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Abstract—Image classification can learn useful insights from
crisis incidents and is gaining popularity in the field of disaster
management. This is fueled by the recent advances in computer
vision and deep learning techniques, where accurate neural
network models for disaster type classification can be accrued.
However, these studies quite commonly neglect the prohibitive
inference workload which may hamper its wide-spread
deployment, especially for model execution on low-powered
edge devices. In this paper, we propose a lightweight disaster
classification model that recognizes four types of natural
disaster plus one non-disaster class. To support real-time
applications, the proposed model is optimized with OpenVINO,
which is a neural network acceleration platform. Different from
existing works which focus on benchmarking at training stage,
our experimental results reveal the actual performance at
inference stage. Specifically, the optimized version achieves up
to 23.93 frames per second (FPS), which is more than doubled
the speed achieved by the original model, while sacrificing only
0.935 % of classification accuracy.
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L.

Artificial intelligence (Al) algorithms are developed with
the intention of making decisions in real life. Moving forward,
convolutional neural network (CNN), which is an advanced
version of Al, is able to learn more meaningful insights from
images. The training process of these neural network models
can be facilitated by open-source deep learning (DL)
frameworks such as TensorFlow [1] and Keras [2]. The
growing popularity of CNN have paved the way for new
computer vision applications. One specific area would be
disaster management [3], where video surveillance cameras
and sensors can be leveraged to gain situational awareness.

INTRODUCTION

A natural disaster is an incident caused by nature’s threat.
It can be defined as a natural phenomenon that causes the
health impacts of mankind, loss of livelihoods and services,
social and economic disruption, or properties and
environmental damage [4]. Some examples are tornadoes,
earthquakes, floods, and wildfires. Monitoring these disasters
at large-scale coverage would require a plethora of Internet of
things (IoT) devices [5], which often have long-range
transmission range but low computational power.

Existing works for disaster classification quite commonly
neglect the prohibitive inference workload which may hamper
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its wide-spread deployment, especially for model execution
on low-powered edge devices. In this paper, we propose a
lightweight disaster classification model that identifies four
types of natural disasters and one non-disaster class. The
optimized model facilitates edge computing, which is one of
goals of the ASEAN IVO project titled “Context-Aware
Disaster Mitigation using Mobile Edge Computing and
Wireless Mesh Network”.

The contributions in this study are threefold. First, we
consolidate a dataset which consists of natural disaster and
non-disaster images (natural sceneries). Second, we employ
the transfer learning approach to output a disaster
classification model before optimizing the model with
OpenVINO. Third, we provide benchmark results for both
training and inference stages, which sheds more insights into
the actual implementation performance.

The rest of the paper is organized as follows. Section II
discusses the related works. Section III describes the proposed
solution. Section IV presents the experimental results and
discussions. Section V concludes the article.

II. RELATED WORK

DL, especially CNN has gained momentum in disaster
monitoring. According to [6], majority works have focused on
CNN instead of machine learning (ML) methods due to its
superior performance. Such gain, however, are only possible
under the availability of abundant labelled datasets.

Recognizing the importance of datasets, the authors in [7]
consolidated a substantial amount of human detection and
action detection dataset for disaster management application.
The goal was to develop a DL-based drone surveillance
framework. However, the framework did not consider disaster
event classification. A similar work can be found in [8], where
the authors utilized various CNN architectures including
ResNet50, Inception V3 and AlexNet in identifying survivors
in debris. This time, the annotated images were focused on
earthquake-hit regions.

The work in [9] focused on classifying disaster events after
collecting more than 7000 images consisting of cyclones,
drought, earthquakes, floods, landslides, thunderstorms,
snowstorms, and wildfires, from social media platforms. The
burden of annotating data was relieved by adopting active
learning, which automatically chooses and labels the data
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from which it learns without human interaction. The authors
in [10] further divided disaster-related images into four
different categories, namely disaster type detection,
informativeness, humanitarian and damage severity. By
setting binary and multiclass classification labels on a
consolidated dataset, benchmark results using several CNN
architectures were provided.

Apart from the disaster-related images, text messages
contain critical information such as infrastructural damages,
casualties, and help requests. The usefulness of such social
media data has motivated the authors in [11] to develop a
multimodal fusion model, which combines both visual and
textual features to classify relevant disaster images. However,
all the above studies focused on accuracy measurement, where
high-end graphics processing unit (GPU) such as NVIDIA
Tesla P100 GPU was utilized. Deploying these trained models
directly on resource-constrained edge devices remains a
challenging task [12]. This is especially true for real-time
disaster monitoring applications.

Different from the aforementioned works, the authors in
[13] assessed the CNN performance in terms of accuracy and
speed. Results showed that their proposed model was able to
achieve 9 frames per second (FPS) on a low-powered
embedded device, while maintaining reasonable accuracy.
However, they did not explore the potential of neural network
optimization on target devices at the inference stage. Such
performance acceleration is made possible with an open-
source CNN model inference engine called OpenVINO
Toolkit [14]. The study in [I15] benchmarked several
pretrained CNN models under the OpenVINO settings.
However, it remains unaddressed as in how much
improvement can be brought to implementation by
OpenVINO, as compared to the unoptimized version.

III. DL MODEL DEPLOYMENT

To achieve a robust DL model, training and inference
phases must be analyzed correctly. To this end, we propose
the methodology shown in Fig. 1, where the three stages are
necessary to evaluate the actual performance.

A. Model Training

A new natural disaster classification model is trained using
the transfer learning approach. Without loss of generality, we

53 [16]. The collected dataset contains natural disaster and
non-disaster images, which were downloaded from public
sources: [17] and [18], respectively. The natural disaster data
consists of cyclones, earthquakes, floods, and wildfires. On
the other hand, the non-disaster images comprise of nature
scenes such as coast, mountain, forest, open country, as well
as man-made scenes like street, inside city, buildings, and
highways. Table I summarizes the data distribution among
training, testing, and validation.

The dataset split is 67.5 % for training, 25 % for testing,
and 7.5 % for the validation split. The parameters to fine-tune
the VGG16 model are shown in Table II. The batch size means
the number of images from the dataset that are selected from
the beginning and used to train the natural disaster
classification model in each iteration throughout the training
dataset. The number of steps is the number of iterations. After
each step or iteration, the gradient of the natural disaster
classification model will be updated. Once all images of the
training dataset are gone through, one epoch is completed. The
values of the minimum and maximum learning rates are used
by the cyclical learning rate (CLR) technique to improve the
accuracy of the model [19].

CLR requires the minimum and maximum boundary
values before it can be used. A test on the learning rate range
is executed whereby training starts at a lowest learning rate of
10e71%, After each batch update, the learning rate will
increase exponentially until it reaches a rate of 10e', and the
current learning rate and loss will be logged simultaneously.
The loss gives the idea of how the model performs in the
training and validation datasets as shown in Fig. 2. The CLR
technique makes the learning rate moves cyclically between
the set boundaries as shown in Fig 3.
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Fig. 3. CLR plot

select VGG16 to be the neural network architecture due to its Fig. 2. Learning rate range test
high accuracy [6,10,11,13,14, 15]. The results are also
expectably applicable to other architectures such as DarkNet-
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Fig. 1. Methodology for performance evaluation of the proposed model using OpenVINO Deep Learning Workbench.
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TABLE L. DATA SPLIT FOR DISASTER CLASSIFICATION

Disaster Label Train  Validation Test Total
Cyclone 599 78 251 928
Earthquake 923 86 341 1350
Flood 741 80 252 1073
Wildfire 724 68 285 1077
Non-Disaster 1821 223 652 2696

TABLE II. PARAMETERS AND ITS VALUES FOR FINE-TUNING THE
VGG16 MODEL
Parameter Value
Batch Size 32
Number of Steps 8
Epoch 48
Min Learning Rate le-6
Max Learning Rate le-4

Along with the immediate responses, the correctness of the
result is also a very crucial parameter for such applications.

B. Model Optimization

To reach the goal of this study, we proposed the method
shown in Fig. 1. There are five processes to get the output
predictions for each image in the inference stage. Each stage
will be discussed in the following sections.

1) Obtaining the trained model. A transfer learning approach
is applied to the pre-trained VGG16 model to output a
new natural disaster classification model. Fine-tunings
and parameters are modified with the intention of
minimizing execution time and increasing accuracy.

2) Freezing the model. The model is saved as a .pb file with
the weights frozen during the training stage. TensorFlow
version 2.0 is used to execute the training and freeze the
model.

3) Model conversion to a compatible format. Conversion of
the trained model into Intermediate Representation (IR)
format needs to be done in order for it to be used in the
OpenVINO environment [20]. OpenVINO’s model
optimizer tool is used to perform the conversion, with the
following code and parameter:

python3 mo_tf.py --saved_model_dir <model-path>
--output_dir <output-dir> --input_shape
[1,224,224,3]

The parameter —input_shape [1,224,224,3] defines the
input data properties of the model in the training as
follows: Number of images [N] x Height [H] x Weight
[W] x Channels [C]. Note that [N,H,W,C] is for a
TensorFlow model. After a successful conversion of the
model to IR format, a .xml (describes the network
topology) and a .bin (contains the weights and biases
binary data) file will be generated [21][22].

4) Executing inferences. In this stage, OpenVINO’s
Inference Engine tool is used to perform the inference. A
custom Python script is executed to initiate plugins, load
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IR model, read the label, input data, infer and process the
output. The alternative of using a python script is the
Deep Learning Workbench (DL Workbench).

5) Performance evaluation. The original (TensorFlow)
model and optimized (OpenVINO) model are evaluated
based on the 25 % test dataset, for precise and accurate
measurements. For the original model, it is evaluated
using the classification_report function in TensorFlow
while the optimized model uses DL Workbench. The
precision of the TensorFlow’s natural disaster
classification model is floating-point (FP) 32. In the
optimized model, the precision can be FP 32, FP 16, and
integer (INT) 8. In theory, a higher precision gives a
higher accuracy but requires higher computational power,
and vice versa.

C. Model Inference

There are two inference modes: synchronous and
asynchronous. The data were fed into the inference engine in
a synchronous manner, allowing only one image to be
processed per inference. Asynchronous inference, on the other
hand, speeds up the process by inferencing one image while
pre-processing the next image.

The script to run the inference of the TensorFlow model is
in asynchronous mode. By default, the inference model in the
Inference Engine of OpenVINO also uses asynchronous
mode. However, there are certain disadvantages to this
method, as acquiring the predictions comes after all of the
flow is completed.

IV. EXPERIMENTAL RESULTS

The proposed model is evaluated using the dataset
provided in [16] and [17]. Sample images from the dataset can
be seen in Fig 1. The dimension of the images varies
throughout the dataset. Image pre-processing based on the
required input size of 224 x 224 pixels is done before the
training or inferencing of the model.

Regarding the hardware used, there are two environments
that are used to carry out the experiments. Their main
specifications are described in the following items.

1) Hardware on training phase: The hardware used in this
phase is an Intel NUC equipped with a 10th—generation
17-10710U 6-core Intel processor with 64 GB of memory
and 1 TB of a solid-state drive as the storage. The
operating system in the Intel NUC is the Ubuntu 18.04
LTS wversion. The software used for training is

TensorFlow version 2.0.

2) Hardware on the inference phase: The hardware is similar
to that of the training phase. The difference is that the
inference for the optimized model is able to take
advantage of the Intel integrated graphics, which is Intel
UHD Graphics. The optimized model is executed in the
OpenVINO environment, and the version is OpenVINO
2021.4.

A. Training Performance

Once the training of the model is completed, a
performance test of precision, recall, f1-score, and accuracy is
executed by the function classification_report. The 25 % test
dataset is used for the performance evaluation and has a total
number of 1781 images.



Table II1 shows the performance results of the TensorFlow
model. It is noteworthy that precision gives us an idea of how
well the model classifies a natural disaster when it
output/classify a natural disaster; recall ratio gives us an idea
of how well the model classifies a natural disaster, given an
input of natural disaster scenario; F/-score is the harmonic
mean between precision and recall; support is the number of
occurrences (or images used) in each class to produce the
results; and accuracy is the ratio of the correct predictions to
all of the predictions.

The performance of TensorFlow’s model has achieved an
accuracy of 93 %. A few videos have been used as inputs to
the model and it achieved an average of 7.70 FPS. Note that
the same test dataset is used to evaluate the performance of the
optimized model in the subsequent sub-section.

B. Inferences Performance

Once the trained model is converted successfully into
OpenVINO IR format, the optimized model is used by the
Inference Engine to do inferencing. The DL Workbench tool
is used to obtain the inference performance of the optimized
model. Figs. 4 - 7 shows the inference performance overview
obtained from the DL Workbench.

TABLE III. RESULTS OF TENSORFLOW NATURAL DISASTER

CLASSIFICATION MODEL

Disaster Class ~ Precision ~ Recall F1-Score Support
Cyclone 96% 98% 97% 251
Earthquake 94% 92% 93% 341
Flood 84% 90% 87% 252
Wildfire 93% 93% 93% 285
Non-Disaster 96% 93% 95% 652
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Fig. 4. Performance overview of the optimized FP32 model on Intel CPU
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Fig. 5. Performance overview of the optimized INT8 model on Intel CPU

Fig. 6. Performance overview of the optimized FP32 model on Intel GPU
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Fig. 7. Performance overview of the optimized FP16 model on Intel GPU
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TABLE IV. RESULTS OF OPENVINO OPTIMIZED MODEL RUNNING ON

CPU
Precision FP 32 FP 16 INT 8
Throughput (FPS) 11.81 - 21.35
Accuracy (%) 92.19 - 92.30
TABLE V. RESULTS OF OPENVINO OPTIMIZED MODEL RUNNING ON
INTEGRATED GPU
Precision FP 32 FP 16 INT 8
Throughput (FPS) 9.15 23.93 -
Accuracy (%) 92.19 92.13 -

Table IV presents the performance results of the optimized
model that runs on an Intel CPU. The INT 8 precision model
has achieved an increase of 80.8 % FPS and 0.119 % accuracy,
showing higher performance as compared to the FP 32
precision model. Hence, the best performance with Intel CPU
is the INT 8 precision model. The FP 16 precision model is
not available as it will upscale the model to the FP 32 to
perform inference due to the limitation of DL workbench and
the particular Intel CPU used in this study.

Table V shows the performance results of the optimized
model that runs on an Intel integrated GPU. The FP 16
precision model has obtained 162 % higher FPS while
sacrificing 0.0650 % accuracy, compared to the FP 32
precision model. The INT 8 precision model is not supported
on the integrated GPU model [25]. Since the accuracy drop in
the FP 16 precision model is very low, along with the
considerable increase of throughput, the FP 16 precision
model provides the best performance on Intel integrated GPU
hardware.

Since TensorFlow’s model runs on the CPU, to ensure
reliable and accurate results, the comparison is done on the
optimized FP 32 and INT 8 precision models of the optimized
model that ran on the same CPU. The optimized FP 32
precision model achieves an increase of 53.4 % in throughput
with a loss of 0.871 % in accuracy. Meanwhile, the optimized
INT 8 precision model achieves an increase of 177 % in
throughput at the cost of 0.753 % in accuracy.

On the other hand, if the program is implemented on an
edge device, which is the Intel NUC in our study, and the
optimized model is able to run on the Intel integrated GPU
hardware. Only the optimized FP 32 and FP 16 precision
model is able to take advantage of the GPU hardware. Since
the optimized FP 16 precision model provides the best
performance on GPU hardware, it achieves a substantial
improvement of 211 % in throughput while only sacrificing
0.935 % accuracy as compared to the TensorFlow’s model.

The comparisons show that the OpenVINO optimized
models have a better performance enhancement over the
TensorFlow’s model in terms of frame rate inference while
losing a negligible amount of accuracy.

DL Workbench is able to display the results of the
performance summary of the model as shown in Figs. 8 - 11.
This allows us to identify the throughput, latency, batch, and
streams values of the model.



Fig. 8. Performance results of the optimized FP32 model on Intel CPU

Fig. 9. Performance results of the optimized INT8 model on Intel CPU
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Fig. 10. Performance results of the optimized FP32 model on Intel GPU
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Fig. 11. Performance results of the optimized FP16 model on Intel GPU

In this part, we evaluate the performance in terms of
throughput and latency. It is noteworthy that throughput is the
number of images processed in a certain amount of time,
which is one second, and latency is the amount of time used
to perform an inference for a single image [23]. The INTS8
model on the CPU and the FP16 model on the Intel GPU
achieve a high throughput while only the INT8 model
achieves the lowest latency of 44.12 milliseconds.

V. CONCLUSION AND FUTURE LINES

Natural disasters happen all around the world. Early
detection of natural disasters for the people staying around the
danger zone can enable safe evacuation of the people to a
nearby shelter. The main issue that the current study aims to
address is the unbalanced dataset and the need of powerful
hardware for performing inference. To overcome the dataset
limitation, we have consolidated a natural disaster dataset, and
trained a new natural disaster classification model to classify
natural disaster and non-disaster scenarios. We have
addressed the need for powerful hardware by deploying the
trained model into the OpenVINO platform. Lastly, we have
evaluated the performance of the trained model and concluded
that the model performs significantly better in the OpenVINO
environment as compared to the TensorFlow environment.
DL Workbench is a great tool for conversion of model,
analysis of the converted model, as well as the performance
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measurement that can be done on it. As for future research
works, the power consumption of the model running in
different environments can be measured and it will be used as
one of the performance metrics.
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