulnerable
Road Users (VRUs). These entities play an important role in
traffic, but their typical agility and difficult to predict behavior
pose challenges in the development of automatic systems that
aim to protect them. The application of Machine Learning (ML)
techniques on top of the communication data that can be collected
from the road environment has the potential to predict VRUs
movement, detect/locate them, or even compute probabilities of
collisions. This paper proposes an automated and real-time VRU
accident detection system (focused on motorcycles) by using
neuronal networks with communication data that is generated
by means of simulation, using the VEINS framework (coupling
SUMO and ns-3). Results show that the proposed system is able
to automatically detect any accidents between passenger vehicles
and motorcycles at an intersection within 1 second, with an
average of 0.61 second, after its occurrence.

I. INTRODUCTION

Intelligent Transportation Systems (ITS) are systems that
consist on an intricate set of technologies applied to road
agents (e.g. vehicles, pedestrians, infrastructures) that aim to
provide a more efficient and safe usage of the roads - allowing,
for example, to control traffic operations or influence drivers
behavior. These systems enable the implementation of several
applications that, relying on information that is exchanged
between the road agents, allows entities (e.g. drivers) to make
smarter choices - either manually or automatically. These
applications can range from simple day-1 use cases (e.g.
Emergency Vehicle Warnings) to more advanced solutions,
such as advanced automatic accident detection.

Road agents equipped with communication capabilities are
able to exchange important knowledge that can help saving
lives by minimizing the effects of accidents, improve traffic
flow, and so on. Naturally, given the increasing number of
equipped devices on ITS environments that are exchanging
such information (e.g. information about the vehicles, the
infrastructures, the road/traffic conditions), there is an huge
amount of data that is generated with high frequency. In
this context, it is pertinent to analyze the feasibility of using
this large volume of data to implement automatic processes
that allow actions such as predicting traffic jams, calculating
alternative routes, computing probabilities of accidents, etc.

Thus, applying ML techniques on said communication data
has the potential to improve traffic flow and mobility, and

326

also improve road safety. Improving road safety is particularly
important for Vulnerable Road Users (VRUs), since they are
the most exposed road agents and have a high casualty rate.
Typically, these users usually do not have a protective external
shell and possess poorer safety mechanisms when compared to
normal passenger cars or trucks. Due to their nature of being
highly mobile and move in a way that tends to be difficult to
predict by traditional methods, ML techniques may be used
to implement more advanced systems that try to predict such
actions and prevent accidents, or minimize their effects.

This implementation is possible if these users possess com-
munication capabilities that allow communication between
themselves and other road agents. Although entities such as
bicycles and pedestrians may possess communication capabil-
ities (for instance, using smartphones), it is unlikely that they
may communicate directly with other vehicles on the road -
which are typically equipped with IEEE 802.11p transmission
capabilities. On the other hand, motorcycles are fairly easy
to equip with On Board Units (OBUs) that possess commu-
nication technologies similar to regular vehicles. Hence, from
the VRUs group, motorcycles make the better subject to study
the potential use of automatic solutions for accident detection,
which may passively improve their safety - the detection
may, for instance, trigger emergency services that may reduce
the severity of injuring after accidents or even save lives.
Even if motorcycles and regular passenger vehicles are not
equipped with sophisticated safety systems that enable them
to detect that they are involved in an accident, it is possible to
resort to Road Side Units (RSUs) (infrastructure units on road
environments) to implement such advanced safety systems.
Naturally, there are other kind of safety methods that may be
also able to predict and avoid accidents, resorting to sensors
or advanced mechanisms (e.g. cameras, RADAR, LIDAR)
that allow to obtain environment knowledge and activate
active safety measures, such as emergency breaking, automatic
steering or airbag deployment. However, this type of solutions
may perform poorly in situations where line of sight is non-
existent or limited (e.g. the VRU is in a blind spot, behind a
parked vehicle). This situation is aggravated when considering
VRUs, for their smaller size and high mobility, which make
them harder to be detected. Hence, the implementation of such
systems resorting to wireless communications between VRUs
(motorcycles in particular) and regular vehicles/infrastructure

ICUFN 2022

may have a great impact on the general safety of road agents.
This work consists in the development and test of a VRUs
(motorcycles) accident detection system, resorting to Machine
Learning (ML) techniques. The system consists of two essen-
tial pieces - the simulation scenario and the ML models.
This paper is organized as follows. Section two presents the
state of the art. Section three describes the development of
the simulation scenario. Section four describes the process of
building the ML models and how the data was collected and
treated. Section five discusses the main results of this work.
Finally, section six reviews the main conclusions.

II. RELATED WORK

VRUs play a very important role on traffic flow. Most
VRUEs are typically very agile (e.g. pedestrians, motor-cyclists)
and their movement/behavior is hard to anticipate (sometimes
not even in compliance with traffic rules). Hence, detecting
or predicting their behavior is a difficult task. However,
the application of machine learning techniques on vehicular
environments data has the potential to detect or predict VRUs
movement, classify their behavior and even compute probabil-
ities of collision with them. These solutions may enable the
avoidance of accidents and thus also achieve a more efficient
and safer traffic flow.

Most of the relevant related works found tend to focus on
the prediction of the movement/intentions of VRUs or post-
accident analysis, and not on the detection of the incident it-
self. Furthermore, the data that is analyzed in such works tends
to be collected by means of sensors/camera-like systems and
not on active communication systems. This section discusses
some interesting related works that focus on machine learning
methods applied for the safety of VRUs.

In [1] a set of VRUs movement models based on machine
learning techniques are present, aiming to classify VRUs
current motion state and to predict the upcoming trajectory.
The dataset consists of over a thousand pedestrian and near
five hundred cyclist scenes acquired at an urban intersection.
The data was collected using a mix of cameras and laser
scanners. The recognition of the motion state and the trajectory
prediction is then tested using a method of polynomial ap-
proximation. The results show higher classification values and
the system is able to recognize motion state changes earlier,
compared to Interacting Multiple Model (IMM) Kalman Filter.
In [2], a VRU trajectory prediction service is presented, using
regression algorithms on Cartesian coordinates data. Using
Alternating Model Tree (AMT), the next position is predicted
with an error of less than 3.2 centimeters, increasing up to
1 meter when predicting the next 5 positions (1s between
consecutive positions). As future works, the authors plan to
use this service to estimate the collision probability.

In [3], the authors compare the use of different machine
learning algorithms in the identification of crash severity
factors of different Vulnerable Road User Groups (pedestrian,
bicyclist and motorcyclist), using real data from Queensland,
Australia (from 2013 to 2019). Random Forest classification
models performed more robustly in test accuracy: (motor-

cyclist: 72.30%, bicyclist: 64.45%, pedestrian: 67.23% and
unified VRU: 68.57%).

In [4] introduces a model that identifies risk factors for VRUs
that can affect their injury severity when involved in an
accident. To train the model, records from VRUs related crash
data were analyzed. The results indicated that Decision Tree
(DT) outperformed Logistic Regression (LR), since the coef-
ficient correlations were not considered and all the variables
were taken into account - the model revealed to be more
accurate considering the crash severity data under evaluation.
Nevertheless, both methods could correctly classify the classes
with relatively high accuracy.

The work in [5] analyses injury severity of three-wheeled
motorized rickshaws, resorting to several algorithms - Decision
Jungle, Random Forest, and Decision Tree - and data from the
city of Rawalpindi, Pakistan. Results showed that Decision
Jungle outperformed the other solutions with an overall accu-
racy of 83.7%. The analysis also showed that features such as
the lighting condition, younger drivers, high-speed facilities,
weekdays, off-peak, and shiny weather conditions were more
likely to worsen injury severity of the crashes.

III. SIMULATION SCENARIO

Until this point, it was not found on the literature any
datasets that contain VRUs related accidents using information
that was gathered from ITS messages - hence the need to build
datasets from scratch.

The development of advanced ITS systems requires a proper
evaluation of its performance. However, performing field tests
in vehicular environments is very challenging: the large num-
ber of nodes and traffic scenarios makes it very difficult to
collect data in real experiments and developing real prototypes
is a very expensive task, both in terms of money and time. On
the other hand, the use of simulators is a very popular choice
on the research community when it comes to the analysis of
communication and transportation solutions, for its ability to
perform assessments in a large scale.

In order to perform a proper simulation of vehicular environ-
ments, both a traffic simulator and a network simulator are
required. For this reason, researchers tend to use frameworks
that couple these two kind of simulators - some examples
of these solutions are VEINS, Artery and Eclipse Mosaic
(formerly known as VSimRTI). These frameworks couple the
simulators in a transparent way for the user, facilitating the
development of this kind of applications but still leaving space
for refined parameterization, on both the communications and
the mobility simulators.

In this work, the VEINS framework was chosen - since it was
already used before on other related work, which facilitated
the implementation of the new scenario.

The established scenario was inspired on ETSI standard use
cases, namely Collision Risk Warning from RSU [6], Mo-
torcycle Approach Warning [7] and Turning collision risk
warning [8]. The scenario simulates collisions between pas-
senger vehicles that are turning left on an intersection (red)
and motorcycles that are following on the road (yellow), as

327

Figure 1 shows.

Fig. 1. SUMO scenario - Intersection Collisions

In order to simulate the effects of the accident itself, the
vehicles involved on the collision halt on the lane for five
minutes. The remaining vehicles proceed normally according
to their movement model - which ultimately results in traffic
jams during the accidents. After the accident, the vehicles then
proceed normally on their predefined routes.

In terms of communication, all nodes on the simulation (pas-
senger vehicles, motorcycles and also the RSU that is placed
on the intersection) are equipped with the IEEE 802.11p tech-
nology to communicate - using the default value parameters
on the configuration files (txPower = 20mW; bitrate = 6Mbps,
minPowerLevel = -110dBm).

The vehicles (both passenger and motorcycles) are exchanging
Basic Safety Message (BSM)-like beacons [9] with a 10Hz
rate - the messages content is filled in VEINS with information
that is extracted from the traffic simulator SUMO via the
TraCI API. The beacons were defined to contain all the
standard information that was possible to obtain through the
simulation: Station ID, Position (Longitude, Latitude, Ele-
vation/Altitude), Heading, Speed, Acceleration, Vehicle Size
(Length and Width), Vehicle Type and a Timestamp.

The RSU is capable of receiving the beacons generated by the
vehicles, but it does not send any messages throughout the
simulation.

The simulation runs for a total of 24h. A total of ten
simulations were performed, with different simulation seeds,
generating ten different sets of data. Six of those datasets
were later used to train the model, two for validation and the
remaining two were used for testing.

IV. ACCIDENT DETECTION WITH MACHINE LEARNING

In this use case, we are trying to define, train and test
a model that aims to detect if an accident is occurring be-
tween passenger vehicles and motorcycles on an intersection.
To achieve so, two types of neural networks were tested:
Multilayer Perceptrons (MLPs) and Long Short-Term Memory
Networks (LSTM).
MLPs are a classical type of neural networks [10] and they
typically consists of one or more layers of neurons. On this
type of networks, data is fed into the input layer, one or more
hidden layers provide levels of abstraction and predictions are
made on the output layer. MLPs use a series of equations with
inputs, outputs and weights, and transform inputs into singular

outputs between 0 and 1. That generated output serves as input
to another layer, and the process continues until a singular
output is reached. In other words, it is a feed-forward neuronal
network (the information moves only in one direction - from
input nodes, through hidden nodes into output nodes). MLP
was selected because it is very suitable for tabular datasets
and in the classification prediction problems where inputs are
assigned a label (on this case, accident or not in accident).
LSTMs [11] are a specialized type of Recurrent Neural Net-
works (RNN) architecture, capable of better learning long-
term dependencies - the main advantage of LSTMs, when
comparing to traditional RNNs, is that they retain information
for longer periods of time, which in allows the early learned
important information to also be impactful on the decision
of the model, even if it is at the end of the sequence.
LSTMs contain three internal layers acting on the state and
input. These internal gates are the key to LSTM cells -
they are weighted functions that govern the information flow
(information state). The Forget Gate decides what information
to discard from the internal state; the Input Gate decides which
values from the input to add to the internal state; the Output
Gate decides what to output based on the input and internal
state (which information gets passed to the next state). LSTM
was selected for its capabilities to process, predict and perform
classification based on time series data.

In this use case, both models possess an input layer which
expects (at most) 8 features - Number of Vehicles, X Position,
Y Position, Speed, Heading, Acceleration, Length and Width
and an output layer with a sigmoid activation function - which
outputs a value in the range O to 1. Several variations regarding
the number of hidden layers (and dropout layers) and set of
input features were tested on each model. The best performing
models are presented in the results section.

The remaining of this section describes how the data was
gathered and processed, and also how the model was trained
and tested.

The datasets that are built to feed the ML models consist of
the collected messages that both passenger and motorcycle
vehicles are exchanging through the use of communications.
In order to build the data, the RSU that is installed in the
intersection collects and saves all the received messages in
that area to a Comma-separated values (CSV) file, line by
line (each line corresponds to a collected message).

The ML model must be constantly updated with all the
changes in the whole environment so that it can take them
all into account when performing the classification. So, in
order to overcome the problem of having a large collection of
singular vehicular data, the second step taken was to aggregate
data in a temporal fashion (turning individual records into
environmental information): the dataset was split in fixed time
intervals (1s, 0.5s and 0.1s were tested) and several methods
were tested for aggregation (min, max, sum and average) -
e.g. every message that was sent within one second, is now
condensed into a single record. However, a new Vehicle Count
feature is added to each record, in order to complement the
aggregation data - which states how many different vehicles

328

sent messages during that period of time. Additionally, the
Station ID, Vehicle Type and Timestamp features are now
removed from each record, since they no longer make sense as
aggregated information. The Position Z (elevation) feature is
also removed - the simulation scenario does not consider this
information - all values are equal to zero, making it irrelevant.
The main challenge in the defined use case (detecting accidents
related to VRUs on a crossing) is that the dataset can be
considered as unbalanced. There are only a few accidents in
each simulation, hence only a few records on the dataset set
to be inAccident = true. In a way, these records represent
anomalies in the complete data (may be considered outliers).
Thus, different class weights were estimated - the model’s
loss function is assigned higher value to the positive instances,
which are rarer.

Several parameters were experimented when training and
testing the models, in order to find which one performed better:
aggregation time (1s, 0.5s, 0.1s); aggregation type (max, min,
sum, average); number of neurons on the model’s layers (32,
64, 128); different sets of features to feed the input layer of the
models; and, in the LSTMs case - 5, 10, 15 and 20 timesteps
were also tested.

A different model was trained and tested for each set of
parameters, saving the results onto CSV files, using the format
[Real Value, Model’s Prediction Value] to allow a later more
in-depth analysis.

V. RESULTS

On this particular use case, simply analyzing the accuracy
of the models to determine its performance is misleading.
Although the high value of the metric may sound promising,
the model’s performance in terms of detecting the accidents
may actually be poor. Since there are only a few accidents
happening during the simulation time (they are rare events),
only a few records on the dataset are effectively marked as true
on the in Accident target column. For this reason, the dataset
is considered to be unbalanced - too many messages marked
as false when in comparison to the ones marked as true. This
also explains why the models have good levels of accuracy in
every subset of parameters - even if it classifies every single
record as false (vehicles are not involved in an accident), the
accuracy is very high, because only a very little subset of
records are being marked inappropriately. Precisely for this
fact, even when considering other metrics such as precision,
recall, f-score and specificity (all had values very close to 1
(maximum value)), they do not allow, by their own, to make a
proper decision on which subset of parameters performs better.
As an example, Table I shows the average results of the
best performing parameters for each aggregation time when
analyzing the MLPs results.

As the table shows, the results are close to perfection, but
are still misleading - a more in-depth analysis of the results
is necessary, with particular focus on the False Positives
(FP) and False Negatives (FN). In particular, and taking into
consideration the use case (detecting accidents), lowering the
number of FN is of the utmost importance - it is crucial that

TABLE I
EXAMPLE SUBSET OF RESULTS (MLP ANALYSIS)

Aggregation

Time Neurons | Accuracy Precision Reccall ~F-Score Specificity
1 32 1.000 0.999 0.998 0.998 1.000
0.5 64 1.000 0.999 0.999 0.999 1.000
0.1 32 1.000 0.998 0.999 0.998 1.000

the model is able to detect all accidents and, furthermore,
detect it as soon as possible. Naturally, a high number of FP
may also be a problem - it is not intended for the model to
classify normal traffic situation as accidents. So, in order to
conclude which parameters perform better, it is important to
analyze how fast the accident is detected and the total number
of false positive cases. To simplify the analysis, the results
are presented regarding the best performance models for each
aggregation time. All the discussed results consider the sum
aggregation type - which performed better in all cases.

Starting with the analysis of the Is results, a LSTM model
with two hidden layers and two dropout layers performed best
- which had 64 neurons on the layers, 5 features in the input
layer (Number of vehicles, Position X, Position Y, Heading,
Vehicle Width) and 20 timesteps, as shown on Figure 2.

) mput: | [(None, 20, 5)]
lgtm_input: InputLayer
output: | [(None, 20, 5)]
mput: one, 20, 5
lstm: LSTM 1 ™)
output: | (None, 20, 64)

mput: | (None, 20, 64)
dropout: Dropout
output: | (None, 20, 64)
input: one, 20, 64
Istm_1: LSTM ! ™)
- output: {None, 64)
mput: one, 64
dropout_1: Dropout 1 ®)
output: | (None, 64)
mput: | (None, 64)
dense: Dense
output: | (None, 1)

Fig. 2. LSTM Model summary

In this case, and considering a threshold of 0.9 on the output
(a value greater than 0.9 equals a positive classification), 2
FP and 28 FN were found (out of 167435 entries on the test
dataset). Most of the FN classifications happen right at the

329

beginning of the accident, which means that the model is not
able to detect it immediately.

Real Value |Predicted Value
o 0.017
0 0.011
1 0.173
1 0.996
1 0.999

Fig. 3. False Negative Examples

As exemplified on Figure 3, taken from the analysis of the
first accident happening in the test dataset, the model outputs
an higher value on the first occurrence (compared to the when
the accident is not yet happening) but still not high enough
to be above the threshold of what is considered to be positive
(in this case >0.9). In this case, the accident is only detected
on the second instance (2s). Naturally, lowering this threshold
would permit to detect the accident sooner but, unfortunately,
it also results in a very high number of FP, which makes that
solution unfeasible.

In summary, and considering a total of 14 accidents present
on the test data, two accidents were detected in 2 seconds, ten
in 3s and two in 4s - which results in an average detection
of 3s. At this point, and although the model is performing in
good in absolute values (very low number of FP and FN), the
accident detection results are below the expectations for an
automatic system.

Looking at the results when aggregating the values in a smaller
time window (0.5s), the best performing model was an MLP
with two dense layers (with 64 neurons each) and 8 features
on the input layer (Number of vehicles, Position X, Position Y,
Speed, Heading, Acceleration, Vehicle Length, Vehicle Width,
as shown on Figure 4.

mput: | [(None, 8)]
dense_input: InputLayer
output: | [(None, 8)]
Y
mput: (None, 8)
densze: Dense
output: | (None, 64)
mput: one, 64
dense 1: Dense L ™ -)
output: | (None, 64)
mput: | (None, 64)
dense 2: Dense
output: | {None, 1)

Fig. 4. MLP Model summary

Using this model, and considering a threshold of 0.95, a

total of 29 FP and 12 FN were achieved. Although 29 FP
may be considered good results in terms of the model’s
overall performance, it still may raise issues in terms of the
goal of the use case: the number of FP cases is superior to
the number of accidents happening on the training dataset
(fourteen accidents) - which leads to the need of establishing
a strategy to mitigate this issue (which was not a problem so
far on the 1s case).

From the analysis of the list of FP two main conclusions were
drawn. First, most of the FP (63%) happen immediately after
the accident is over, and in a consecutive way. This is most
likely related to the behavior of the vehicles in the mobility
simulation - when the accident is over, the configuration of
the vehicles on the road is still somewhat similar for some
time, which may cause the model to continue to classify the
entries as positive for some time in the end. To overcome
this problem, it is proposed that these FP are ignored if
they happen immediately after an accident has occurred. The
second conclusion is that the remaining FP happen in isolated
cases (there are not two consecutive FP classifications). So,
to avoid FP classifications, it is established that an accident is
detected only if the model classifies two consecutive record as
positives. On the other hand, this also means that even if the
model classifies the first entry of an accident correctly, we will
only consider the accident as detected on the second entry. In
other words, if the model correctly classifies the first two 0.5s
records, the accident itself will only be effectively detected
in Is. Thus, there is a certain trade-off when implementing
this strategy to overcome the problem of the FP cases -
we minimize the FP problem, but we also delay the actual
detection on positive cases.

The accident detections logic is illustrated on Figure 5.

; Predicted Real
Value Value

1s

25 1 0 Not considered

3s 1] 0

4s 1 0 False Positive

55 1 0

65 o 0

7s 1 1

8s 1 1 True Positive
308s 1 1
309s 1 0 False Positive
310s 1 0 {ignored)

Fig. 5. Accident Detections Logic

In this case, regarding the FN, they also tend to happen right
in the beginning of the accident, similarly to the 1s case - a
total of eleven accidents were detected in 1s and three in 0.5s
(averaging 0.89s). So, in terms of the time needed to detect
accidents, this solution performs better than the previous one,
despite the model’s initial worse performance in terms of FP

330

and FN.

Finally, the 0.1s results are consistent with the previous cases
- lowering the aggregation time results in higher FP and
FN numbers (141 and 83, respectively). Similarly, FN also
follow the same pattern as the other options and most of the
FP happen immediately and consecutively after an accident
(89%), while the remaining ones happen as isolated cases,
which allows to apply the same strategy, thus mitigating the
problem. This way, two accidents were detected in 0.3s, two
were detected in 0.4s, one in 0.5s, three in 0.6s, two in 0.7s,
two in 0.8s, one 0.9 in 1s and one 1 in 1s (averaging 0.61s).
These results were obtained using exactly the same model and
parameters as in the 0.5s use case.

VI. CONCLUSIONS AND FUTURE WORK

This work describes the development and test of a system
aimed at improving road safety, by collecting and treating ITS
data through means of ML, in order to detect accidents related
to VRUs (motorcycles). A simulation scenario containing
accidents between passenger vehicles and motorcycles in a
intersection was developed using VEINS, which couples mo-
bility (SUMO) and communications (OMNeT++) simulation.
The data collected from the simulation was treated and used
to train a MLP model, which was also tested against different
simulation data.

Results show that there is a certain trade-off between the
performance of the model per si and the performance of
the accident detection. In summary, the tested models tend
to perform relatively well but they present some limitations,
specially regarding the high number of FP - which may be
mitigated through the use of a specific accident detection
logic after the model finishes its classification. On the other
hand, the use of such a detection logic of the accident also
slightly delays the detection itself, so there is a certain trade-of
when applying such solution. Additionally, and although the
performance of the models per si gets worse when lowering
the aggregation time (resulting in an higher absolute number
of FP and FN), its capacity to detect accidents also becomes
more efficient in terms of time. With the best parameter
configuration, the model was able to detect every accident in
Is or less (taking 0.61s on average). This fast detection opens
the possibility to trigger passive safety measures - e.g. notify
surrounding vehicles of the accident; call an ambulance; notify
the police; etc.

This study has some limitations which are important to take
into account. First, the data used was collected by means of
simulation — which naturally limits the realism and also the
applicability of the solution in a real world use case. Also, the
simulation scenario is somewhat simplistic (both in terms of
traffic mobility and communications), so there is no indication
as to its generalization capabilities to other use cases.

As future work, it is intended to study the effects of imple-
menting passive safety measures and study its viability and
capability in terms of improving the traffic flow (and also its
safety) - e.g. notify surrounding vehicles of the accident and
redirect them to alternative roads.

331

Finally, it is planned to further develop the system in order to
try to predict the accidents, instead of just detecting them.
Naturally, achieving such a solution would later allow for
active safety measures (e.g. performing an emergency break on
the passenger vehicle or notify the driver of imminent danger)
which could greatly improve the VRUs safety on the road.

ACKNOWLEDGMENT

This work has been supported by national funds through
FCT - Fundagdo para a Ciéncia e Tecnologia within the
Project Scope: UIDB/00319/2020.

REFERENCES

[1] M. Goldhammer, S. Kohler, S. Zernetsch, K. Doll,
B. Sick, and K. Dietmayer, “Intentions of vulnerable road
users-detection and forecasting by means of machine
learning,” arXiv preprint arXiv:1803.03577, 2018.

[2] R. Parada, A. Aguilar, J. Alonso-Zarate, and F. Vizquez-
Gallego, “Machine learning-based trajectory prediction
for vru collision avoidance in v2x environments,” in 2021
IEEE Global Communications Conference (GLOBE-
COM). IEEE, 2021, pp. 1-6.

[3] M. M. R. Komol, M. M. Hasan, M. Elhenawy, S. Yasmin,
M. Masoud, and A. Rakotonirainy, “Crash severity anal-
ysis of vulnerable road users using machine learning,”
PLoS one, vol. 16, no. 8, p. 0255828, 2021.

[4] M. Vilaca, E. Macedo, and M. C. Coelho, “A rare event
modelling approach to assess injury severity risk of
vulnerable road users,” Safety, vol. 5, no. 2, p. 29, 2019.

[5]1 M. Ljaz, M. Zahid, A. Jamal er al, “A comparative
study of machine learning classifiers for injury severity
prediction of crashes involving three-wheeled motorized
rickshaw,” Accident Analysis & Prevention, vol. 154, p.
106094, 2021.

[6] ETSI, “ETSI TR 102 638 V1.1.1 Intelligent Transport
Systems (ITS); Vehicular Communications; Basic Set of
Applications; Definitions,” ETSI, 2009.

[7] ——, “Intelligent Transport System (ITS); Vulnerable
Road Users (VRU) awareness; Part 1: Use Cases defi-
nition; Release 2 ,” ETSI, 2019.

[8] ——, “Intelligent Transport Systems (ITS); V2X Ap-
plications; Part 2: Intersection Collision Risk Warning
(ICRW) application requirements specification,” ETSI,
2018.

[9] SAE, “J2735SET - V2X Communications Message Set

Dictionary Set,” 2020.

M.-C. Popescu, V. E. Balas, L. Perescu-Popescu, and

N. Mastorakis, ‘“Multilayer perceptron and neural net-

works,” WSEAS Transactions on Circuits and Systems,

vol. 8, no. 7, pp. 579-588, 2009.

S. Hochreiter and J. Schmidhuber, “Long short-term

memory,” Neural computation, vol. 9, no. 8, pp. 1735—

1780, 1997.

[10]

