
An NFV-based Scheduling and Flexible Deployment
Scheme for RaaS Functions in Cloud Data Centers

Hsueh-Wen Tseng
Computer Science and Engineering

National Chung-Hsing University
Taiwan, R.O.C.

hwtseng@nchu.edu.tw

Ting-Ting Yang
Computer Science and Engineering

National Defense University
Taiwan, R.O.C.

bestwishytt@ccit.ndu.edu.tw

Pei-Shan Chen
Computer Science and Engineering
National Chung-Hsing University

Taiwan, R.O.C.
memory03656@gmail.com

Abstract—Recommender systems appear on many commercial
websites because E-Commerce and social websites are popular.
However, many businesses do not have enough capacity to develop
their recommender systems, which must be outsourced by cloud-
based service providers because the amount and complexity of
data increase. Recently, network function virtualization (NFV)
has been proposed to use virtualization technology to replace
dedicated network equipment for software network functions.
Virtual network functions (VNFs) run on commodity servers
or standard physical machines. In this paper, an NFV-based
scheduling and flexible deployment scheme (SFDS) is proposed
to consider the characteristics of recommendation-as-a-service
(RaaS), including the popularity and execution order of the
functions. According to the popularity of the functions, a dynamic
deployment algorithm is able to flexibly create or remove the
VNFs on the virtual nodes. Finally, the simulation results show a
shorter completion time. SFDS enhances the resource utilization
of the system and has a better successful reception rate.

Index Terms—Recommender System, RaaS, Network Function
Virtualization, Scheduling Algorithm, Flexible Deployment.

I. INTRODUCTION

In recent years, due to the development of electronic com-
merce and the popularization of social networks, recommender
systems have attracted great attention in academia and in-
dustry. Most current recommender systems propose different
recommendation algorithms for the recommended accuracy,
different products, or special behavior patterns [1]. Some
studies aimed to develop different recommender systems to
recommend different types of items to users [2] [3] [4].
However, due to the increasing amount of operational data
and computational complexity, merchants do not have enough
resources to develop their own systems. They must outsource
or rent resources from recommender service providers [5] [6].
Therefore, recommender service providers provide the cloud
platform in the data center to fulfill the diverse requirements
of various vendors. In the future, there will be more and more
applications built on the cloud platform [7].

In the past, hardware-specific devices can only handle spe-
cific or customized functions. It constantly increases hardware
demand and spends more time and construction costs. The
concept of network function virtualization (NFV) technology
uses virtualization to enable network functionality that is
implemented in a software manner and executes on a general
commodity device to replace the hardware-specific device. In

addition, it is possible to deploy and build customized func-
tions more quickly and flexibly. Thus, NFV greatly reduces
operating cost and improves the efficiency of network function
deployment.

A network service is divided into multiple functions using
a software-based approach to deploy network functions on
virtual machines (i.e., virtual network function (VNF)). Thus,
it can establish or remove VNFs flexibly, and thus NFV can
provide new services quickly. We use NFV to provide many
kinds of recommendation services which are produced by vary
recommender systems on the cloud platform. As a result, cloud
service providers can conveniently manage and flexibly deploy
recommendation functions. In addition, they can quickly adjust
and create new functions in response to requests from different
users, and then generate recommended results for users.

In general, recommender systems include the following
components: data collection and processing, recommender
model, recommendation post-processing, online modules, and
user interface [8]. Most of the recommended results will
be generated according to the execution order of the above
components. In the recommender service, the execution order
of the functions is limited. If a function of one service waits
for functions of the other services to be completed, then
subsequent functions of this service cannot be performed.
Thus, there are unexpected delays, and the recommended
results cannot be generated in a timely manner for the user. At
the same time, the user experience will reduce, even causing
the loss of customers and affecting the revenue of operators.

Service providers deploy many types of recommender sys-
tem on the cloud platform. Every recommender system is
customized based on the requests of different users. Due to
the wide variety of recommender systems, it has become
quite difficult to manage recommender systems. To solve the
above-mentioned problems, we observe some features in the
recommender services. First, the functions of a recommender
service must be performed in a specific order. Second, different
recommender systems provide customized algorithms to dif-
ferent customers and the recommended items are not exactly
the same. As a result, the functions of different recommender
systems are not used interactively. Based on the features, we
propose an NFV-based scheduling and flexible deployment
scheme (SFDS) in this paper.

289978-1-6654-8550-0/22/$31.00 ©2022 IEEE ICUFN 2022

To match the applications of the actual recommender sys-
tem, we consider the priority of the service, the popularity of
each function, and the relationship between the components
of the recommender system. For dynamic deployment, an
evaluation function is proposed to determine the use of the
function. Our method improves the performance of the service
execution, increases the operational effectiveness of the overall
system, and the resource utilization of the cloud platform.

The remainder of this paper is organized as follows. Section
II reviews related work on the NFV scheduling and VNF
placement scheme. Section III describes the system model and
the scheme proposed in the paper in detail. Section IV shows
the simulation results. Finally, Section V is the conclusion.

II. RELATED WORK

In order to design the scheduling and dynamic deployment
mechanism for recommender systems, this section investigates
the literature on NFV scheduling and VNF placement issues.
[9] mentioned that the real-time scheduling problem was
defined as the flexible job-shop scheduling problem (FJSP).
It defined network function mapping and scheduling (NFMS)
to solve the online scheduling problem in NFV. This problem
is divided into two parts: the first part is how to select suitable
nodes to execute VNFs, and the other part is the scheduling
schemes for VNFs.

[10] discussed two types of delay in the NFV scheduling
problem: transmission delay and processing delay. Taking into
account the transmission delay between virtual nodes, the
authors used a genetic algorithm that can schedule functions
and dynamically adjust the bandwidth of the virtual link to
reduce the completion time of the service. However, this
study uses traditional job-shop scheduling to solve the NFV
scheduling problem, but does not support real-time service.
[11] proposed the network service chaining (NSC) algorithm
to find the best VNF to process the function of the network
service. Additionally, the paper considered CPU, memory,
network bandwidth, and cost to define the evaluation metric
and used the genetic algorithm to find the best solution.

Some researches had discussed that VNFs are deployed on
physical or virtual nodes. With limited resources and lower
cost, they used efficient placement strategies to minimize
management costs or the number of VNFs allocated. [12]
used MILP to solve the VNF placement problem. MILP not
only achieves effective resource utilization, avoids network
congestion and server overload, but also meets the QoS re-
quirements. [13] used integer linear programming to formulate
the VNF placement problem and considered the optimal use of
operational cost and resources to decide the number of VNFs
allocated without violating the SLA.

[14] focused on the deployment of VNFs in the data center
network (DCN). To minimize east-west traffic in the DCN,
the authors discussed the number of VNFs, the allocation
of VNF nodes, and how to separate network traffic. [15]
proposed a Markov decision process (MDP) control model
to dynamically assess the cost of building VNF and removing
VNF and the cost of processing delay. Therefore, they can

determine the number of VNFs to be deployed at the lowest
cost. Furthermore, when the processing delay cost suddenly
increases, the decision maker will adjust the VNF traffic to
achieve load balance.

[16] focused on a task scheduling algorithm based on
a hierarchical network architecture and a general topology.
The scheduling algorithm considered the transmission time
for uploading and downloading and energy consumption.
However, [16] did not consider the processing time and the
waiting time in the queue. Therefore, the scheduling algorithm
cannot meet the real-time constraints of the recommendation
system. Furthermore, [16] did not consider the deployment
problem and the scheduling problem of the VNFs in the VMs.
In [17]- [20], the learning-based scheduling algorithm, such
as reinforcement learning (RL), provides an approach to long-
term cost minimization, with the ability to capture inherent
patterns in network dynamics and make intelligent decisions
accordingly. These works focused on delay-sensitive services.

As mentioned in the previous description, we propose an
NFV-based scheduling and dynamic deployment mechanism.
Previous studies have discussed NFV scheduling and VNF
placement issues, respectively, whereas we use the effec-
tive VNF placement and dynamic adjustment mechanism to
improve the efficiency of NFV scheduling. However, the
previous methods focus on the network function, but the RaaS
function of the recommender system is more complicated than
the network function. Furthermore, previous NFV scheduling
methods dynamically adjust the placement of VNFs in virtual
nodes, but do not consider the frequency of use of the functions
or the characteristic of the service request (i.e., the relationship
between components). Thus, the system performance will
degrade in the long term and even cannot handle the user
request. Our proposed scheme will be introduced in detail in
Section III.

III. NFV-BASED SCHEDULING AND FLEXIBLE
DEPLOYMENT SCHEME (SFDS)

A. System Architecture

To resolve the problem mentioned in the previous section,
we propose an NFV-based scheduling and flexible deployment
scheme (SFDS) that consists of three phases: initialization,
scheduling, and dynamical deployment. The scheme can be
applied to the same constraint or to the same scenario for
other services. We show the overall system architecture and
the algorithm flow chart as shown in Fig. 1. We assume
that VMs have to be built on servers on a cloud platform
to start the initialization phase, as shown in step 1. After
deploying all VNFs to appropriate VMs, the system starts
waiting for the user request (i.e., the service request). After
that, the scheduling scheme (i.e., RaaS function mapping
and scheduling; RFMS) allocates the functions of the service
request to available VMs to be executed in the system, as
shown in step 2. Finally, we use an evaluation function to
calculate the current usage of each function and determine
whether the functions must be adjusted for the deployment of
VNF on VMs, as shown in step 3.

290

Fig. 1: System architecture

We refer to the problem of network function mapping and
scheduling (NFMS) according to the paper [9]. Thus, we
establish a system model and design a scheduling algorithm.
Let G(V,E) be a virtual network, V = {1, . . . , n} represents
that there are n virtual nodes (VMs) that are built on physical
nodes; E(vi → vj) represents the distance between node i and
j. Thus, the number of full connection links is n × (n − 1).
In this paper, we consider the request of the user to use
multiple resources. However, the most important resources for
recommender services are CPU and memory [14]; therefore,
we define the available CPU and memory of node j as cpu(j)
and mem(j), respectively.

Assume that sk denotes the kth recommender service to
reach the system. Each recommender service sk is made up
of m VNFs that are executed in a specific order. Each virtual
node processes at most one function at the same time [10].
Furthermore, the deadline for the recommendation service (sk)
is indicated by Dk. Additionally, we consider the transmission
delay in the scheduling algorithm. Csd

e denotes the available
transmission bandwidth of link esd (from node s to node d), and
Rk i is the request for the bandwidth of the function i in the
service k. Thus, the transmission delay is Rk i/C

sd
e and πsd

e

is the time at which the link esd completes the transmission.
In recommender services, recommender functions can be

classified into five components [8]. The number of com-
ponents does not affect the performance of the proposed
scheduling algorithm. We redefine the set of functions as
Fp = {fp,1, fp,2, fp,3, . . . , fp,q} (1 ≤ p ≤ 5), where fp,q
denotes the qth function of the pth component; cpu(fp,q)
and mem(fp,q) are the CPU requirement and the memory
requirement of the function fp,q , respectively. The buffer size
used by the function fp,q is δp,q , and the buffer size available
from node j is Bj .
v(fp,q) ⊆ V is a set of nodes available for the execution of

the function fp,q . The processing time of each function fp,q at
node j is ρfp,q,j . Furthermore, ρfp,q,j > 0, where j ∈ v(fp,q)
and 1 ≤ j ≤ n; Bfp,q,j is a binary variable used to determine
whether node j can perform the function fp,q or not, as shown
in (1).

Bfp,q,j =

{
1, the node j for executing function fp,q

0, otherwise
(1)

In the algorithm, to select nodes to perform each function
in a convenient way, the completion time of the function fp,q
in the service is denoted by tp,q , and the completion time of
the last function in the service must be less than or equal to
Dk; the start time of the function fp,q is tsp,q . Finally, πj is
the expected completion time of node j. In other words, it is
the completion time of the last job in the queue of node j. We
refer to [9] to propose a greedy algorithm to find an optimal
solution. The following is a detailed description for the NFV-
based scheduling and flexible deployment scheme (SFDS).

B. NFV-based Scheduling and Flexible Deployment Scheme

In [9], authors proposed three greedy algorithms, which
consider the shortest execution time in the virtual node (greedy
fast processing, GFP), the queue has the earliest completion
time (greedy best availability, GBA), and the queue has the
most available buffer time (greedy least loaded, GLL), respec-
tively. However, in this paper, we consider that the function has
the shortest waiting time (greedy least waiting time, GLWT)
in RFMS. In addition, we also consider the transmission delay
between functions.

Algorithm 1 is RaaS function mapping and scheduling
algorithm (RFMS). When the service request arrives at the
system, it first finds nodes that can handle the functions of the
service request (line 3); nodes have to ensure that the functions
are completed before the deadline and there are enough buffer
sizes in nodes. If there is no node that can meet the constraints,
the allocation is stopped, and the error times are recorded by
the controller.

After finding the set of nodes (V
′
), the waiting time of the

function on each node (wk id) will be calculated, including
the time to wait for transmission (ew sd

k i), the transmission time
(er sd

k i), and the time to wait for processing (vwk id). The system
then assigns functions to nodes that have the shortest waiting
time (lines 5-21). When the function is completed at a node s,
if other functions transmit on the link, the result must wait for
other functions to complete the transmission on the link. Thus,
it generates the waiting time (ew sd

k i); the transmission time
(er sd

k i) is defined by which the data are actually transmitted
over the link. After the function is transmitted to a node d, if
there are other functions waiting to be processed on node d,
the function should wait for the previous functions to finish.
Thus, it generates the waiting time for processing (vwk id).

In Algorithm 1, lines 7-12, it computes the transmission
time from a source node (s) to a destination node (d). Then we
find a node that has the shortest waiting time, and then assign
the function to the node (lines 14-20). In line 14, it calculates
the time that is the previous function of node s to transmit to
node d (esdk i−1). In line 15, it computes the waiting time for
processing the function on the node d. In line 16, it determines
whether the waiting time (from line 15) is smaller than the
shortest waiting time. Finally, in lines 17-18, it determines
the time which is the function to perform the process and
transmission. In lines 22-24, it computes the completion time
of the function i and allocates the function fi to the queue on
the node d. When the last function is completed, the result will

291

Algorithm 1 RaaS Function Mapping and Scheduling

1: //One service arrives at the system
2: for each function fi ∈ k do
3: Find the set of available node V

′
.

4: //Select the node d with the least wk id.
5: for each node d ∈ V

′
do

6: //Select available link to transmit.
7: if link e connected the source s and the destination

d is available then
8: //Calculate waiting time to transmit.
9: ea sd

k i−1 = tk i−1;
10: ew sd

k i−1 = max(πsd
e , ea sd

k i−1)− ea sd
k i−1;

11: er sd
k i−1 = Rk i−1/C

sd
e ;//Transmission time

12: end if
13: //Calculate waiting time to process.
14: tak i = esdk i−1 = ew sd

k i−1 + er sd
k i−1;

15: vwk id=max(πd, t
a
k i)− tak i;

16: if wk id > (ew sd
k i−1 + er sd

k i−1 + vwk id) then
17: es sd

k i−1 = max(πsd
e , tk i−1);

18: tsk id = max(πd, t
a
k i);

19: wk id = ew sd
k i−1 + er sd

k i−1 + vwk id;
20: end if
21: end for
22: tk i = esdk i−1 + vwk id + ρk id;
23: Map fi onto the node d.
24: Update the queue of the node d.
25: if fi is the final function then
26: Find one e of the links connected to the destination

d.
27: Calculate transmission time Rk i/C

sd
e .

28: end if
29: end for

be sent to the destination and also generates the transmission
delay (lines 25-28).

To improve the performance of the recommender services
on the cloud platform, the algorithm considers five components
of the recommended services. In the initialization phase, the
functions of the first component in the service are preallocated
to nodes, and then the remaining functions are allocated to
others. In order to reduce the transmission delay, it finds that
the front and rear components of the same service are allocated
to nodes which have the shortest transmission time to the node
with the current component. In addition, when the system is
looking for the node, it judges whether the resources of the
node meet the requirements of the function. In er systems,
CPU and memory resources are the most important [21].
Finally, if the system finds the available node, it allocates the
function to the node directly to improve the efficiency of the
allocation.

In Algorithm 2, it assigns VNFs to nodes. In lines 2-6, it
first deploys functions of the first component. In lines 3-4,
if there is only one node m to process the first function, it
chooses the node m to process the first function. in line 6, if
there are nodes to process the first function, it finds that node

m has the shortest distance to node n to which the previous
function is assigned, and the link (node m to node n) must
meet the bandwidth requirement of the link. Then, it deploys
the remaining functions of the second to the fifth components
to nodes as shown in lines 11-20. In line 12, it finds a set of
nodes (V

′
) that can perform the previous function (fp−1,q) and

the next function (fp+1,q) for the function (fp,q). In lines 13-
19, it finds a node s from V

′
, and s has the shortest distance to

the current node and meets the resource requirements. Finally,
it deploys the function on the node s.

Algorithm 2 First-fit Algorithm for VNF Placement

1: //Place the first component F1

2: for each function f1,q ∈ F1 do
3: if q == 1 then
4: //Find the first available node m.
5: else
6: Find the node m with the shortest path e(n →

m) ∈ E and Ce ≥ Rf1,q .
7: end if
8: n = m;
9: end for

10: //Place residual component set Fp(2 ≤ p ≤ 5)
11: for function fp,q ∈ eachFp do
12: Find the set of node V

′
placed fp−1,q or fp+1,q .

13: for each r ∈ V
′

do
14: Find the node s with the shortest path e(r → s) ∈

E and Ce ≥ Rfp,q .
15: if cpu(s) > cpu(fp,q)&&mem(s) > mem(fp,q)

then
16: Allocate fp,q to the node s.
17: break
18: end if
19: end for
20: end for

Finally, based on the use of functions, VNFs are dynami-
cally deployed on nodes. Therefore, the evaluation function is
used to calculate xi, and α is a critical value (threshold) of the
evaluation function. When we use Algorithm 2 to complete the
deployment of VNF, Algorithm 3 is performed. Algorithm 3
is to evaluate the use of each function and determine whether
the deployment of VNFs at the nodes needs to be adjusted.

In Algorithm 3, line 2, it removes the VNF that has not been
used for a long time. It uses the evaluation function to calculate
the xi value as shown in line 4. In line 5, it determines whether
xi is greater than α or not. In lines 7-22, it creates a new VNF
on a node in response to system requirements. When xi > α, it
finds nodes that meet the resource requirements of the system.
In lines 9-14, it determines whether there is an available link or
not. If there is an available link, it continues with subsequent
processes. Then, in line 15, it calculates the average waiting
time (AWT) and the number of functions assigned on node
j (Nj). In lines 16-20, it finds the node k with the smallest
AWT and the smallest Nj . Finally, in line 23, it allocates the
function to the node k.

292

Algorithm 3 Flexibly Dynamic Deployment

1: //Dynamical VNF remove
2: (i, k);
3: //Dynamical VNF creation
4: xi;
5: if xi > α//VNFCreate(); then
6: minAWT = 0;
7: for each node j ∈ V do
8: //Has available links to transmit.
9: for each link e connected with the node j do

10: if Csj
e > Ri then

11: hasLink=true;
12: end if
13: end for
14: if cpu(j) > cpu(fi) and mem(j) > mem(fi) and

hasLink then
15: Calculate AWTj=

∑m
i=1 Bij×wij∑n

j=1 γij
;Nj=

∑m
i=1 Bij .

16: if minAWT > AWTj and minCount > Nj

then
17: k = j;
18: minAWT = AWTj ;
19: minCount = Nj ;
20: end if
21: end if
22: end for
23: Allocate function i on the node k.
24: end if

Last but not least, the mechanism for removing VNFs on
virtual nodes is described. When each function is established
at the node, the variable yi,j has a constant value C. The value
is reduced by one when there is no function i to allocate at
node j; If the function i is allocated at node j, the value of
yi,j maintains the same value. The purpose is to monitor VNFs
that have not been used for a long time and can be removed
immediately. Furthermore, the mechanism also prevents VNF
from occupying too much resources and resulting in poor
utilization and resource waste.

IV. SIMULATION RESULTS

TABLE I: Simulation parameters
Parameter Range or Value
The number of nodes 50
Buffer capacity for each node [75, 100]
The number of processed functions on each node [1, 7]
Processing time of each function [15, 30]
Buffer demand for each function [7.5, 10]
The number of functions for each service [5, 10]
The deadline of services [5000, 10000]
The bandwidth demand of each function [1, 4] Mbps
The maximal bandwidth of each link 8 Mbps

In Section IV, our RFMS is compared with GBA [9].
We show the performance of using the initialization (INIT)
and dynamic adjustment (FDD) methods. We observe the
differences before and after INIT and FDD are used. Next, we

0 500 1000 1500 2000

The Number of Arrival Requests

0

1000

2000

3000

4000

5000

A
v

er
ag

e
C

o
m

p
le

ti
o

n
 T

im
e

RFMS

RFMS+INIT+FDD

GBA

GBA+INIT+FDD

Fig. 2: Average completion time of RMFS and GBA

describe the simulation environment and the simulation results
in sequence. We use a discrete event simulator to perform the
simulation and use Java to implement the simulation [9] [22].
In the simulation environment, we assume that the service
request arrival process forms the Poisson distribution with the
average arrival rate λ. The average service arrival rate is set
to every 5 time units per one service request. There are 2000
service requests to arrive at the simulation. The parameters are
used as shown in Table I [9] [10]. In the simulation, the metrics
are average completion time and successful reception rate. The
average completion time is the average time to complete a
service. Successful reception rate is defined as the number of
successful services over the number of all services.

We consider the characteristics of the recommender service.
There are 50 functions in the system. In INIT, it assigns the
functions to the nodes according to the relationship between
the components. The functions are classified into 5 compo-
nents, and each component contains 10 functions. On the
basis of the order of the components, one of the functions is
randomly selected from each component to build the service.
Next, we show the simulation results for using INIT and FDD.

Fig. 2 shows the average completion time of RFMS and
GBA with/without INIT and FDD. In Fig. 2, we observe that
INIT and FDD can effectively reduce the average completion
time of the service. When the system is initialized, INIT
strategically allocates the functions to the nodes. This is
because INIT considers the relation between the components
to effectively deploy the functions to nodes. On the other hand,
after FDD is used, FDD dynamically adjusts the allocation
of the functions on the nodes based on the use situation of
the functions. Thus, FDD can effectively reduce the average
completion time of services.

Fig. 3 shows the successful reception rate of services. The
original scheduling algorithms (i.e., RFMS and GBA) have a
lower successful reception rate without using INIT and FDD.
This is because the RFMS and GBA randomly allocate the
functions to the nodes. Therefore, when the number of arrival
services increases, the successful reception rate decreases.
After INIT and FDD are used, the successful reception rate of

293

0 500 1000 1500 2000

Total Number of Arrival Requests

0

0.2

0.4

0.6

0.8

1

S
u

cc
es

sf
u

l
R

ec
ep

ti
o

n
 R

at
e

RFMS

RFMS+INIT+FDD

GBA

GBA+INIT+FDD

Fig. 3: Successful reception rate of RFMS and GBA

services almost keeps the best value because we effectively use
the initial allocation and the flexible management mechanism
to improve the average completion time of services.

In summary, our method can effectively reduce the response
time of recommender services and enhance the efficiency of
the overall system. Additionally, whether or not our algorithm
(RFMS) is applied to recommender services, FDD effectively
manages and dynamically adjusts the placement of the VNFs
to greatly improve the processing time of services. However,
dynamic adjustment requires additional time and cost to build
and remove the VNF.

V. CONCLUSION

This paper considers the characteristics of the recommender
services in the cloud environment, such as the functions
must be executed in order, and the functions of different
recommender services are not used interactively. Thus, we
propose a scheme based on NFV-based scheduling and flexible
deployment. The scheme effectively reduces the completion
time of the recommender services. In addition, the effec-
tive deployment and adjustment mechanism can increase the
performance of recommender services and the convenience
of service providers. The simulation results show that our
proposed algorithm has better processing efficiency.

ACKNOWLEDGMENT

The authors would like to thank the Ministry of Science
and Technology, Republic of China (Taiwan), for financially
supporting this research under Contract MOST 108-2221-E-
005-019-MY3, MOST 109-2222-E-606-001-MY2 and MOST
110-2224-E-005-001.

REFERENCES

[1] W. Li, D. Hu, and J. Luo, ”A Personalized Service Recommendation
Algorithm for Service Functionality,” Intl. Conference on Advanced
Cloud and Big Data, pp. 275-281, 2014.

[2] G. Jung, T. Mukherjee, S. Kunde, H. Kim, N. Sharma and F. Goetz,
”CloudAdvisor: A Recommendation-as-a-Service Platform for Cloud
Configuration and Pricing,” IEEE Ninth World Congress on Services,
pp. 456-463, 2013.

[3] A. Umanets, A. Ferreira and N. Leite, ”GuideMe–A tourist guide
with a recommender system and social interaction,” Elsevier Procedia
Technology, pp. 407-414, 2014.

[4] T. Ku, H. Won, and H. Choi, ”Service recommendation system for big
data analysis,” Intl. Conference on Information Networking (ICOIN),
pp. 317-320, 2016.

[5] D. Ben-Shimon, L. Rokach, G. Shani, and B. Shapira, ”Anytime
Algorithms for Recommendation Service Providers,” ACM Trans. Intell.
Syst. Technol. 7, 3, Article 43 (April), 26 pages, 2016.

[6] F. Ricci, L. Rokach, and B. Shapira, ”Recommender Systems: Introduc-
tion and Challenges,” in Recommender Systems Handbook. Springer,
Boston, MA, 2015.

[7] X. Dai, X. Wang, and N. Liu, ”Optimal Scheduling of Data-Intensive
Applications in Cloud-Based Video Distribution Services,” in IEEE
Trans. on Circuits and Systems for Video Technology, vol. 27, no. 1,
pp. 73-83, Jan. 2017.

[8] Maya Hristakeva and Kris Jack, ”A Practical Guide to
Building Recommender Systems,” 2016, [Online]. Available:
https://buildingrecommenders.wordpress.com/

[9] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and S. Davy,
”Design and evaluation of algorithms for mapping and scheduling of
virtual network functions,” Proceedings of the 2015 1st IEEE Conference
on Network Softwarization (NetSoft), 2015, pp. 1-9.

[10] L. Qu, C. Assi, and K. Shaban, ”Delay-Aware Scheduling and Resource
Optimization with Network Function Virtualization,” in IEEE Trans. on
Communications, vol. 64, no. 9, pp. 3746-3758, Sept. 2016.

[11] T. Kim, S. Kim, K. Lee and S. Park, ”A QoS Assured Network Service
Chaining Algorithm in Network Function Virtualization Architecture,”
15th IEEE/ACM Intl. Symposium on Cluster, Cloud, and Grid Comput-
ing, pp. 1221-1224, 2015.

[12] F. Ben Jemaa, G. Pujolle, and M. Pariente, ”QoS-Aware VNF Placement
Optimization in Edge-Central Carrier Cloud Architecture,” IEEE Global
Communications Conference (GLOBECOM), pp. 1-7, 2016.

[13] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B.
Duarte, ”Orchestrating Virtualized Network Functions,” in IEEE Trans.
on Network and Service Management, vol. 13, no. 4, pp. 725-739, Dec.
2016.

[14] P. Chi, Y. Huang, and C. Lei, ”Efficient NFV deployment in data center
networks,” IEEE Intl. Conference on Communications (ICC), pp. 5290-
5295, 2015.

[15] M. Shifrin, E. Biton, and O. Gurewitz, ”Optimal control of VNF
deployment and scheduling,” IEEE Intl. Conference on the Science of
Electrical Engineering (ICSEE), pp. 1-5, 2016.

[16] W. Zhang and Y. Wen, ”Energy-Efficient Task Execution for Application
as a General Topology in Mobile Cloud Computing,” in IEEE Trans. on
Cloud Computing, vol. 6, no. 3, pp. 708-719, 1 July-Sept. 2018.

[17] H. Li, K. Ota, and M. Dong, ”Learning IoT in Edge: Deep Learning for
the Internet of Things with Edge Computing,” in IEEE Network, vol.
32, no. 1, pp. 96-101, Jan.-Feb. 2018.

[18] Z. Luo, C. Wu, Z. Li and W. Zhou, ”Scaling Geo-Distributed Network
Function Chains: A Prediction and Learning Framework,” in IEEE
Journal on Selected Areas in Communications, vol. 37, no. 8, pp. 1838-
1850, Aug. 2019.

[19] J. Liu, H. Guo, J. Xiong, N. Kato, J. Zhang, and Y. Zhang, ”Smart and
Resilient EV Charging in SDN-Enhanced Vehicular Edge Computing
Networks,” in IEEE Journal on Selected Areas in Communications, vol.
38, no. 1, pp. 217-228, Jan. 2020.

[20] J. Li, W. Shi, N. Zhang, and X. Shen, ”Delay-Aware VNF Scheduling: A
Reinforcement Learning Approach With Variable Action Set,” in IEEE
Trans. on Cognitive Communications and Networking, vol. 7, no. 1, pp.
304-318, March 2021.

[21] Han, S. M., Hassan, M. M., Yoon, C. W., and Huh, E. N., ”Effi-
cient service recommendation system for cloud computing market,”
in Proceedings of the 2nd Intl. Conference on Interaction Sciences:
Information Technology, Culture and Human, pp. 839-845, 2019.

[22] P. Bratley, B. L. Fox, and L. E. Schrage, ”Writing a Discrete
Event Simulation: Ten Easy Lessons,” 2016, [Online]. Available:
https://users.cs.northwestern.edu/ agupta/ projects/networking/QueueSi-
mulation/mm1.html

294

