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Abstract—Image classification can learn useful insights from 
crisis incidents and is gaining popularity in the field of disaster 
management. This is fueled by the recent advances in computer 
vision and deep learning techniques, where accurate neural 
network models for disaster type classification can be accrued. 
However, these studies quite commonly neglect the prohibitive 
inference workload which may hamper its wide-spread 
deployment, especially for model execution on low-powered 
edge devices. In this paper, we propose a lightweight disaster 
classification model that recognizes four types of natural 
disaster plus one non-disaster class. To support real-time 
applications, the proposed model is optimized with OpenVINO, 
which is a neural network acceleration platform. Different from 
existing works which focus on benchmarking at training stage, 
our experimental results reveal the actual performance at 
inference stage. Specifically, the optimized version achieves up 
to 23.93 frames per second (FPS), which is more than doubled 
the speed achieved by the original model, while sacrificing only 
0.935 % of classification accuracy. 

Keywords—natural disaster, deep learning, disaster image 
classification, OpenVINO, benchmarking 

I. INTRODUCTION 
Artificial intelligence (AI) algorithms are developed with 

the intention of making decisions in real life. Moving forward, 
convolutional neural network (CNN), which is an advanced 
version of AI, is able to learn more meaningful insights from 
images. The training process of these neural network models 
can be facilitated by open-source deep learning (DL) 
frameworks such as TensorFlow [1] and Keras [2]. The 
growing popularity of CNN have paved the way for new 
computer vision applications. One specific area would be 
disaster management [3], where video surveillance cameras 
and sensors can be leveraged to gain situational awareness. 

A natural disaster is an incident caused by nature’s threat. 
It can be defined as a natural phenomenon that causes the 
health impacts of mankind, loss of livelihoods and services, 
social and economic disruption, or properties and 
environmental damage [4]. Some examples are tornadoes, 
earthquakes, floods, and wildfires. Monitoring these disasters 
at large-scale coverage would require a plethora of Internet of 
things (IoT) devices [5], which often have long-range 
transmission range but low computational power.  

Existing works for disaster classification quite commonly 
neglect the prohibitive inference workload which may hamper 

its wide-spread deployment, especially for model execution 
on low-powered edge devices. In this paper, we propose a 
lightweight disaster classification model that identifies four 
types of natural disasters and one non-disaster class. The 
optimized model facilitates edge computing, which is one of 
goals of the ASEAN IVO project titled “Context-Aware 
Disaster Mitigation using Mobile Edge Computing and 
Wireless Mesh Network”. 

The contributions in this study are threefold. First, we 
consolidate a dataset which consists of natural disaster and 
non-disaster images (natural sceneries). Second, we employ 
the transfer learning approach to output a disaster 
classification model before optimizing the model with 
OpenVINO. Third, we provide benchmark results for both 
training and inference stages, which sheds more insights into 
the actual implementation performance. 

The rest of the paper is organized as follows. Section II 
discusses the related works. Section III describes the proposed 
solution. Section IV presents the experimental results and 
discussions. Section V concludes the article. 

II. RELATED WORK 
DL, especially CNN has gained momentum in disaster 

monitoring. According to [6], majority works have focused on 
CNN instead of machine learning (ML) methods due to its 
superior performance. Such gain, however, are only possible 
under the availability of abundant labelled datasets.  

Recognizing the importance of datasets, the authors in [7] 
consolidated a substantial amount of human detection and 
action detection dataset for disaster management application. 
The goal was to develop a DL-based drone surveillance 
framework. However, the framework did not consider disaster 
event classification. A similar work can be found in [8], where 
the authors utilized various CNN architectures including 
ResNet50, Inception V3 and AlexNet in identifying survivors 
in debris. This time, the annotated images were focused on 
earthquake-hit regions.  

The work in [9] focused on classifying disaster events after 
collecting more than 7000 images consisting of cyclones, 
drought, earthquakes, floods, landslides, thunderstorms, 
snowstorms, and wildfires, from social media platforms. The 
burden of annotating data was relieved by adopting active 
learning, which automatically chooses and labels the data 
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from which it learns without human interaction. The authors 
in [10] further divided disaster-related images into four 
different categories, namely disaster type detection, 
informativeness, humanitarian and damage severity. By 
setting binary and multiclass classification labels on a 
consolidated dataset, benchmark results using several CNN 
architectures were provided.  

Apart from the disaster-related images, text messages 
contain critical information such as infrastructural damages, 
casualties, and help requests. The usefulness of such social 
media data has motivated the authors in [11] to develop a 
multimodal fusion model, which combines both visual and 
textual features to classify relevant disaster images. However, 
all the above studies focused on accuracy measurement, where 
high-end graphics processing unit (GPU) such as NVIDIA 
Tesla P100 GPU was utilized. Deploying these trained models 
directly on resource-constrained edge devices remains a 
challenging task [12]. This is especially true for real-time 
disaster monitoring applications. 

Different from the aforementioned works, the authors in 
[13] assessed the CNN performance in terms of accuracy and 
speed. Results showed that their proposed model was able to 
achieve 9 frames per second (FPS) on a low-powered 
embedded device, while maintaining reasonable accuracy. 
However, they did not explore the potential of neural network 
optimization on target devices at the inference stage. Such 
performance acceleration is made possible with an open-
source CNN model inference engine called OpenVINO 
Toolkit [14]. The study in [15] benchmarked several 
pretrained CNN models under the OpenVINO settings. 
However, it remains unaddressed as in how much 
improvement can be brought to implementation by 
OpenVINO, as compared to the unoptimized version.  

III. DL MODEL DEPLOYMENT 
To achieve a robust DL model, training and inference 

phases must be analyzed correctly. To this end, we propose 
the methodology shown in Fig. 1, where the three stages are 
necessary to evaluate the actual performance. 

A. Model Training 
A new natural disaster classification model is trained using 

the transfer learning approach. Without loss of generality, we 
select VGG16 to be the neural network architecture due to its 
high accuracy [6,10,11,13,14, 15]. The results are also 
expectably applicable to other architectures such as DarkNet-

53 [16]. The collected dataset contains natural disaster and 
non-disaster images, which were downloaded from public 
sources: [17] and [18], respectively. The natural disaster data 
consists of cyclones, earthquakes, floods, and wildfires. On 
the other hand, the non-disaster images comprise of nature 
scenes such as coast, mountain, forest, open country, as well 
as man-made scenes like street, inside city, buildings, and 
highways. Table I summarizes the data distribution among 
training, testing, and validation.  

 The dataset split is 67.5 % for training, 25 % for testing, 
and 7.5 % for the validation split. The parameters to fine-tune 
the VGG16 model are shown in Table II. The batch size means 
the number of images from the dataset that are selected from 
the beginning and used to train the natural disaster 
classification model in each iteration throughout the training 
dataset. The number of steps is the number of iterations. After 
each step or iteration, the gradient of the natural disaster 
classification model will be updated. Once all images of the 
training dataset are gone through, one epoch is completed. The 
values of the minimum and maximum learning rates are used 
by the cyclical learning rate (CLR) technique to improve the 
accuracy of the model [19]. 

 CLR requires the minimum and maximum boundary 
values before it can be used. A test on the learning rate range 
is executed whereby training starts at a lowest learning rate of 
10 𝑒𝑒𝑒𝑒−10 . After each batch update, the learning rate will 
increase exponentially until it reaches a rate of 10𝑒𝑒𝑒𝑒1, and the 
current learning rate and loss will be logged simultaneously. 
The loss gives the idea of how the model performs in the 
training and validation datasets as shown in Fig. 2. The CLR 
technique makes the learning rate moves cyclically between 
the set boundaries as shown in Fig 3. 

 

 

Fig. 1.  Methodology for performance evaluation of the proposed model using OpenVINO Deep Learning Workbench. 

 
Fig. 2. Learning rate range test 

 
Fig. 3. CLR plot 
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TABLE I.  DATA SPLIT FOR DISASTER CLASSIFICATION  

Disaster Label Train Validation Test Total 

Cyclone 599 78 251 928 
Earthquake 923 86 341 1350 

Flood 741 80 252 1073 

Wildfire 724 68 285 1077 

Non-Disaster 1821 223 652 2696 

 

TABLE II.  PARAMETERS AND ITS VALUES FOR FINE-TUNING THE 
VGG16 MODEL  

Parameter Value 
Batch Size 32 
Number of Steps 8 
Epoch 48 
Min Learning Rate 1e-6 
Max Learning Rate 1e-4 

 

Along with the immediate responses, the correctness of the 
result is also a very crucial parameter for such applications. 

B. Model Optimization 
To reach the goal of this study, we proposed the method 

shown in Fig. 1. There are five processes to get the output 
predictions for each image in the inference stage. Each stage 
will be discussed in the following sections. 

1)  Obtaining the trained model. A transfer learning approach 
is applied to the pre-trained VGG16 model to output a 
new natural disaster classification model. Fine-tunings 
and parameters are modified with the intention of 
minimizing execution time and increasing accuracy. 

2)  Freezing the model. The model is saved as a .pb file with 
the weights frozen during the training stage. TensorFlow 
version 2.0 is used to execute the training and freeze the 
model. 

3)  Model conversion to a compatible format. Conversion of 
the trained model into Intermediate Representation (IR) 
format needs to be done in order for it to be used in the 
OpenVINO environment [20]. OpenVINO’s model 
optimizer tool is used to perform the conversion, with the 
following code and parameter: 

The parameter –input_shape [1,224,224,3] defines the 
input data properties of the model in the training as 
follows: Number of images [N] × Height [H] × Weight 
[W] × Channels [C]. Note that [N,H,W,C] is for a 
TensorFlow model. After a successful conversion of the 
model to IR format, a .xml (describes the network 
topology) and a .bin (contains the weights and biases 
binary data) file will be generated [21][22].  

4)  Executing inferences. In this stage, OpenVINO’s 
Inference Engine tool is used to perform the inference. A 
custom Python script is executed to initiate plugins, load 

IR model, read the label, input data, infer and process the 
output. The alternative of using a python script is the 
Deep Learning Workbench (DL Workbench). 

5)  Performance evaluation. The original (TensorFlow) 
model and optimized (OpenVINO) model are evaluated 
based on the 25 % test dataset, for precise and accurate 
measurements. For the original model, it is evaluated 
using the classification_report function in TensorFlow 
while the optimized model uses DL Workbench. The 
precision of the TensorFlow’s natural disaster 
classification model is floating-point (FP) 32. In the 
optimized model, the precision can be FP 32, FP 16, and 
integer (INT) 8. In theory, a higher precision gives a 
higher accuracy but requires higher computational power, 
and vice versa. 

C. Model Inference 
There are two inference modes: synchronous and 

asynchronous. The data were fed into the inference engine in 
a synchronous manner, allowing only one image to be 
processed per inference. Asynchronous inference, on the other 
hand, speeds up the process by inferencing one image while 
pre-processing the next image. 

The script to run the inference of the TensorFlow model is 
in asynchronous mode. By default, the inference model in the 
Inference Engine of OpenVINO also uses asynchronous 
mode. However, there are certain disadvantages to this 
method, as acquiring the predictions comes after all of the 
flow is completed. 

IV. EXPERIMENTAL RESULTS 
The proposed model is evaluated using the dataset 

provided in [16] and [17]. Sample images from the dataset can 
be seen in Fig 1. The dimension of the images varies 
throughout the dataset. Image pre-processing based on the 
required input size of 224 × 224 pixels is done before the 
training or inferencing of the model. 

Regarding the hardware used, there are two environments 
that are used to carry out the experiments. Their main 
specifications are described in the following items. 

1)  Hardware on training phase: The hardware used in this 
phase is an Intel NUC equipped with a 10th–generation 
i7-10710U 6-core Intel processor with 64 GB of memory 
and 1 TB of a solid-state drive as the storage. The 
operating system in the Intel NUC is the Ubuntu 18.04 
LTS version. The software used for training is 
TensorFlow version 2.0. 

2)  Hardware on the inference phase: The hardware is similar 
to that of the training phase. The difference is that the 
inference for the optimized model is able to take 
advantage of the Intel integrated graphics, which is Intel 
UHD Graphics. The optimized model is executed in the 
OpenVINO environment, and the version is OpenVINO 
2021.4. 

A. Training Performance 
Once the training of the model is completed, a 

performance test of precision, recall, f1-score, and accuracy is 
executed by the function classification_report. The 25 % test 
dataset is used for the performance evaluation and has a total 
number of 1781 images. 

python3 mo_tf.py --saved_model_dir <model-path> 
--output_dir <output-dir> --input_shape 
[1,224,224,3] 
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Table III shows the performance results of the TensorFlow 
model. It is noteworthy that precision gives us an idea of how 
well the model classifies a natural disaster when it 
output/classify a natural disaster; recall ratio gives us an idea 
of how well the model classifies a natural disaster, given an 
input of natural disaster scenario; F1-score is the harmonic 
mean between precision and recall; support is the number of 
occurrences (or images used) in each class to produce the 
results; and accuracy is the ratio of the correct predictions to 
all of the predictions. 

The performance of TensorFlow’s model has achieved an 
accuracy of 93 %. A few videos have been used as inputs to 
the model and it achieved an average of 7.70 FPS. Note that 
the same test dataset is used to evaluate the performance of the 
optimized model in the subsequent sub-section. 

B. Inferences Performance 
Once the trained model is converted successfully into 

OpenVINO IR format, the optimized model is used by the 
Inference Engine to do inferencing. The DL Workbench tool 
is used to obtain the inference performance of the optimized 
model. Figs. 4 - 7 shows the inference performance overview 
obtained from the DL Workbench. 

TABLE III.  RESULTS OF TENSORFLOW NATURAL DISASTER 
CLASSIFICATION MODEL  

Disaster Class Precision Recall F1-Score Support 

Cyclone 96% 98% 97% 251 
Earthquake 94% 92% 93% 341 

Flood 84% 90% 87% 252 
Wildfire 93% 93% 93% 285 

Non-Disaster 96% 93% 95% 652 

 
 

 
Fig. 4. Performance overview of the optimized FP32 model on Intel CPU 

 

 
Fig. 5. Performance overview of the optimized INT8 model on Intel CPU 

 

 
Fig. 6. Performance overview of the optimized FP32 model on Intel GPU 

 

 
Fig. 7. Performance overview of the optimized FP16 model on Intel GPU 

 
 

TABLE IV.  RESULTS OF OPENVINO OPTIMIZED MODEL RUNNING ON 
CPU  

Precision FP 32 FP 16 INT 8 

Throughput (FPS) 11.81 - 21.35 
Accuracy (%) 92.19 - 92.30 

 

TABLE V.  RESULTS OF OPENVINO OPTIMIZED MODEL RUNNING ON 
INTEGRATED GPU 

Precision FP 32 FP 16 INT 8 

Throughput (FPS) 9.15 23.93 - 

Accuracy (%) 92.19 92.13 - 

 

Table IV presents the performance results of the optimized 
model that runs on an Intel CPU. The INT 8 precision model 
has achieved an increase of 80.8 % FPS and 0.119 % accuracy, 
showing higher performance as compared to the FP 32 
precision model. Hence, the best performance with Intel CPU 
is the INT 8 precision model. The FP 16 precision model is 
not available as it will upscale the model to the FP 32 to 
perform inference due to the limitation of DL workbench and 
the particular Intel CPU used in this study. 

Table V shows the performance results of the optimized 
model that runs on an Intel integrated GPU. The FP 16 
precision model has obtained 162 % higher FPS while 
sacrificing 0.0650 % accuracy, compared to the FP 32 
precision model. The INT 8 precision model is not supported 
on the integrated GPU model [25]. Since the accuracy drop in 
the FP 16 precision model is very low, along with the 
considerable increase of throughput, the FP 16 precision 
model provides the best performance on Intel integrated GPU 
hardware. 

Since TensorFlow’s model runs on the CPU, to ensure 
reliable and accurate results, the comparison is done on the 
optimized FP 32 and INT 8 precision models of the optimized 
model that ran on the same CPU. The optimized FP 32 
precision model achieves an increase of 53.4 % in throughput 
with a loss of 0.871 % in accuracy. Meanwhile, the optimized 
INT 8 precision model achieves an increase of 177 % in 
throughput at the cost of 0.753 % in accuracy. 

On the other hand, if the program is implemented on an 
edge device, which is the Intel NUC in our study, and the 
optimized model is able to run on the Intel integrated GPU 
hardware. Only the optimized FP 32 and FP 16 precision 
model is able to take advantage of the GPU hardware. Since 
the optimized FP 16 precision model provides the best 
performance on GPU hardware, it achieves a substantial 
improvement of 211 % in throughput while only sacrificing 
0.935 % accuracy as compared to the TensorFlow’s model. 

The comparisons show that the OpenVINO optimized 
models have a better performance enhancement over the 
TensorFlow’s model in terms of frame rate inference while 
losing a negligible amount of accuracy. 

DL Workbench is able to display the results of the 
performance summary of the model as shown in Figs. 8 - 11. 
This allows us to identify the throughput, latency, batch, and 
streams values of the model. 
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Fig. 8. Performance results of the optimized FP32 model on Intel CPU 
 

Fig. 9. Performance results of the optimized INT8 model on Intel CPU 
 

Fig. 10. Performance results of the optimized FP32 model on Intel GPU 
 

Fig. 11. Performance results of the optimized FP16 model on Intel GPU 
 

 In this part, we evaluate the performance in terms of 
throughput and latency. It is noteworthy that throughput is the 
number of images processed in a certain amount of time, 
which is one second, and latency is the amount of time used 
to perform an inference for a single image [23]. The INT8 
model on the CPU and the FP16 model on the Intel GPU 
achieve a high throughput while only the INT8 model 
achieves the lowest latency of 44.12 milliseconds. 

V. CONCLUSION AND FUTURE LINES 
Natural disasters happen all around the world. Early 

detection of natural disasters for the people staying around the 
danger zone can enable safe evacuation of the people to a 
nearby shelter. The main issue that the current study aims to 
address is the unbalanced dataset and the need of powerful 
hardware for performing inference. To overcome the dataset 
limitation, we have consolidated a natural disaster dataset, and 
trained a new natural disaster classification model to classify 
natural disaster and non-disaster scenarios. We have 
addressed the need for powerful hardware by deploying the 
trained model into the OpenVINO platform. Lastly, we have 
evaluated the performance of the trained model and concluded 
that the model performs significantly better in the OpenVINO 
environment as compared to the TensorFlow environment.  
DL Workbench is a great tool for conversion of model, 
analysis of the converted model, as well as the performance 

measurement that can be done on it. As for future research 
works, the power consumption of the model running in 
different environments can be measured and it will be used as 
one of the performance metrics. 
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