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Abstract— Deep learning is used for decision making and
functional control in various fields, such as autonomous systems.
However, rather than being developed by logical design, deep learning
models are trained by itself through learning data. Moreover, only
reward values are used to evaluate its performance, which does not
provide enough information that the model learned properly. This
paper proposes a new method to assess the correctness of
reinforcement learning, considering other properties of the learning
algorithm. The proposed method is applied for the evaluation of Actor-
Critic Algorithms, and correctness-related insights of the algorithm are
confirmed through experiments.
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L

The rapid development of artificial intelligence (Al)
technology is making a huge impact on human life. For example,
autonomous robots and cars can drive autonomously without
human intervention, the Al-based speech recognition
understands and executes human commands based on its
excellent voice recognition ability. Also, AlphaGo of Google
Deep Mind [1] beat the top-ranked human player of game Go.
Classical Al before deep learning was designed and developed
using deductive and logical approaches while modern Al based
on deep learning uses a huge amount of data that learns
automatically hence the development process is inductive.
However, the problem with inductive methods is the evaluation
process and it is hard to deduce reason regarding the results
driven by inductive approaches. The modern deep learning has
black-box characteristics from the human point of view [2] as
black-box models are not explainable by themselves. Hence we
need several techniques to extract the explanations from the
inner logic or outputs of the models. Although research on
explainable Al [3-5] is being conducted to understand and track
the decision-making process of deep learning. However, there
are many research gaps and challenges that needed to be solved
in this area. In particular, the application of such Al algorithms
used in safety-critical areas may pose serious threats to safety.

INTRODUCTION

Reinforcement learning (RL) is a branch of Al that uses deep
neural networks (DNNs) that learn the optimal policy from the
experience of the agent through the reward against the actions
performed in a given state [6]. The application of the RL is
growing exponentially in various fields such as games, robotic
controls, and autonomous vehicles. The traditional approach
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uses reward values to evaluate the performance of RL
algorithms. Although such evaluation techniques evaluate the
problem-solving ability and learning speed of the algorithms.
However, there are different other aspects needed to be
considered while evaluating these algorithms. For example, the
conventional evaluation does not consider the safety, and
robustness attributes while evaluating the algorithms. Using the
conventional techniques, it is hard to determine the correctness,
safety, and robustness attributes specifically when it is being
used in safety-critical scenarios.

Therefore, this paper proposes a novel technique to evaluate
the correctness of RL algorithms. The proposed method was
used to evaluate the different types of actor-critic algorithms [7].
The algorithm used in our experiment has an actor network that
learns policy and a critic network that learns value. Our method
defines and evaluates the correctness of the actor network and
critic network respectively. By comparing the ideal value
derived and the value generated by each network, we evaluate
how closely the actor network learned toward the ideal behavior
and how closely the critic network learned toward the ideal value.
We compare and analyze the correctness for the three types of
algorithms using two types of activation functions. From the
experimental results, we confirmed that there is a new attribute,
which cannot be found in the reward-value-based evaluation
methods. The proposed approach also provides many insights to
identify the weaknesses of the RL algorithms. The contribution
of this paper can be summarized as follows:

e A method for evaluating the correctness through the
learned policy network and value network of the actor-

critics algorithms

Evaluation of three mostly used actor-critic algorithms
such as DDPG and SAC, and TD3 used to evaluate their
correctness using the proposed technique.

Exploring the insights of the changes in the policy
network that were not confirmed by the existing reward-
based methods. Furthermore identification of the
weaknesses of the RL algorithm.

The rest of the paper is structured as follows. Section 2
analyzes related work on Al quaility attributes and RL, Section
3 proposes a correctness evaluation method. Section 4 presents
the experimental design and its results for the evaluation, and
Section 5 concludes our work and explains future work.
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II. RESEARCH BACKGROUND

A. Al Software Quality Attributes

The research on deep learning-based Al applications are
rapidly growing especially in safety-critical systems like
autonomous vehicles, and medical diagnostics. The need for
reliable Al models has also grown. Meanwhile, the quality
assurance of Al-based software applications has emerged as a
new problem.

To accommodate these needs, the QA4AIl (Quality
Assurance for Al-based products and services) consortium was
formed in 2018 and announced the quality assurance guideline
for Al products in 2020 [2]. This guideline introduces five
viewpoints for the quality of deep learning software applications.
For each perspective, they defined checkpoints that need to be
considered for quality assurance. In addition, in order to improve
the quality of deep learning-based software, it was
recommended that the quality of each point of view should be
well balanced.

Several researchers worked on Al-based software quality.
The study related to the quality assurance of deep learning
conducted by J. Siebert et al. [8] classifies the quality
perspective of deep learning systems into five categories: Model,
Data, System, Infrastructure, and Environment, and the quality
attributes of each classification were defined properly. Since this
study was conducted mainly considering supervised learning.
Quality evaluation of other machine learning algorithms more
specifically RL algorithms was not discussed in this study.

B. Reinforcement Learning

RL is about an agent that interacts with the environment and
learns an optimal policy by trial and error. When a positive
reward is received from the environment against an action, the
action is evaluated as good and reinforced, whereas when a
negative reward is given, the action is evaluated as bad action
and weakened. For a long time, RL was used to learn in discrete
action space, but it has been successfully applied to
environments with continuous action space such as robotic
control [9].

Currently, among the RL algorithm, the actor-critic
algorithm [10] is the most widely used algorithm. Several actor-
critic algorithms have been proposed by different researchers
such as the SAC (Soft Actor-Critic) [11], the TD3 (Twin
Delayed DDPQG) [12] and the TQC(Truncated Quantile Critics)
[13]. These are the widely used and representative actor-critic
algorithms in the environment having continuous action space.

The Gym library [14] is popularly for evaluating the RL
algorithms. It provides various environments and makes it easy
to compare the performance of different RL algorithms.

III. EVALUATION METHOD FOR CORRECTNESS

One of the most important quality attributes of actor-critic
RL earning is the correctness, which is the degree of how
accurately the learned network outputs meet the original purpose
of each network.
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The goal of RL is to maximize rewards. The policy network
(Actor) has a sub-objective to produce output that maximizes the
sum of future rewards, and the value network (Critic) has a sub-
objective to learn the value of the current state and behavior. In
this paper, we evaluate how much of these sub-goals have been
achieved.

A. Research Motivation

A commonly used indicator to evaluate the performance of
RL is to monitor increasing or decreasing trends in reward value.
At the beginning of learning, the agent acquires a low reward
value from the environment, but as the learning progresses, the
reward value increases, indicating that the agent solves the
assigned task in the environment and the agent learning target is
well achieved.

Recent studies [13, 14] on the RL generally have shown that
their algorithms can solve the assigned task in the environment
by increasing the reward value. However, it is difficult to know
whether the task was solved by correct action value with enough
learning. In particular, when RL is applied to a safety-critical
system where dangerous behavior can cause loss of life and
property. It is very critical to carefully evaluate whether the
learned agent does not cause dangerous behavior. It is hard to
ensure that the developed system based on RL has a reliable
model in it. Therefore, the evaluation method of the correctness
of RL becomes an important research issue.

B. Environment for Providing Ideal Values

The reason for using deep learning for Al is to entrust the
complex judgment process of human logical thinking to machine
learning. A deep learning agent normally trained using data can
solve problems on its own without human intervention. In some
areas, Al agents have achieved performance that surpasses
humans. However, in an environment that provides rewards
values to an agent when an action is performed. Only reward
value-based evaluation does not provide enough information
regarding other attributes such as correctness. In this paper, we
define a Provisioning Ideal Values (PIV) environment that can
measure ideal values in an environment. The derived ideal value
is used to evaluate the correctness of networks after learning is
finished. The important fact is that, during the learning, the RL
agent does not know the ideal value in a given state at all.
Therefore, if an RL agent solves various tasks of PIV
environments well and discovers a common characteristic, we
can generalize that it will exhibit the same characteristics even
in an environment where the ideal values is unknown.

To achieve this goal, the PIV environment requires a
function to find the ideal behavior by obtaining the maximum
sum of future rewards in a given state. Let S be the set of states
obtained by the agent observing the environment, and let A be
the set of actions of the agent. The function 'f:S — A satisfies

‘a € 'f(s) as a function to find the ideal behavior ‘a € 4 in
a given state s € S then the function 'f can be used to evaluate
the actor correctness.

Additionally, the function g:S X A —» S X R X D, where R
is the set of reward values, and D is the set of done signals of the
Boolean type, is provided to evaluate critical networks. This



function is similar to the ‘step’ function in the gym library,
however, the difference is that it can obtain a transition from any
state to the next state.

C. Correctness Evaluation of Actor-Critic Algorithm

Let S be the set of states of the trained agent and A be the set
of actions performed in given states. The input of the policy
network g for the parameter 6 is a state s € S, and the output
is a set of actions a € A such that a = my(s). In this case, the a
is a tuple whose elements are real values a;), Ay, A(s), ***> Am)
generated by n neurons that constitute the output layer of the
policy network 7y, and n = dim(A4). Therefore, we can define
a vector d of an n-dimensional vector space using each element
of tuple a such that:

d = (aquy a@y, agy ) am) ¢))

Also, from two actions a,, (€ A) and a, (€ A) having similar
actions value and two vectors a,, a, having similar lengths and
directions. Various methods exist to measure the similarity of
two vectors, we use the normalized L2-norm.

- Normalized L2-norm: L2-norm, also called Euclidean
distance, is a method of measuring similarity by using the
property that the distance between the endpoints of the two
vectors becomes shorter as the lengths of two vectors are similar
or the angle between the two vectors is smaller. However, the
L2-norm is a difficult method to accurately measure the
similarity of vectors with a large difference in length. Therefore,
we used normalized L2-Norm in which a vector E consisting
of the maximum value of each element of action set A, that is,

E) = (max(a(l)) B max(a(z)) , max(a(3)) , 0, max (a(n))).

The normalized L2-norm dist we defined for two vectors,

B = (P Py Py Pw) and § = (90, 42 A+ Ay
in an n-dimensional vector space is given by the following
equation (Equ. 2).

n

dist = |Yy_,

&) [Jdm@ @)

(ﬂ_
Magy  Mago

where dist has a range from [0,2] . The value of dist
approaches 0 when the two vectors are similar.

Now in the following, we explain how the correctness of the
critic network outputs value for the actions taken in the current
state. The critical network of RL is learned to satisfy the
following equation called Bellman equation [6].

q(se,ar) = +y- (1 —dp) q(Ser1, A1) 3

where q: S X A = R is a value function, r € R is a reward, y is
a discount rate, and d means a done signal, for any step t. This
difference between the two sides is called an error, and the
objective of RL is to minimize this error. Hence, The error
function h: S — R for state s is defined as follows.

h(se) = llre +v- (1 —dy) - q(Sp41, A1) — q(sea)ll (4)

where a; = mg(s;), rpq1 = Tg(Se41) and the (S4q,73, dy) can
get from function g(s;, a;) in PIV environments.
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Based on the above-mentioned methods, the procedure for
evaluating the correctness of actors and critics in RL is as
follows;

(1) Obtain m number of states s;, Sz, S3, ***, Sy (S € S,
k=1,2,3,--,m) from the set of states S using Continuous
Uniform Distribution.

(2) Find the actions a; = mg(s;), a, = me(sy), az =
9(S3), ***, Ay = Wy(Sy,) for the obtained m states sy, S5, S3,
-+, Sm, respectively using the policy network 1.

(3) Find the ideal behaviors ‘a; = ‘f(s;), ‘a, = f(s,),
tay = f(s3), -, ‘am = ‘f(sp) for the obtained m states
S1, Sy, S3, ***, Sy, respectively using the function if that
calculates the ideal behavior.

4) For k=1,2,3,---,m , where q; and iak are
transformed into vectors a; and ‘a, respectively, and then
calculate the normalized L2-norm for actor correctness.

(5) Evaluate the actor correctness of policy network by mean
squared error of m normalized L2-norms

(6) Get the next state, reward, done signal for (s;,a,),
(55,a3), (s3,a3), =+, (Sy, ) respectively using the function g.

(7) Evaluate the critic correctness of value network by mean
squared error of m error values.

This method of evaluating correctness attributes by directly
examining the learned network has the following advantages
over the existing reward values-based evaluation.

o Existing evaluation method builds a test environment and
uses the reward received from the environment. However,
our method for evaluating the correctness can directly
evaluate the network itself, so that it can be a more
fundamental evaluation of the learning process.
Additionally, as the interactions in the test environment
are not required, the computing resources required to
build the test environment can be reduced.

In conventional RL evaluation methods, the transitions
in the test environment can occur only for some states in
response to the learned results, therefore, it is difficult to
evaluate the states in which no transitions have occurred.
On the other hand, our method solves such a problem
because the entire state set is uniformly investigated.

IV. EXPERIMENTAL DESIGN AND ITS RESULTS

A. Design of Evaluation Method

The correctness of the three most widely used RL algorithms
such as DDPG, TD3, and SAC, was evaluated in a single
environment. Each algorithm was trained using two activation
functions such as the ReLU function [26] and hyperbolic tangent
function (Tanh). After learning was completed, the correctness
at each epoch was evaluated, and the change in the network was
properly investigated.

To wvalidate the proposed method we consider an
autonomous robot as a running example in our experiment. We
assumed that an autonomous robot learns the direction of



movement according to its location. The PIV environment for
correctness evaluation was designed, as follows.

As shown in Fig 1(a), there are 7 concentric circles with
radius 0.2, 0.5, 0.8, 1.1, 1.4, 1.7, and 2.0 respectively in two-
dimensional space. The observation space is the entire interior
of the largest circle, the agents are located in the observation
space which is represented by the points within the space. This
agent has a state s = (x,y) which consists of x coordinates and
y coordinates that indicate its location. The actions of this agent
are expressed as a = (a(l)) which is a real number a(;y. These
real numbers have the ranges [—m, +m] that determine the
direction of movement. The agent that started the episode at any
point in observation space, moves inside the circle according to
the output action value, and the episode ends when it touches
one of the seven circles.

In Fig 1(a), when the agent touches the circle represented in
red color, it receives the reward value +100 in positive, and
when the agent touches the blue-colored circle, it receives the
negative reward value of —100. Thus, the agent learns to move
from its current position toward the red circle. In addition, the
agent will receive negative rewards if it does not move in parallel
diriections to the radius. So, in this environment, the agent will
learn how to get to the red circle as quickly as possible.

In this environment, Fig 1 (b) shows the ideal behavior in
each state s. In the figure, the horizontal axis means the x value
of the state, the vertical axis means the y value of the state, and
the ideal behavior value in each state is converted and
represented into color. Therefore, red indicates the action value
of +m, and blue indicates the action value of —m. The RL agent
has to learn to yield the target value of the policy network as
shown in Fig 1(b).

B. Evaluation Results of Correctness

Fig 2(a) shows the visual representation of whether the
behavioral output values of the learned policy network are
approaching to the ideal values. Each action value is converted
into colors as illustrated in the above-mentioned figure.

Similarly, the Fig 2(b) is a visualization of changes in actor
correctness and Fig 2(c) is a visualization of changes in critic
correctness. The average normalized L2-norm has a value closer
to 0 (i.e., it is closer to the ideal value). Therefore the highest
actor correctness is achieved when the entire state space of the
figure is filled with dark blue. The 0 epoch means the initial
neural network before learning.

(b) Ideal behavior in each state

(a) Observation spaces

Fig. 1. Evaluation Environment
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From Fig 2(b) and Fig 2(c), we can visually confirm that the
actor correctness, and critic correctness are close to the ideal
value as the learning proceeds. From the experimental result, it
can also be confirmed that the experiment using the ReLU
activation function generates more ideal behavior values than
the Tanh activation function.

Fig 3(a) depicts the change in rewards received from the
environment during learning while the graph in Fig 3(b) presents
the variations in critic correctness as the learning process
progresses. From Fig 3(b), it can be seen that, as the learning
progresses, the critic correctness also gradually increases. The
decreasing trends in the graph represents that the correctness is
increasing. This shows that the value network is gradually being
learned to output values close to the ideal value. Fig 3(c) shows
the actor correctness when the movements of agent are same to
the ideal action direction. While Fig 3(d) shows the actor
correctness values when the movements of agent are opposite to
the ideal action direction. In both cases, the decreasing trends on
the graphs indicates that the actor correctness is increasing.

C. Finding Insight from Experiment Result

In contrast to the reward value-based RL evaluation methods,
our proposed evaluation method provides various observation
results. These observations can be used to analyze the causes of
gains and losses in RL outputs and provides guidelines for the
application of RL in systems that are operated in the safety-
critical domains. The insights obtained from the novel
evaluation method can be used as a verification technique to
confirm the correctness of the RL models. The deduced insights
can help to develop more reliable, robust, and safe RL-based
safety-critical systems. In the following we report the insights
obtained from our experiments as follows:

e In all experiments, the behavioral correctness was
significantly reduced in those areas where the ideal

action values were not continuous.

In all experiments, in the case of having a small state
value (about (—0.2,+0.2) ) fails to achieve an
appropriate action value. This is due to some specific
problem with transition distribution or neural network
structure. During the experiment, we confirmed that the
value network was not learned in those areas.

In Fig 3(d), the DDPG algorithm with Tanh activation
functions generates a significantly incorrect value even
though the model has high accuracy in the normal
direction. It results in a low reward, meaning that there is
a high possibility of uncertain behavior of the RL agent.

In contrast, the SAC algorithm achieves high rewards by
minimizing inaccurate behavior.

From Fig 3(a) and Fig 3(b), it can be observed that the
critic correctness tends to be proportional to the rewards.

Generally in RL, when the average reward value increases to
a certain point and then converges. This indicates that the agent
has solved the environmental task and does not need to learn
anymore. Therefore, continuous learning causes an overfitting
problem. However, even after the reward converges, we
observed that a continuous change in values occurs, this
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Fig. 2. Visualization of variations in learning progresses

phenomenon was observed inside the network. This means that
while developing an RL-based system that requires high
correctness, it is very important to decide when to stop the
learning process. However, the conventional evaluation method

does not exploit these insights.
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V. CONCLUSION AND FUTURE WORKS

This paper explained the actor network and critic network
correctness, which is one of the quality attributes of the actor-
critic RL algorithm, and proposed a method to evaluate the
correctness. In addition, in order to measure how close is the
output of the RL algorithm to the ideal values, we evaluated the
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Fig. 3. Evaluation Result of reward return and critic correctness

correctness after learning the three most widely used algorithms
such as DDPG, SAC, and TD3, through various activation
functions.

From these evaluation results, new attributes of RL that
could not be exploited by existing evaluation methods were
confirmed. Therefore, we argue that the proposed evaluation
method will be useful in evaluating the quality of RL algorithms.

We are aimed to diversify the application of our proposed
method so that it can be used to improve the performance of RL
algorithms in the future. Fisrtly, we are planning to develop
diversified PIV environments, so that they can be used to
evaluate and analyzed the characteristics of RL algorithms,
activation functions, and the size of neural networks. Secondly,
correctness can be used to evaluate other quality attributes of RL,
such as robustness, stability, and obliviousness. We will
continue our research to analyze various properties.
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