
Assessing the RPKI Validator Ecosystem
Paul Henry Friedemann∗, Nils Rodday∗†, Gabi Dreo Rodosek∗

∗Research Institute CODE, Universität der Bundeswehr München,
†University of Twente

Abstract—In this work we compare seven currently available
Resource Public Key Infrastructure (RPKI) validators regarding
their ease of installation, performance, consistency in results, code
quality, applicability, and feature-richness. We weigh the different
characteristics and rank each validator based on the scores it
received during our tests. We find Routinator to perform the
best and recommend using this RPKI validator in a production
environment. Additionally, we uncover inconsistencies in the
validation results between different validators and investigate
possible causes. Moreover, we also look at the RPKI repository
infrastructure and discuss recent outages.

Index Terms—BGP, RPKI, ROV, RPKI Validator

I. INTRODUCTION

The Border Gateway Protocol (BGP) is the de-facto stan-
dard for inter-domain routing although it is known to be
insecure [1], [2]. A major issue with BGP is that it is based
on trust and as such lacks proof of address ownership. Any
Autonomous System (AS) is allowed to announce any prefix
range towards its peering partners, effectively controlling and
attracting incoming traffic. However, this makes it very easy
for AS operators with malicious intent to announce prefix
ranges that have not been assigned to them by the Internet As-
signed Numbers Authority (IANA). Moreover, even without a
malicious intent, the sheer complexity of network management
often leads to misconfigurations and therefore route leaks.
An unintentional act of announcing prefixes ranges to peers
and effectively hijacking prefixes. A prominent and recent
example is the route leak by Vodafone India Ltd. in April 2021.
Roughly 30.000 prefixes were announced by mistake, leading
to a 13 fold increase of incoming traffic and unavailability of
the original services [3].

Many features have been implemented as workarounds over
the years that try to fix the aforementioned problems such as
IRR objects, BGP filters, etc. Moreover, the scientific commu-
nity proposed many extensions that try to tackle the problem:
Secure BGP (S-BGP) [4], Secure Origin BGP (soBGP) [5],
Interdomain Route Validation (IRV) [6] and Pretty secure BGP
(psBGP) [7]. Due to their complexity or missing incentives for
network operators, adoption never happened.

In order to establish proof of address ownership and solve
the aforementioned problem, the Secure Inter-Domain Routing
(SIDR) working group [8] of the Internet Engineering Task
Force (IETF) has put effort into two security features: Border
Gateway Protocol Security (BGPsec) [9] and RPKI [10].
BGPsec provides path validation and requires every AS en

route to participate, while the RPKI provides origin authen-
tication and has a lower entry barrier. RPKI deployment is
picking up [11]–[13].

In order to validate RPKI Route Origin Authorization
(ROA) objects within an AS, the operator will need to install
at least one RPKI validator. There are currently several val-
idators available: RPSTIR2 [14], OctoRPKI [15], Routinator
3000 [16], FORT-Validator [17], rpki-client [18], and rpki-
prover [19]. The RPKI-Validator 3 has been discontinued [20].
Rcynic [21] seems to be discontinued as well as there have not
been any updates since 2018. They come in different flavors,
e.g. programming language, performance, stability, etc.

Since the RPKI is a fairly new technology which is contin-
uously improved, there has been not much work on RPKI
validators yet. Kristoff et al. [22] explore RPKI validators
default parameters to obtain hints on their fetching intervals.
In [23]–[25] one finds additional resources on how to install
RPKI validators.
Contributions. This work focuses on the comparison of
the different validators to give recommendations on which
validator would be best to use in a production environment.
To this end we:

1) Develop a metric to assess the different validators.
2) Compare the validators according to the predefined met-

ric.
3) Give recommendations which validator is to be preferred

in a production environment.
4) Discuss recent RPKI infrastructure outages.
The remainder of this paper is structured as follows:

Section II introduces the basic functionality of the RPKI
while Section III gives a brief overview of the candidates.
Sections IV explains our experiment setup and elaborates
on the metric that we used to rate the different validators.
Our results are presented in Section V together with details
on each assessed validator to point out their advantages and
disadvantages. Section VI details RPKI infrastructure outages.

II. RPKI ARCHITECTURE

The basic architecture of the RPKI is detailed in RFC
6480 [10]. However, many more RFCs have been published
to detail different parts of the process. An overview can be
found in [26].
Issuance of ROAs. Resources (blocks of IP addresses) are
assigned by the IANA to the five Regional Internet Registries

295978-1-6654-8550-0/22/$31.00 ©2022 IEEE ICUFN 2022

IANA

RIPE NCC AFRINIC LACNIC ARIN APNIC

Assigns IP
Address Blocks

Self-signed root
certificates

LIR LIR LIR

ISP ISP ISP

TA TATATATA

Resource
delegationLIR LIR LIR

ISP ISP ISP

LIR LIR LIR

ISP ISP ISP
Resource

delegation

BGP Router

BGP Router

BGP Router
BGP Router

RTR

RTR

RTRRTR

RPKI Validator

RPKI
Repositories

Autonomous
System

Ce
rt

ifi
ca

te
 H

ira
rc

hy
RO

A
Va

lid
at

io
n

ROA ROA ROAROAROAROA ROA

Regional Internet
Registries ROAsROAs

RPKI Validator

VRP-Cache

TAL

BGP Router

Collect
ROAs

Points to

Export VRP-Cache
(RTR)

Download ROAs
(RRDP/RSYNC)

Perform
validation

Figure 1. Simplified validation process. The RPKI validator fetches the ROAs
and cryptographically validates them. It exports the VRP-cache to the BGP
routers for decision making.

(RIRs). They run the RPKI Trust Anchors (TAs) and delegate
the received resources via the issuance of certificates to Local
Internet Registries (LIRs) which in turn can forward them to
Internet Service Providers (ISPs). The process can be repeated
amongst ASes until an AS that wishes to announce these
resources has obtained them. Typically, the leaf AS will issue
a ROA, which cryptographically binds these resources to an
AS number, together with a max-length attribute.

Validation of ROAs. Once ROAs are published by the owners
of that address space, any AS participating in the inter-domain
routing infrastructure can fetch and validate them to secure
its routing decisions. Figure 1 illustrates the workflow of an
RPKI validation process. A validator performs a validation by
starting to locate the trust anchor via the Trust Anchor Locator
(TAL). ROAs are published at different publication points and
the validator collects all available objects. Rsync [27] or RPKI
Repository Delta Protocol (RRDP) [28] can be used for that
purpose. Once obtained, validation is performed by checking
the cryptographic validity of each ROA. This process can
be performed out-of-band, which has an advantage over the
in-band processing of BGPSec as it does not put additional
strain on the BGP routers which make routing decisions. An
additional advantage is that not every AS in the AS path for the
specific BGP announcement is required to participate for the
RPKI to function properly [29]. The BGP router receives the
Validated ROA Payload (VRP) and every announcement can
be categorized as valid, invalid, or not found. Any participating
BGP router is able to detect BGP hijacks based on the exported
information and routing decisions can be made accordingly.

Recent publications show that RPKI deployment is con-
stantly picking up [11], [31], [32]. Figure 2 confirms these
findings by showing an increase in the amount of VRP entries
that can be found as validator output from March 2020

03/2020
05/2020

07/2020
09/2020

11/2020
01/2021

03/2021
05/2021

07/2021
09/2021

Time

50000

100000

150000

200000

250000

VR
P

en
tri

es
 [#

]

Figure 2. VRP entries from March 2020 - September 2021. We observe a
steady increase of VRP entries. The drops relate to outages in the validator
software producing the underlying data [30].

- September 2021. More ROAs are created over time and
therefore more VRP entries are generated once validation has
been performed.

III. VALIDATORS

In this section, we are going to provide basic information
about the chosen validators. All of them are publicly hosted
on GitHub and released under an open source license, such as
Berkeley Software Distribution (BSD), Massachusetts Institute
of Technology (MIT), or Internet Systems Consortium (ISC).
Figure 3 illustrates the publication dates of the respective
validators. The first validator appeared in 2011 while the
second one was developed in 2015. From 2018 onwards RPKI
development picked up and more validators were added to
the ecosystem. Since the RPKI Validator was discontinued by
RIPE NCC in July 2021, we skip additional information for
this validator, but still report on the results for completeness.
RPSTIR2. The first version of RPSTIR [33] was written in C
and published by BBN Technologies in 2015. According to the
analysis of commits, the maintenance and further development
of the project was transferred to ZDNS around 2017. A new
version, RPSTIR2 was released in 2020 and written in Go,
which implements the majority of the RPKI standards [14]. It
is used in the backend of RPKIVIZ [34], an RPKI visualization
tool [35].
OctoRPKI. Cloudflare has developed its own RPKI validator
software, OctoRPKI [15]. It is written in Go and was released
in 2019. This project also covers the RPKI to Router (RTR)
server GoRTR [36].
Routinator 3000. Routinator [37] is written in Rust and was
released by NLnet Labs in 2019. It supports in its release
0.10.1 a standalone version of the user interface. NLnet Labs
also contributes to the RPKI ecosystem with other develop-
ments such as Krill, a software product that allows for running
a RPKI Certificate Authority (CA) [38]. Support is provided
via Discord [39] and a mailinglist [40]. Additionally to the
integrated RTR server, NLnet Labs provides a standalone
version to serve as a proxy for larger networks [41].
FORT-Validator. The FORT project [42], a secure routing
initiative from the RIR Latin America and Caribbean Network

2
296

2011 2021202020192018...2015...

RPKI-Validator V.1
 (Scala)

23.02.2011

08.12.2011
(Scala)

RPKI-Validator V.2

RPSTIR
(C)

25.11.2015

21.08.2018
(Go)

GoRTR

OctoRPKI
(Go)

16.02.2019

21.02.2019
(Rust)

Routinator

RPKI-Validator 3
(Java)

17.05.2019

26.08.2019
(C)

FORT

RPSTIR2
(Go)

03.04.2020

11.04.2020
(C)

rpki-client p.

rpki-prover
(Haskell)

02.06.2020

09.11.2020
(Rust)

RTRTR

RPKI-Validator 3
01.07.2021

Publication

End of support

Figure 3. Timeline showing major milestones of validators and separate RTR
servers.

Information Centre (LACNIC) and NIC.MX from Mexico,
developed its RPKI validator in C and released it 2019.

rpki-client. The rpki-client is maintained by the OpenBSD
project [43]. It was released in June 2019 made available for
other operating systems in November 2020. This version was
taken as a reference point for our evaluations. The validator
focuses on usability with simple source code that provides the
basic functionality of an RPKI validator.

rpki-prover. The rpki-prover [19] is a software project of
Mikhail Puzanov, who was the main developer of RIPE NCC’s
RPKI Validator. rpki-prover is under development since June
2019 and written in Haskell. It was relaeased in February 2020.

IV. METHODOLOGY

Experiment setup. As simultaneous execution of seven
validators is crucial for our evaluations, we had to choose
between a virtualized environment or running the validator
software directly on dedicated hardware. While virtualiza-
tion seems appropriate for splitting resources and achieving
simultaneous execution, we cannot control the scheduling
mechanism of the host providing the virtualization and were
therefore concerned that each VM would not have the exact
same resources available. To avoid this issue we decided to
install the validators on dedicated hardware.

Our evaluation platform consists of seven Raspberry Pis
4B with 4GB of RAM. All of them are connected to an
uplink serving 90 Mbit/s via a Cisco Catalyst 2960-S switch.
Raspberry Pis are relatively cheap and the Operating System
(OS) is easy to replicate with microSD cards. In order to
mitigate the bottleneck of the microSD card compared to the
speed of common hard drives or Solid State Discs (SSDs) we
chose high performance microSDXC cards with 160MB/s read
and 60MB/S write speed. As a result, all measurements are
executed under the same conditions. Raspberry Pi OS lite from
2020-08-20, the former Raspbian, is used as OS [44]. Since
for some validators 64-bit OSs are explicitly recommended,
we followed this guideline. A common base installation was
created on one device and then distributed to all others before
the validators were installed individually. Additionally, we

used a virtualized platform on a powerful server equipped with
112 cores and 700GB of RAM for long-term tests.
Evaluation criteria. In order to be able to evaluate the
validators as objectively as possible, they are evaluated on
the basis of predefined evaluation criteria. An overview of
these, sorted into six categories, can be found in Table I of
the evaluation results. Each criterion is given a score from
one to five and weighed accordingly. The weights are reaching
from one to three. The higher the validator’s score at the end,
the better it performs in the tests. Assignment of scores will
always remain subjective to some extent in studies such as
this. However, we took care to reduce the introduced bias as
much as possible by using domain-knowledge and assigning
scores in discussion with peers. Most of the evaluation criteria
used are straight-forward and therefore not discussed in more
detail, but some require additional explanations:

For CPU utilization/time, the ratio of runtime to CPU usage
was calculated in order to make different runs with different
instances comparable. A run includes all parts of the validation
process, e.g. obtaining the required ROAs from the publication
points as well as performing the cryptographic operation to
validate each ROA for its correctness. We normalized the
average CPU utilization to 15 minutes as a fixed period for
the duration of the validation with Equation 1. The lower the
resulting CPUnorm, the more efficiently the software works.

CPUnorm =
CPUaverage ∗ duration

15min
(1)

Since the RPKI is a security add-on for BGP, it is crucial
that all validators perform reliably the same operations and
provide the same results at the end of the validation process.
We compare the resulting VRP-cache of each validator and
check for differences, labeled as Differences between valida-
tors. Since there is no proper ground-truth available as to how
many VRP-entries should be generated, we compared all val-
idators and discuss outliers in the following section. Moreover,
we check Cache vs. Fetch Differences. All validators fetch
the entire repository during the first run and only fetch deltas
compared to the existing data during the following runs, as
a measure of traffic reduction. In this category we compare
the consistency of results during both validation processes
with the same validator. One validation run from a clean slate
and the other one using a cache and continuous polling. For
a production environment, it is worth mentioning that this
criterion does not have major implications for an AS during
long-term Route Origin Validation (ROV) execution. They
mainly affect the beginning of the use of a validator with an
empty cache. After the first validation runs, the effects are no
longer seen in practice.

V. RESULTS

During our evaluation Routinator performs the best, with an
overall score of 250/270 points. RPSTIR2 ranks by far as the
lowest candidate with a score of 104/270 points. Since there

3
297

Table I
COMPARISON OF ALL VALIDATORS. THE HIGHEST SCORES ACHIEVED IN

EACH CASE ARE HIGHLIGHTED. OVERALL, ROUTINATOR RANKS THE
HIGHEST.

W
ei

gh
t

R
PK

I-
Va

l.

R
PS

T
IR

2

O
ct

oR
PK

I

R
ou

tin
at

or

FO
R

T-
Va

l.

rp
ki

-c
lie

nt

rp
ki

-p
ro

ve
r

Installation
Quality of documentation 3 4 2 4 5 4 2 4
Installation possibilities 2 4 2 5 5 5 4 3
Installation steps quantity 2 5 1 4 4 5 4 5
Installation duration 1 3 2 5 5 5 3 5
Dependencies 1 3 1 4 5 4 2 5
ARM-Installation 2 5 1 4 5 5 5 1
Intermediate ranking 55 46 17 47 53 51 37 40

Performance
Validation runtime 3 4 1 2 5 4 4 5
CPU utilization/time 3 2 1 5 5 3 3 5
Network utilization 3 5 3 5 5 1 3 5
Max. RAM consumption 3 3 1 2 4 5 5 4
Average RAM consumption 2 3 2 3 3 5 5 3
Max. system memory increase 1 3 1 5 4 3 5 4
System drive stress 1 5 1 5 2 3 3 5
Intermediate ranking 80 56 24 58 69 55 63 72

Validation Results
Differences between validators 3 5 1 5 5 5 5 3
Cache vs Fetch Differences 2 5 2 5 3 5 4 5
Intermediate ranking 25 25 7 25 21 25 23 19

Code
Update freq. + code changes 1 4 2 3 5 4 5 4
Support 1 3 2 3 5 4 5 5
LoC (Complexity) 1 2 3 5 4 2 3 5
Intermediate ranking 15 9 7 11 14 10 13 14

Applicability
Update effort 3 3 5 4 5 4 4 5
Configurability 2 3 2 3 5 5 2 2
Provision of summaries 1 5 2 3 5 1 3 4
Intermediate ranking 30 20 21 21 30 23 19 23

Functionality
MAN-Page and help 3 1 2 3 5 5 4 3
SLURM support 2 5 2 5 5 5 1 1
Logging capabilities 2 3 2 3 5 5 3 2
User interface 2 5 1 1 4 1 1 3
Single and server execution 2 2 2 5 5 5 1 1
RTR server integration 2 4 4 4 5 5 1 5
Intermediate ranking 65 41 28 45 63 57 26 33
Overall ranking 270 197 104 207 250 221 181 201
Rank 5 7 3 1 2 6 4

is also quite a gap towards all other candidates, we observe
a significant quality difference between RPSTIR2 and the re-
maining validators. A summary of the results for all evaluation
criteria can be found in Table I. The following paragraphs
highlight individual findings for the different validators.

RPSTIR2. The validator achieves the lowest score with
104/270 points and obtains rank no. 7.

Firstly, this validator achieves a low score as it has quite
a complicated and error-prone installation process. There do
not exist precompiled binaries, which makes it harder for
an operator to use this validator. Instead, RPSTIR2 and a
specifically required Openssl version have to be build from
source. The build process was erroneous due to dependency
issues, which got resolved by the developers after direct
interaction via email. MySQL 8 has to be installed separately.
Configuration requires trial and error, as the documentation
is not mature enough yet. The build process is broken again
since May 2021.

Secondly, the validator raises questions regarding the basic

12:00
15:00

18:00
21:00

00:00
03:00

06:00
09:00

12:00

Time CET [HH:MM]

234500

234750

235000

235250

235500

235750

VR
P

en
tri

es
 [#

]

FORT-Validator
OctoRPKI
RPKI-Validator
RPSTIR2
Routinator
rpki-client
rpki-prover

Figure 4. Comparison of VRP results of all validators in 24 hours. We observe
that most validators obtain the same results while RPSTIR2 reports roughly
600 entries less.

functionality, the validation of ROA payload. Figure 4 shows
that the progression curve is parallel to those of the other
validators. However, a deviation of about 600 VRP entries
can be seen. More detailed analysis showed that the difference
in the data is over 1000 VRP entries (as the figure displays
the accumulated amount and some entries might be missing
while others are present in addition). The results of all other
validators are roughly the same, with a few minor deviations.
Our investigation into this issue showed that RPSTIR2 is using
the same protocol of the RIR for the entire trust chain. If
one publication point does not offer the previously established
default (RRDP), a fall back to rsync is not performed, therefore
ROAs will be missing and consequently less VRP entries
will be generated. This is a major drawback. The software
also creates different VRP entries when starting from scratch
compared to an instance that has already performed several
validations (Catch vs. Fetch Differences). We encountered 168
different VRP entries after about 20 hours and nearly 40
validations.

Thirdly, the validator has a remarkably low performance.
This is particularly evident on Raspberry Pis, where validation
takes between 25 and 90 minutes. Additionally, we also repro-
duced this finding on servers with state-of-the-art hardware.
We suspect that the use of a relational database and the rapidly
growing number of objects to be validated causes performance
issues.
OctoRPKI. This software performs with 207/270 points
exceedingly well in our evaluation. The installation is fast and
can be done on a wide range of systems. Since Debian 11
was released, it can be installed from the native software
repositories in the stable channel. The main criticism is that
since December 2020 it is not clear where the project is
headed, as the main developer left Cloudflare [45]. In August
2021 there has been activity on Github and a new version was
released. However, it is important that the VRP entries created
are consistent with other validators and are stable, which is the
case for this validator.
Routinator 3000. Routinator is the highest scoring validator
with 250/270 points. Due to the continuous support and
implementation of new features by the dedicated team of
NLnet Labs, the score of the last three categories is the
highest. The installation is very simple and well documented.
The performance is excellent, even on the Raspberry Pi with

4
298

low hardware specifications. It is considered a lightweight
application with minimum 1GB RAM and 1GB free memory.
The initial validation on the Raspberry Pi takes between three
and six minutes. According to user feedback, there were brief
problems with RAM consumption in version 0.9.0 [46]. The
developers promptly informed the community [47] and solved
the problem shortly after with version 0.10.0.

However, we observed problems when running the validator
for the first time. In our tests, we found that the results were
not quite the same as when the validator was run repeatedly.
We attribute this to strict timeouts and too slow repositories. If
a few validations have already been performed, the generation
of the VRP entries is stable.
FORT-Validator. The validator achieves the second rank
with 221/270 points. The installation and use is simple. FORT
validator is already included in the Debian 10 repositories.
In addition, other installation options are given. Overall, the
performance is satisfactory. The only surprising thing was the
high network load. Under the same conditions FORT validator
created traffic of about 5968 MiB within 24 hours whereas
Routinator only needed 376 MiB and rpki-client consumed
1043 MiB. The results are very stable and extensive code
support is provided. A drawback is that according to the
documentation, maintenance of the project will be limited to
fixing critical bugs until the end of 2021 [17]. There will be
no feature development until further notice. Usability is good.
FORT validator offers all features with the exception of a web-
based user interface.
rpki-client. The validator scores 181/270 points in the
evaluation. This is mainly due to the fact that it provides a
small optional feature set. It does not stand out in any other
category with its ratings comparable to the other candidates. In
terms of performance, rpki-client reaches the third place and
its validation results are also reliable. The OpenBSD project
announced to develop this validator in order to implement the
core tasks of a validator reliably and easily. rpki-client must
be extended with an external RTR server.
rpki-prover. The validator ranks on place no. 4 with 201/270
points. The performance of the validator is great. Since the
first release in June 2021, the installation has also become
much easier, as binaries are provided.

Some inconsistencies were observed during the Differences
between validators category, as shown in Figure 4. At some
instances the VRP entries are short of 60 compared to the
other validators. These deviations are due to a lack of fallback
to rsync and an unstable RRDP connection. The problem of
missing fallback does also affect RPSTIR2 and is not solely
present in this validator instance. A pull request on GitHub
deals with this problem and might mitigate it [48]. Another
point of criticism is the low number of extra functionality,
which is planned to be improved by the developer in the future,
according to the feature list on GitHub.

VI. RECENT RPKI INFRASTRUCTURE OUTAGES

Since all validators rely on the availability of the RPKI
infrastructure in order to fetch RPKI information, e.g. CA
certificates, Certificate Revocation Lists (CRLs), Manifests,
and ROAs, we look at some outages from the past and their
impact to get an idea about the resiliency of the system.

Within 2020 several outages took place [49]. A simple disk
quota limit led to the inability to write new RPKI objects to
the rsync servers of RIPE NCC. It did not trigger monitoring
systems and was therefore only discovered as the CRL expired,
since it could not be renewed automatically [50]. To fix
the problem, a full CA key-roll was necessary to update all
objects. Another problem occurred based on the dependency
of several involved systems in the publication process. An
internal registry system at RIPE NCC holds resources that are
eligible for certification and is queried by the RPKI software
performing certification. If a resource is not available anymore,
ROAs are removed accordingly. Normally this is a healthy
process and ROAs are expected to be purged when a resource
is removed. But if the registry system becomes unavailable
for some reason, ROAs are removed assuming the underlying
resources are not present anymore. This led to the removal of
2669 ROAs leaving the prefixes unprotected for the duration
of the incident [51].

In the beginning of 2021, a problem occurred which led
to inconsistent certificate states in which a child certificate
claimed to cover more resources compared to its parent [52].
Depending on the version and make of the RPKI validator
that was used to process these certificates, all RPKI certifi-
cates within the duration of the incident were rejected. This
resulted into dismissal within the validating AS of all resources
managed by RIPE NCC.

Running a reliable RPKI infrastructure is a learning process
that requires removing unexpected barriers along the way.
Therefore, other RIRs should use the lesson�s learned by RIPE
NCC to improve stability and operation of their infrastructure
to prevent similar mistakes. The transparency with which
outages are openly discussed and dealt with also helps to
increase trust in the underlying system.

VII. CONCLUSION

This work gave a brief summary of currently available
RPKI validators and compared seven RPKI validators regard-
ing different characteristics. We found Routinator to perform
the best amongst them and recommend this validator for a
production environment. We also uncovered inconsistencies in
VRP cache entries, leading to different results of the validators
that operators need to watch out for. Moreover, our work
discussed recent RPKI infrastructure outages to illustrate the
complexity of running such an infrastructure reliably.

ACKNOWLEDGMENT

This work was partly supported by the project
CONCORDIA that has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 830927.

5
299

REFERENCES

[1] K. Butler, T. Farley, P. McDaniel, and J. Rexford, “A Survey of BGP
Security Issues and Solutions,” Proceedings of the IEEE, vol. 98, pp.
100 – 122, 02 2010.

[2] C. Testart, “Reviewing a Historical Internet Vulnerability: Why Isn’t
BGP More Secure and What Can We Do About it?” in The 46th Re-
search Conference on Communication, Information and Internet Policy
2018, TPRC, Ed., August 2018.

[3] A. Siddiqui, “A major BGP route leak by AS55410,” APNIC
Blog, 2021. [Online]. Available: https://blog.apnic.net/2021/04/26/
a-major-bgp-route-leak-by-as55410/

[4] S. Kent, C. Lynn, and K. Seo, “Secure border gateway protocol (S-
BGP),” IEEE Journal on Selected areas in Communications, vol. 18,
no. 4, pp. 582–592, 2000.

[5] J. Ng, “Extensions to bgp to support secure origin bgp (sobgp),”
Working Draft, IETF Secretariat, Internet-Draft draft-ng-sobgp-bgp-
extensions-02, April 2004. [Online]. Available: https://tools.ietf.org/
html/draft-ng-sobgp-bgp-extensions-02

[6] G. Goodell, W. Aiello, T. Griffin, J. Ioannidis, P. D. McDaniel, and
A. D. Rubin, “Working around BGP: An Incremental Approach to
Improving Security and Accuracy in Interdomain Routing.” in NDSS,
vol. 23. Citeseer, 2003, p. 156.

[7] T. Wan, E. Kranakis, and P. C. van Oorschot, “Pretty Secure BGP,
psBGP.” in The Network and Distributed System Security (NDSS)
Symposium 2005, 2005.

[8] IETF SIDR, “Secure Inter-Domain Routing (sidr) Concluded WG,”
2006. [Online]. Available: https://datatracker.ietf.org/wg/sidr/about/

[9] M. Lepinski and K. Sriram, “BGPsec Protocol Specification,” RFC 8205,
Sep. 2017. [Online]. Available: https://rfc-editor.org/rfc/rfc8205.txt

[10] M. Lepinski and S. Kent, “An Infrastructure to Support Secure
Internet Routing,” RFC 6480, Feb. 2012. [Online]. Available:
https://rfc-editor.org/rfc/rfc6480.txt

[11] T. Chung, E. Aben, T. Bruijnzeels, B. Chandrasekaran, D. Choffnes,
D. Levin, B. M. Maggs, A. Mislove, R. v. Rijswijk-Deij, J. Rula, and
N. Sullivan, “Rpki is coming of age: A longitudinal study of rpki
deployment and invalid route origins,” in Proceedings of the Internet
Measurement Conference, ser. IMC ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 406–419. [Online].
Available: https://doi.org/10.1145/3355369.3355596

[12] A. Cohen, Y. Gilad, A. Herzberg, and M. Schapira, “Jumpstarting BGP
security with path-end validation,” in Proceedings of the 2016 ACM
SIGCOMM Conference, 2016, pp. 342–355.

[13] J. Deger and F. Kargl, Evaluation of the Deployment Status of RPKI
and Route Filtering. Universitätsbibliothek Tübingen, 2020.

[14] S. Qing and D. Ma, “RPSTIR2,” GitHub, bgpsecurity, 2020. [Online].
Available: https://github.com/bgpsecurity/rpstir2

[15] L. Poinsignon, M. Chris, and J. Bampton, “OctoRPKI,” GitHub,
Cloudflare, 2019. [Online]. Available: https://github.com/cloudflare/
cfrpki

[16] NLnet Labs, “Routinator Manual,” 2021. [Online]. Available: https:
//routinator.docs.nlnetlabs.nl/en/stable/

[17] LACNIC and NIC.MX, “FORT Validator - Github Repository,” 2021.
[Online]. Available: https://nicmx.github.io/FORT-validator/

[18] K. Dzonsons, C. Jeker, J. Snijders, T. de Raadt, S. Benoit,
and T. Buehler, “rpki-client,” OpenBSD, 2021. [Online]. Available:
https://www.rpki-client.org/

[19] M. Puzanov, “rpki-prover,” GitHub, 2020. [Online]. Available:
https://github.com/lolepezy/rpki-prover

[20] N. Trenaman, “Lifecycle of the RIPE NCC RPKI Validator,” RIPE
NCC, 20. Oktober 2020. [Online]. Available: https://labs.ripe.net/author/
nathalie nathalie/lifecycle-of-the-ripe-ncc-rpki-validator/

[21] R. Austein, R. Bush et al., “Dragon Research Labs RPKI Toolkit,”
2006. [Online]. Available: https://github.com/dragonresearch/rpki.net

[22] J. Kristoff, R. Bush, C. Kanich, G. Michaelson, A. Phokeer, T. C.
Schmidt, and M. Wählisch, “On Measuring RPKI Relying Parties,” in
Proceedings of the ACM Internet Measurement Conference, 2020, pp.
484–491.

[23] J. Kristoff, “Installing RPKI Relying Party Software,”
2020. [Online]. Available: https://dataplane.org/jtk/blog/2020/11/
installing-rpki-rp-software/

[24] T. Phuntsho, “How to Install an RPKI Validator,” RIPE Labs,
2019. [Online]. Available: https://labs.ripe.net/author/tashi phuntsho 3/
how-to-install-an-rpki-validator/

[25] G. Michaelson, “RIPE’s RPKI Validator is being
phased out, so what are the other options?” APNIC,
2021. [Online]. Available: https://blog.apnic.net/2021/02/17/
ripes-rpki-validator-is-being-phased-out-so-what-are-the-other-options/

[26] Routing Security, “RPKI RFCs Graph,” 2021. [Online]. Available:
https://rpki-rfc.routingsecurity.net/

[27] A. Tridgell and P. Mackerras, “The rsync algorithm,” 1998. [Online].
Available: https://rsync.samba.org/tech report/

[28] T. Bruijnzeels, O. Muravskiy, B. Weber, and R. Austein, “The RPKI
Repository Delta Protocol (RRDP),” RFC 8182, Jul. 2017. [Online].
Available: https://rfc-editor.org/rfc/rfc8182.txt

[29] Y. Gilad, A. Cohen, A. Herzberg, M. Schapira, and H. Shulman, “Are
We There Yet? On RPKI’s Deployment and Security.” in NDSS, 2017.

[30] J. Snijders, “Deep Dive on Manifest Handling,” RPKI mailinglist,
2020. [Online]. Available: https://lists.nlnetlabs.nl/pipermail/rpki/
2020-December/000245.html

[31] N. Rodday, Í. Cunha, R. Bush, E. Katz-Bassett, G. D. Rodosek, T. C.
Schmidt, and M. Wählisch, “Revisiting rpki route origin validation on
the data plane,” in Proc. of Network Traffic Measurement and Analysis
Conference (TMA). IFIP., 2021.

[32] N. Rodday, L. Kaltenbach, Í. Cunha, R. Bush, E. Katz-Bassett, G. D.
Rodosek, T. C. Schmidt, and M. Wählisch, “On the deployment of
default routes in inter-domain routing,” in Proceedings of the ACM
SIGCOMM 2021 Workshop on Technologies, Applications, and Uses
of a Responsible Internet, 2021, pp. 14–20.

[33] D. Mandelberg and R. Hansen, “RPSTIR,” GitHub, bgpsecurity, 2021.
[Online]. Available: https://github.com/bgpsecurity/rpstir

[34] ZDNS, “RPKIVIZ,” ZDNS, 2020. [Online]. Available: http://rpkiviz.
zdns.cn/

[35] D. Ma, “RPKIVIZ: Visualizing the RPKI,” APNIC,
2020. [Online]. Available: https://blog.apnic.net/2020/04/23/
rpkiviz-visualizing-the-rpki/

[36] L. Poinsignon et al., “GoRTR,” GitHub, Cloudflare, 2021. [Online].
Available: https://github.com/cloudflare/gortr

[37] NLnet Labs, “Homepage,” 2021. [Online]. Available: https://nlnetlabs.nl/
[38] M. Hoffmann and A. Band, “Krill,” GitHub, 2021. [Online]. Available:

https://github.com/NLnetLabs/krill
[39] RPKI Community, “RPKI Discord Channel,” 2021. [Online]. Available:

https://discord.gg/8dvKB5Ykhy
[40] NLnet Labs, “RPKI Mailinglist – Discussion on RPKI deployment

and tools developed by NLnet Labs,” NLnet Labs, 2021. [Online].
Available: https://lists.nlnetlabs.nl/mailman/listinfo/rpki

[41] M. Hoffmann, A. Band et al., “RTRTR – An RPKI data proxy,”
GitHub, NLnetLabs, 2020. [Online]. Available: https://github.com/
NLnetLabs/rtrtr

[42] LACNIC and NIC.MX, “FORT project,” 2021. [Online]. Available:
https://fortproject.net/en/home

[43] K. Dzonsons, C. Jeker, S. Benoit, J. Snijders, and R. Scheck,
“rpki-client-portable,” GitHub, 2020. [Online]. Available: https://github.
com/rpki-client/rpki-client-portable

[44] Raspberry Pi Foundation. (2021) Raspberry Pi Downloads. [Online].
Available: https://downloads.raspberrypi.org/

[45] L. Poinsignon, “Status Tweet,” Twitter, 29. Januar 2021. [Online].
Available: https://twitter.com/lpoinsig/status/1355199025100668929?s=
21

[46] P. Friedemann, “RAM usage in 0.9.0,” GitHub, 2021. [Online].
Available: https://github.com/lolepezy/rpki-prover/issues/41

[47] M. Hoffmann, “Increased memory consumption of Routinator 0.9.0,”
RPKI mailinglist, 2021. [Online]. Available: https://lists.nlnetlabs.nl/
pipermail/rpki/2021-June/000289.html

[48] M. Puzanov, “ Rrdp rsync fallback #57 ,” GitHub, 2021. [Online].
Available: https://github.com/lolepezy/rpki-prover/pull/57

[49] N. Trenaman, “Lessons Learned on Improving RPKI,”
2020. [Online]. Available: https://labs.ripe.net/author/nathalie nathalie/
lessons-learned-on-improving-rpki/

[50] ——, “RPKI Outage Post-Mortem - Disk Quota,” 2020.
[Online]. Available: https://www.ripe.net/ripe/mail/archives/routing-wg/
2020-February/004015.html

[51] ——, “RPKI ROA Deletion: Post-mortem,” 2020. [On-
line]. Available: https://www.ripe.net/ripe/mail/archives/routing-wg/
2020-April/004072.html

[52] ——, “RPKI Outage Post-Mortem - Inconsistent Certificates,”
2021. [Online]. Available: https://mailarchive.ietf.org/arch/msg/sidrops/
mlFkEcI0DCLv0ZXLY3uZmM1x2do/

6
300

