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Abstract— Deep learning is used for decision making and 
functional control in various fields, such as autonomous systems. 
However, rather than being developed by logical design, deep learning  
models are trained by itself through learning data. Moreover, only 
reward values are used to evaluate its performance, which does not 
provide enough information that the model learned properly. This 
paper proposes a new method to assess the correctness of 
reinforcement learning, considering other properties of the learning 
algorithm. The proposed method is applied for the evaluation of Actor-
Critic Algorithms, and correctness-related insights of the algorithm are 
confirmed through experiments.

Keywords—reinforcement learning, actor-critic algorithm, 
safety-critical system, quality evaluation, correctness

I. INTRODUCTION

The rapid development of artificial intelligence (AI)
technology is making a huge impact on human life. For example, 
autonomous robots and cars can drive autonomously without 
human intervention, the AI-based speech recognition
understands and executes human commands based on its 
excellent voice recognition ability. Also, AlphaGo of Google 
Deep Mind [1] beat the top-ranked human player of game Go. 
Classical AI before deep learning was designed and developed
using deductive and logical approaches while modern AI based 
on deep learning uses a huge amount of data that learns 
automatically hence the development process is inductive. 
However, the problem with inductive methods is the evaluation 
process and it is hard to deduce reason regarding the results 
driven by inductive approaches. The modern deep learning has
black-box characteristics from the human point of view [2] as 
black-box models are not explainable by themselves. Hence we 
need several techniques to extract the explanations from the 
inner logic or outputs of the models. Although research on 
explainable AI [3-5] is being conducted to understand and track 
the decision-making process of deep learning. However, there 
are many research gaps and challenges that needed to be solved 
in this area. In particular, the application of such AI algorithms 
used in safety-critical areas may pose serious threats to safety. 

Reinforcement learning (RL) is a branch of AI that uses deep 
neural networks (DNNs) that learn the optimal policy from the 
experience of the agent through the reward against the actions
performed in a given state [6]. The application of the RL is 
growing exponentially in various fields such as games, robotic
controls, and autonomous vehicles. The traditional approach 

uses reward values to evaluate the performance of RL
algorithms. Although such evaluation techniques evaluate the 
problem-solving ability and learning speed of the algorithms. 
However, there are different other aspects needed to be 
considered while evaluating these algorithms. For example, the 
conventional evaluation does not consider the safety, and 
robustness attributes while evaluating the algorithms. Using the 
conventional techniques, it is hard to determine the correctness, 
safety, and robustness attributes specifically when it is being 
used in safety-critical scenarios. 

Therefore, this paper proposes a novel technique to evaluate 
the correctness of RL algorithms. The proposed method was 
used to evaluate the different types of actor-critic algorithms [7]. 
The algorithm used in our experiment has an actor network that 
learns policy and a critic network that learns value. Our method 
defines and evaluates the correctness of the actor network and 
critic network respectively. By comparing the ideal value 
derived and the value generated by each network, we evaluate 
how closely the actor network learned toward the ideal behavior
and how closely the critic network learned toward the ideal value.
We compare and analyze the correctness for the three types of 
algorithms using two types of activation functions. From the 
experimental results, we confirmed that there is a new attribute, 
which cannot be found in the reward-value-based evaluation
methods. The proposed approach also provides many insights to 
identify the weaknesses of the RL algorithms. The contribution 
of this paper can be summarized as follows:

· A method for evaluating the correctness through the 
learned policy network and value network of the actor-
critics algorithms

· Evaluation of three mostly used actor-critic algorithms 
such as DDPG and SAC, and TD3 used to evaluate their 
correctness using the proposed technique.

· Exploring the insights of the changes in the policy 
network that were not confirmed by the existing reward-
based methods. Furthermore identification of the 
weaknesses of the RL algorithm.

The rest of the paper is structured as follows. Section 2 
analyzes related work on AI quaility attributes and RL, Section 
3 proposes a correctness evaluation method. Section 4 presents 
the experimental design and its results for the evaluation, and 
Section 5 concludes our work and explains future work. 
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II. RESEARCH BACKGROUND

A. AI Software Quality Attributes
The research on deep learning-based AI applications are 

rapidly growing especially in safety-critical systems like 
autonomous vehicles, and medical diagnostics. The need for
reliable AI models has also grown. Meanwhile, the quality 
assurance of AI-based software applications has emerged as a 
new problem.

To accommodate these needs, the QA4AI (Quality 
Assurance for AI-based products and services) consortium was 
formed in 2018 and announced the quality assurance guideline 
for AI products in 2020 [2]. This guideline introduces five 
viewpoints for the quality of deep learning software applications. 
For each perspective, they defined checkpoints that need to be 
considered for quality assurance. In addition, in order to improve 
the quality of deep learning-based software, it was 
recommended that the quality of each point of view should be 
well balanced. 

Several researchers worked on AI-based software quality. 
The study related to the quality assurance of deep learning 
conducted by J. Siebert et al. [8] classifies the quality
perspective of deep learning systems into five categories: Model, 
Data, System, Infrastructure, and Environment, and the quality 
attributes of each classification were defined properly. Since this 
study was conducted mainly considering supervised learning.
Quality evaluation of other machine learning algorithms more 
specifically RL algorithms was not discussed in this study.

B. Reinforcement Learning
RL is about an agent that interacts with the environment and 

learns an optimal policy by trial and error. When a positive
reward is received from the environment against an action, the 
action is evaluated as good and reinforced, whereas when a 
negative reward is given, the action is evaluated as bad action
and weakened. For a long time, RL was used to learn in discrete 
action space, but it has been successfully applied to 
environments with continuous action space such as robotic
control [9].

Currently, among the RL algorithm, the actor-critic 
algorithm [10] is the most widely used algorithm. Several actor-
critic algorithms have been proposed by different researchers 
such as the SAC (Soft Actor-Critic) [11], the TD3 (Twin 
Delayed DDPG) [12] and the TQC(Truncated Quantile Critics) 
[13]. These are the widely used and representative actor-critic 
algorithms in the environment having continuous action space.

The Gym library [14] is popularly for evaluating the RL 
algorithms. It provides various environments and makes it easy 
to compare the performance of different RL algorithms.

III. EVALUATION METHOD FOR CORRECTNESS

One of the most important quality attributes of actor-critic 
RL earning is the correctness, which is the degree of how 
accurately the learned network outputs meet the original purpose 
of each network.

The goal of RL is to maximize rewards. The policy network 
(Actor) has a sub-objective to produce output that maximizes the 
sum of future rewards, and the value network (Critic) has a sub-
objective to learn the value of the current state and behavior. In 
this paper, we evaluate how much of these sub-goals have been 
achieved.

A. Research Motivation
A commonly used indicator to evaluate the performance of 

RL is to monitor increasing or decreasing trends in reward value. 
At the beginning of learning, the agent acquires a low reward 
value from the environment, but as the learning progresses, the 
reward value increases, indicating that the agent solves the 
assigned task in the environment and the agent learning target is 
well achieved.

Recent studies [13, 14] on the RL generally have shown that 
their algorithms can solve the assigned task in the environment 
by increasing the reward value. However, it is difficult to know 
whether the task was solved by correct action value with enough 
learning. In particular, when RL is applied to a safety-critical
system where dangerous behavior can cause loss of life and 
property. It is very critical to carefully evaluate whether the 
learned agent does not cause dangerous behavior. It is hard to 
ensure that the developed system based on RL has a reliable 
model in it. Therefore, the evaluation method of the correctness 
of RL becomes an important research issue. 

B. Environment for Providing Ideal Values
The reason for using deep learning for AI is to entrust the 

complex judgment process of human logical thinking to machine 
learning. A deep learning agent normally trained using data can
solve problems on its own without human intervention. In some 
areas, AI agents have achieved performance that surpasses 
humans. However, in an environment that provides rewards 
values to an agent when an action is performed. Only reward 
value-based evaluation does not provide enough information 
regarding other attributes such as correctness. In this paper, we 
define a Provisioning Ideal Values (PIV) environment that can 
measure ideal values in an environment. The derived ideal value
is used to evaluate the correctness of networks after learning is 
finished. The important fact is that, during the learning, the RL
agent does not know the ideal value in a given state at all.
Therefore, if an RL agent solves various tasks of PIV
environments well and discovers a common characteristic, we 
can generalize that it will exhibit the same characteristics even 
in an environment where the ideal values is unknown.

To achieve this goal, the PIV environment requires a 
function to find the ideal behavior by obtaining the maximum 
sum of future rewards in a given state. Let be the set of states 
obtained by the agent observing the environment, and let be 
the set of actions of the agent. The function satisfies 

as a function to find the ideal behavior in 
a given state then the function can be used to evaluate 
the actor correctness.

Additionally, the function , where
is the set of reward values, and is the set of done signals of the 
Boolean type, is provided to evaluate critical networks. This 
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function is similar to the ‘step’ function in the gym library, 
however, the difference is that it can obtain a transition from any 
state to the next state.

C. Correctness Evaluation of Actor-Critic Algorithm
Let � be the set of states of the trained agent and � be the set

of actions performed in given states. The input of the policy 
network �� for the parameter � is a state � � �, and the output 
is a set of actions � � � such that � = ��(�). In this case, the �
is a tuple whose elements are real values �(�), �(�), �(�), ⋯, �(�)
generated by � neurons that constitute the output layer of the 
policy network �� , and � = ���(�). Therefore, we can define
a vector �⃗ of an �-dimensional vector space using each element 
of tuple � such that:

                      �⃗ = ��(�), �(�), �(�),⋯ , �(�)�                      (1)

Also, from two actions �� (� �) and �� (� �) having similar 
actions value and two vectors ������⃗ , ������⃗ having similar lengths and 
directions. Various methods exist to measure the similarity of 
two vectors, we use the normalized L2-norm.

• Normalized L2-norm: L2-norm, also called Euclidean 
distance, is a method of measuring similarity by using the 
property that the distance between the endpoints of the two 
vectors becomes shorter as the lengths of two vectors are similar 
or the angle between the two vectors is smaller. However, the 
L2-norm is a difficult method to accurately measure the 
similarity of vectors with a large difference in length. Therefore, 
we used normalized L2-Norm in which a vector ��

�����⃗ consisting 
of the maximum value of each element of action set �, that is,

��
�����⃗ = ������(�)� ,�����(�)� ,�����(�)� ,⋯ ,��� (�(�))��

The normalized L2-norm ���� we defined for two vectors,
�⃗ = ��(�), �(�), �(�),⋯ , �(�)� and �⃗ = ��(�), �(�), �(�),⋯ , �(�)�
in an � -dimensional vector space is given by the following 
equation (Equ. 2).

         ���� = �∑ �
�(�)

��(�)
−

�(�)

��(�)
�
�

�
��� �����(�)           (2)

where ���� has a range from [0, 2] . The value of ����
approaches 0 when the two vectors are similar. 

Now in the following, we explain how the correctness of the 
critic network outputs value for the actions taken in the current 
state. The critical network of RL is learned to satisfy the 
following equation called Bellman equation [6].

        �(��, ��) = �� + � ∙ (� − ��) ∙ �(����, ����)          (3)

where �� � � � � � is a value function, � � � is a reward, � is 
a discount rate, and � means a done signal, for any step �. This 
difference between the two sides is called an error, and the 
objective of RL is to minimize this error. Hence, The error 
function ℎ� � � � for state � is defined as follows.

ℎ(��) = ‖�� + � ∙ (� − ��) ∙ �(����, ����) − �(��, ��)‖ (4)

where �� = ��(��), ���� = ��(����) and the (����, ��, ��) can 
get from function �(��, ��) in PIV environments.

Based on the above-mentioned methods, the procedure for 
evaluating the correctness of actors and critics in RL is as 
follows;

(1) Obtain � number of states �� , �� , �� , ⋯, �� (�� � � ,
� = �, 2, �,⋯ ,� ) from the set of states � using Continuous 
Uniform Distribution.

(2) Find the actions �� = ��(��) , �� = ��(��) , �� =
��(��), ⋯, �� = ��(��) for the obtained � states �� , �� , �� ,
⋯, ��, respectively using the policy network �� .

(3) Find the ideal behaviors �� � = �� (��), �� � = �� (��),
�� � = �� (��), ⋯, �� � = �� (��) for the obtained � states 

�� , �� , �� , ⋯ , �� , respectively using the function �� that 
calculates the ideal behavior.

(4) For � = �, 2, �,⋯ ,� , where �� and �� � are 
transformed into vectors ������⃗ and �� �

�������⃗ , respectively, and then 
calculate the normalized L2-norm for actor correctness.

(5) Evaluate the actor correctness of policy network by mean 
squared error of � normalized L2-norms

(6) Get the next state, reward, done signal for (��, ��) ,
(��, ��), (��, ��), ⋯, (��, ��) respectively using the function �. 

(7) Evaluate the critic correctness of value network by mean 
squared error of � error values.

This method of evaluating correctness attributes by directly 
examining the learned network has the following advantages 
over the existing reward values-based evaluation.

· Existing evaluation method builds a test environment and 
uses the reward received from the environment. However, 
our method for evaluating the correctness can directly 
evaluate the network itself, so that it can be a more 
fundamental evaluation of the learning process.
Additionally, as the interactions in the test environment 
are not required, the computing resources required to 
build the test environment can be reduced.

· In conventional RL evaluation methods, the transitions 
in the test environment can occur only for some states in 
response to the learned results, therefore, it is difficult to 
evaluate the states in which no transitions have occurred.
On the other hand, our method solves such a problem 
because the entire state set is uniformly investigated.

IV. EXPERIMENTAL DESIGN AND ITS RESULTS

A. Design of Evaluation Method
The correctness of the three most widely used RL algorithms 

such as DDPG, TD3, and SAC, was evaluated in a single 
environment. Each algorithm was trained using two activation 
functions such as the ReLU function [26] and hyperbolic tangent 
function (Tanh). After learning was completed, the correctness 
at each epoch was evaluated, and the change in the network was 
properly investigated.

To validate the proposed method we consider an 
autonomous robot as a running example in our experiment. We
assumed that an autonomous robot learns the direction of 
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movement according to its location. The PIV environment for 
correctness evaluation was designed, as follows.

As shown in Fig 1(a), there are 7 concentric circles with 
radius 0.2, 0.5, 0.8, 1.1, 1.4, 1.7, and 2.0 respectively in two-
dimensional space. The observation space is the entire interior 
of the largest circle, the agents are located in the observation 
space which is represented by the points within the space. This 
agent has a state � � � (�, �) which consists of � coordinates and 
� coordinates that indicate its location. The actions of this agent 
are expressed as � � ��(�)� which is a real number �(�). These 
real numbers have the ranges [−�,+�] that determine the 
direction of movement. The agent that started the episode at any 
point in observation space, moves inside the circle according to 
the output action value, and the episode ends when it touches 
one of the seven circles.

In Fig 1(a), when the agent touches the circle represented in 
red color, it receives the reward value +100 in positive, and 
when the agent touches the blue-colored circle, it receives the 
negative reward value of −100. Thus, the agent learns to move 
from its current position toward the red circle. In addition, the 
agent will receive negative rewards if it does not move in parallel
diriections to the radius. So, in this environment, the agent will 
learn how to get to the red circle as quickly as possible.

In this environment, Fig 1 (b) shows the ideal behavior in 
each state �. In the figure, the horizontal axis means the x value 
of the state, the vertical axis means the y value of the state, and 
the ideal behavior value in each state is converted and 
represented into color. Therefore, red indicates the action value 
of +�, and blue indicates the action value of −�. The RL agent 
has to learn to yield the target value of the policy network as 
shown in Fig 1(b).

B. Evaluation Results of Correctness
Fig 2(a) shows the visual representation of whether the 

behavioral output values of the learned policy network are 
approaching to the ideal values. Each action value is converted 
into colors as illustrated in the above-mentioned figure.

Similarly, the Fig 2(b) is a visualization of changes in actor
correctness and Fig 2(c) is a visualization of changes in critic 
correctness. The average normalized L2-norm has a value closer 
to 0 (i.e., it is closer to the ideal value). Therefore the highest 
actor correctness is achieved when the entire state space of the 
figure is filled with dark blue. The 0 epoch means the initial 
neural network before learning.

From Fig 2(b) and Fig 2(c), we can visually confirm that the 
actor correctness, and critic correctness are close to the ideal 
value as the learning proceeds. From the experimental result, it 
can also be confirmed that the experiment using the ReLU 
activation function generates more ideal behavior values than 
the Tanh activation function.

Fig 3(a) depicts the change in rewards received from the 
environment during learning while the graph in Fig 3(b) presents
the variations in critic correctness as the learning process 
progresses. From Fig 3(b), it can be seen that, as the learning 
progresses, the critic correctness also gradually increases. The 
decreasing trends in the graph represents that the correctness is 
increasing. This shows that the value network is gradually being 
learned to output values close to the ideal value. Fig 3(c) shows 
the actor correctness when the movements of agent are same to 
the ideal action direction. While Fig 3(d) shows the actor 
correctness values when the movements of agent are opposite to 
the ideal action direction. In both cases, the decreasing trends on 
the graphs indicates that the actor correctness is increasing.

C. Finding Insight from Experiment Result
In contrast to the reward value-based RL evaluation methods, 

our proposed evaluation method provides various observation 
results. These observations can be used to analyze the causes of 
gains and losses in RL outputs and provides guidelines for the 
application of RL in systems that are operated in the safety-
critical domains. The insights obtained from the novel 
evaluation method can be used as a verification technique to 
confirm the correctness of the RL models. The deduced insights 
can help to develop more reliable, robust, and safe RL-based 
safety-critical systems. In the following we report the insights 
obtained from our experiments as follows:

· In all experiments, the behavioral correctness was
significantly reduced in those areas where the ideal 
action values were not continuous.

· In all experiments, in the case of having a small state 
value (about (−0.2, +0.2) ) fails to achieve an 
appropriate action value. This is due to some specific 
problem with transition distribution or neural network 
structure. During the experiment, we confirmed that the 
value network was not learned in those areas.

· In Fig 3(d), the DDPG algorithm with Tanh activation 
functions generates a significantly incorrect value even 
though the model has high accuracy in the normal 
direction. It results in a low reward, meaning that there is 
a high possibility of uncertain behavior of the RL agent.

· In contrast, the SAC algorithm achieves high rewards by 
minimizing inaccurate behavior.

· From Fig 3(a) and Fig 3(b), it can be observed that the 
critic correctness tends to be proportional to the rewards.

Generally in RL, when the average reward value increases to 
a certain point and then converges. This indicates that the agent 
has solved the environmental task and does not need to learn 
anymore. Therefore, continuous learning causes an overfitting 
problem. However, even after the reward converges, we 
observed that a continuous change in values occurs, this 

(a) Observation spaces (b) Ideal behavior in each state
Fig. 1. Evaluation Environment
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phenomenon was observed inside the network. This means that
while developing an RL-based system that requires high 
correctness, it is very important to decide when to stop the 
learning process. However, the conventional evaluation method 
does not exploit these insights.

V. CONCLUSION AND FUTURE WORKS

This paper explained the actor network and critic network 
correctness, which is one of the quality attributes of the actor-
critic RL algorithm, and proposed a method to evaluate the 
correctness. In addition, in order to measure how close is the 
output of the RL algorithm to the ideal values, we evaluated the 
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correctness after learning the three most widely used algorithms 
such as DDPG, SAC, and TD3, through various activation 
functions.

From these evaluation results, new attributes of RL that 
could not be exploited by existing evaluation methods were 
confirmed. Therefore, we argue that the proposed evaluation 
method will be useful in evaluating the quality of RL algorithms.

We are aimed to diversify the application of our proposed 
method so that it can be used to improve the performance of RL 
algorithms in the future. Fisrtly, we are planning to develop
diversified PIV environments, so that they can be used to
evaluate and analyzed the characteristics of RL algorithms, 
activation functions, and the size of neural networks. Secondly, 
correctness can be used to evaluate other quality attributes of RL, 
such as robustness, stability, and obliviousness. We will 
continue our research to analyze various properties.
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