
Performance Analysis of Python Based SDN
Controllers over Real Internet Topology

Jisi Chandroth

AI Convergence Networks
Ajou University

Suwon, South Korea
jisichandroth@ajou.ac.kr

 Byeong-hee Roh
AI Convergence Networks

Ajou University
Suwon, South Korea

bhroh@ajou.ac.kr

Jehad Ali
AI Convergence Networks

Ajou University
Suwon, South Korea
jehadali@ajou.ac.kr

Abstract— SDN (Software-Defined Networking) is a
revolutionary networking paradigm that separates the data
plane and control plane to allow for intelligent network
operation. Traffic management, routing, security, and analysis
are all responsibilities performed by the control plane. The
controller, which offers information to the whole network, is a
critical component of the control plane. SDN controllers such
as POX, Ryu, Open Daylight, Beacon, and ONOS are
frequently utilized. These controllers' behavior is determined by
the installed environment, network architecture, and kind of
traffic flow, among other factors. It's crucial to compare these
controllers in order to learn more about their capabilities. The
performance of python-based controllers in Abilene topology is
evaluated in this research. Moreover, we also perform a
comparison with an increase in the number of nodes. The results
of the testing demonstrate that Ryu performs better than POX.

Keywords—POX; RYU; SDN

I. INTRODUCTION
The Fifth Generation (5G) networks and related technologies

such as Massive machine-type communications (mMTC), Ultra-
reliable low latency communications (uRLLC), Vehicle to
vehicle (V2V) infrastructure, etc, are developing rapidly. Due to
the rise of these technologies, the number of connected devices
is shooting up exponentially and producing a massive amount of
data. To provide uninterrupted internet connectivity to all end
users and maintain the quality of service is a difficult task [1].
The conventional network architectures are no longer suitable to
meet the requirements of today’s applications [2]. In order to
solve the limitations of traditional networks, the concept of SDN
is proposed. In this novel technology, the control plane and data
plane are decoupled [3], [4]. Table I shows the comparison
between traditional networks and SDN networks.

In the SDN architecture, the network control is separated
from forwarding and is directly programmable. This approach
enables the real-time control of the underlying network. SDN
provides centralized management and sets up new applications
devices without impacting the network. In the usage of
softwarization, SDN should increase security and lower overall
costs. SDN can support both physical and virtual networking.

The multi-layered SDN architecture consists of three planes
such as Application plane, Control plane, and Data plane. The
Control plane interacts with the Data plane and Application

plane through Southbound API and Northbound API
respectively. The multilayered SDN architecture is shown in
Figure 1. SDN data plane is comprised of the forwarding devices
such as switches, routers, and virtual switches. The data plane is
responsible for the forwarding of data packets based on the
decision made by the controller. The main component in the
control plane is the controller which makes intelligent decisions.
A wide range of SDN controllers is available in today’s market
such as POX [5], RYU [6], Floodlight [7], Beacon [8], MUL [9],
Onos [10], and

TABLE I.

TRADITIONAL NETWORKS Vs SDN

No Traditional Networks SDN
1 Traditional networks

offer distributed control
over network devices

SDN centrally control the
devices using Controllers

2 Traditional networks are
non-programmable

SDN networks are
programmable. Python,
C++, and Java are widely
used languages for SDN

3 It has a Closed Interface SDN has an Open
interface

4 Static/manual
configuration

Automatic configuration

5 Data and control plane
are mounted on the same
plane

Data and the control
plane are separated from
each other. The Control
plane acts as a central
controller for many data
planes.

6 It is difficult to
reprogram the existing
application

The application can be
easily reprogrammed as
per the user’s need

7 Traditional networks are
complex, and the
maintenance cost is high
due to the replacement of
fault hardware

The structural complexity
of SDN is low and thus
the operating and
maintenance costs are
low.

8 Due to distributed nature
of traditional networks,
it is difficult to
troubleshoot and report.

It is easy to troubleshoot
and report in SDN
because it is centrally
controlled.

283978-1-6654-8550-0/22/$31.00 ©2022 IEEE ICUFN 2022

OpenDaylight [11]. The application plane is the place for all
SDN applications. SDN applications are software programs
written in different programming languages such as Python,
Java, or C++ depending on the controller. These programs are
directly communicating to the underlying network and collect
the desired network behavior to the SDN controller via
Northbound Interfaces (NBIs). The applications insist on
business applications, user-defined applications, network
management, traffic control, etc.

The controllers are consisting the brain of the SDN network,
and the performance of the controllers are different in various
aspects. Choosing an appropriate controller is always a
confusing part of any work. Therefore, an efficient performance
analysis is required against these controllers. In this research, a
comparative analysis of python based controllers such as POX
and RYU has been carried out based on the real internet topology
called Abilene Topology. Jitter, Delay, and Throughput are the
different performance parameters used in this document.

The rest of the paper consists of VI Sections. Section II
discusses the related work. A comparison of python-based
controllers is described in Section III. We discuss the simulation
model, Network topology, and Performance metrics in Section
IV. We discuss our results in Section V. Our conclusion and
future works are discussed in Section VI.

II. RELATED WORK
In [12] the performance analysis of Ryu, Open Daylight,

Floodlight, and ONOS has been performed against Average
delay and throughput. In this paper, the Mininet tool was used
for performance evaluation. The papers cover different
topologies such as Linear, Tree, and Mesh topologies. The
authors perform the comparison against a different number of
nodes from 10 to 50. The paper does not include performance
measurements such as Jitter, packet loss rate, and Bandwidth.

In [13], the authors compare the python-based Ryu controller
against the Java-based Floodlight controller. In this, the Mininet
emulator is used for the performance analysis. They were
performed to measure the Jitter, packet loss rate, latency, and
throughput between hosts, that have maximum distance. The
authors found that Ryu ensures better throughput in all
conventional topologies.

 Work done in [14] is to analyze the performance of ONOS
and Floodlight SDN controllers based on TCP and UDP traffic.
They have observed traffic transfer, bandwidth, delay, and Jitter
in diverse topologies such as Single, Linear, and Tree
topologies. The ONOS controller showed better results
compared to Floodlight.

The comparison study of seven controllers; POX, RYU,
Beacon, Floodlight, Open Daylight, ONOS, and OpenMUL
against throughput and latency has been done in [15]. They used
Mininet for the simulation tool. From the experiments, the
authors found that python-based controllers are not suitable for
large networks as they cannot meet high performance and low
latency. Java and C-based controllers have better performance
and scalability.

The authors of [16] proposed a cloud-based SDN network.
In this paper, the authors compare the performance of locally

hosted SDN controllers and cloud-based remote controllers.
The authors short-listed three SDN controllers such as POX,
NOX, and Floodlight based on their popularity and
programmable language. Two sets of experiments were
conducted for comparison purposes. In Set (A), three different
topologies were set up to measure the latency between
controllers and Set (B) calculate the throughput of the
controllers. The cloud-based controller showed consistent
performance compared with locally hosted controllers.

In [17], researchers are comparing widely used seven
SDN controllers in the market. The evaluation criteria are jitter,
TCP/ UDP Throughput, latency, and the number of end devices.
The authors used Mininet as the emulation environment and
Iperf, and Gnuplot were used for traffic generation and
visualization. While Floodlight shows the better throughput
among all other controllers and OpenDayLight shows the better
delay.

In this paper [18], the authors evaluate the
performance of open-source controllers such as ONOS, Ryu,
Floodlight, and OpendayLight. The comparison parameters are
latency and throughput. The authors used Cbench, an
OpenFlow benchmarking tool for evaluation. From the feature
analysis, the authors recommend OpenDayLight because it
supports more features in terms of interfaces. From aspects of
performance evaluation, ONOS shows the better result in terms
of throughput and delay.

 In [19-21], the authors conducted a comparison of numerous
Mininet controllers. POX and RYU are two of the controllers
that have been studied for their performance in various
topologies [19], both in terms of throughput and latency. The
topologies of real-world networks, on the other hand, are not
taken into account in [19]. Because of this, an additional
investigation is required.

Fig. 1. SDN multi-layered architecture

284

III. COMPARISON OF PYTHON-BASED SDN
CONTROLLERS

A. POX
POX [5] is a python-based Software Defined Networking

(SDN) controller. One of the fundamental usages of POX is for
developing Open flow control applications due to its faster
development and prototyping of new network applications. The
POX controller allows an easy way to run Open flow/SDN
experiments. POX controller can support hub, switch, load
balancer, and firewall devices with Open flow. It is preinstalled
with the Mininet emulator. POX contains a number of APIs for
developing network control applications. The object called
“core” in POX acts as a central point for much of POX’s API.
Some of the functions it provides are unique but, some are just
wrappers around other functionality. One of the major purposes
of the core objective is to provide a rendezvous between
components. The POX controller enhances the two-way
communication between the controller and switches. The
communication from the controller to the switch is performed
by controller code which sends an open flow message to a
particular switch. When the messages are coming from switches
are called events-generally an event type corresponding to each
message. The salient features of the POX and the Ryu SDN
controller are listed in Table 1.

Fig. 2. Simulation Environment

B. RYU
RYU [6] is an open, component-based software-defined

networking (SDN) controller developed by NTT. It increases the
sharpness of the network by making them easy to manage and
adapt to new traffic. RYU provides software components with
well-defined APIs so that developers can easily create novel
network management and control applications. Organizations
can develop customized applications with the help of this
component and also developers can instantaneously and
efficiently adjust existing components or implement their own
components to meet their demands or specific needs. RYU
controller supports various protocols such as Open Flow,
Netconf, OF-config, etc. for managing network devices.
Regarding Open Flow, one of the well-defined and most widely
deployed SDN protocols, RYU supports fully 1.0, 1.2, 1.3, 1.4,
1.5, and Nicira Extensions. All the RYU codes are written
entirely in Python and all of the codes are freely available under
the Apache 2.0 license and open for the public.

TABLE I.

SALIENT FEATURES OF POX AND RYU

Features RYU POX
License NTT

communications
ICSI

Source Apache 2.0 GPL
Language Python Python
Target user Researchers,

Developers,
Operators

Researchers

Open flow support V1.0, v1.2,v1.3 V1.0
Open-source Yes Yes
GUI Yes Python,

+QT4
Platform support Mostly supported

on Linux
Linux, Mac
OS,
Windows

Modularity Fair Low
Distributed/Centralized Centralized Centralized
Southbound APIs Open flow 1.0-

1.5
Open flow
1.0

Northbound APIs REST Ad-hoc
Interface CLI CLI, GUI
Multithreading Yes No
Documentation Good Limited

IV. SIMULATION MODEL
We have compared the performance of two Python-based

SDN controllers POX and RYU. The comparison process
includes the generation of real internet topology using the
Mininet emulator [22]. The simulation environment is shown in
Figure 2. The SDN topology with different parameters was run
on the launched remote controllers. After that performance tests
for Throughput, Jitter and Delay have been conducted on them.
Moreover, we also perform an analysis of the two controllers
with respect to increasing the number of nodes and evaluating
the throughput.

A. Network Topology
 A network topology is the graph-based arrangement of the
network elements and their links [23]. We have created a real
internet topology called Abilene topology [24]. It consists of 11
Open Flow switches and 16 hosts. In the late 1990s, the Internet2
community created this network. It was a high-performance
backbone network as shown in Figure 3.

B. Performance Metrics
• Throughput: is the amount of data transmitted

successfully from host to destination.
• Delay: is the time required for the packet to be fully

received at the destination.
• Jitter: is the difference in delay between two data

packets.

285

Fig. 3. Abilene Topology

V. RESULTS
In this paper, we created the real internet topology called

Abilene using the Mininet emulator and compare the
performance of POX and RYU in terms of Delay, Throughput,
and Jitter. Iperf test was performed to calculate the TCP and
UDP throughput between the host h1 and h16 in the topology.
Iperf is a command-line tool designed to test the bandwidth
between two network nodes. Iperf can generate TCP and UDP
traffic between hosts. Ping command is used for calculating the
delay of end hosts. Ping command shows the connectivity
between source and destination nodes.

Fig. 4. TCP throughput

Figure 4 represents the TCP throughput comparison of POX
and RYU. As shown in the figure, the throughput of the RYU
controller is much greater than POX. The average throughput of
POX is 2.73 and of Ryu is 3.06 respectively. The UDP
throughput comparison of POX and RYU are shown in Figure
5. The throughput of POX and RYU controllers are 10.5 and 12

Gbps/sec respectively. It is clear that the UDP throughput of the
Ryu is 87.5% more compared to the POX controller.

Fig. 5. UDP throughput

Fig. 6. Delay

Figure 6 shows the comparison of POX and RYU in terms
of delay. As shown in the figure, the maximum delay of POX is
49.833 ms, which is far greater than RYU. The minimum delay
and average delay of both controllers are almost equal. Figure 7
of the result part describes the performance of the POX and RYU
controllers based on the jitter vs time graph where the time
interval is 1 millisecond for jitter analysis. The Jitter value of
both controllers is increasing with time. It can be noticed that the
RYU has the least average Jitter value which is below 0.02 ms.

We also performed an experiment for observing the
throughput regarding the number of increases in the number of
nodes/switches. Figure 8 shows the comparison of the
throughput with an increase in the number of nodes from 1 to
100. We have recorded the throughput in Mininet. Figure 8
shows that RYU surpassed the POX in throughput analysis

286

Fig. 7. Jitter

Fig. 8. Throughput comparison with respect to increase in the

switches

VI. CONCLUSION
 In this paper, we have performed a comparative analysis of
the two-python based SDN controllers i.e. POX and RYU. First,
we investigated several features of these two controllers. Then,
we created Abilene topology, which is a real internet topology
using the Mininet emulator. Finally, we compared the
performance of POX and RYU SDN controllers using the
above-mentioned topology. The performance parameters are
Delay, Throughput, and Jitter. The results show that the
decrease in delay and increase in throughput for Abilene
topology while using in RYU is high. More and more, we have
also performed a comparison of the two controllers with an
increase in the number of nodes which showed that RYU
outperforms the POX. In the future, we will investigate more
controllers in several real-Internet topologies. Moreover, we will
consider more parameters for analysis.

VII. ACKNOWLEDGMENT
This work was supported partially by the BK21 FOUR program
of the National Research Foundation of Korea funded by the
Ministry of Education(NRF5199991514504) and by the MSIT
(Ministry of Science and ICT), Korea, under the ITRC
(Information Technology Research Center) support
program(IITP-2022-2018-0-01431) supervised by the IITP
(Institute for Information & Communications Technology
Planning & Evaluation).

REFERENCES

[1] T. O. Olwal, K. Djouani and A. M. Kurien, "A Survey of
Resource Management Toward 5G Radio Access
Networks," in IEEE Communications Surveys & Tutorials,
vol. 18, no. 3, pp. 1656-1686, thirdquarter 2016, doi:
10.1109/COMST.2016.2550765.

[2] L. Chettri and R. Bera, "A Comprehensive Survey on
Internet of Things (IoT) Toward 5G Wireless Systems," in
IEEE Internet of Things Journal, vol. 7, no. 1, pp. 16-32,
Jan. 2020, doi: 10.1109/JIOT.2019.2948888.

[3] Z. Zaidi, V. Friderikos, Z. Yousaf, S. Fletcher, M. Dohler
and H. Aghvami, "Will SDN Be Part of 5G?," in IEEE
Communications Surveys & Tutorials, vol. 20, no. 4, pp.
3220-3258, Fourthquarter 2018, doi:
10.1109/COMST.2018.2836315.

[4] F. Bannour, S. Souihi and A. Mellouk, "Distributed SDN
Control: Survey, Taxonomy, and Challenges," in IEEE
Communications Surveys & Tutorials, vol. 20, no. 1, pp.
333-354, Firstquarter 2018, doi:
10.1109/COMST.2017.2782482.

[5] https://noxrepo.github.io/pox-doc/html/
[6] https://S. Asadollahi, B. Goswami and M. Sameer, ”Ryu

controller’s
scalability experiment on software defined networks,”
2018 IEEE International Conference on Current Trends in
Advanced Computing (ICCTAC), 2018, pp. 1-5, doi:
10.1109/ICCTAC.2018.8370397. scalability experiment
on software defined networks,” 2018 IEEE International

[7] https://www.sdxcentral.com/networking/sdn/definitions/w
hat-isfloodlight-controller/ What Is a Floodlight
Controller? September 16, 2014 (ICCTAC), 2018, pp. 1-5,
doi: 10.1109/ICCTAC.2018.8370397.

[8] https://openflow.stanford.edu/display/Beacon/Home.html
[9] https://www.sdxcentral.com/directory/kulcloud-inc

ltd/openmulcontroller/ OpenMUL SDN Controller
[10] https://opennetworking.org/onos/
[11] https://www.sdxcentral.com/networking/sdn/definitions/o

pendaylightcontroller/ What Is an OpenDaylight
Controller? AKA: OpenDaylight Platform= Erin Moriarty-
SilerSeptember 16, 2014

[12] A. K. Arahunashi, S. Neethu and H. V. Ravish Aradhya,
”Performance Analysis of Various SDN Controllers in
Mininet Emulator,” 2019 4th International Conference on
Recent Trends on Electronics, Information,
Communication Technology (RTEICT), 2019, pp. 752-
756

[13] R. K. Chouhan, M. Atulkar and N. K. Nagwani,
”Performance Comparison of Ryu and Floodlight
Controllers in Different SDN Topologies,” 2019 1st
International Conference on Advanced Technologies in
Intelligent Control, Environment, Computing
Communication Engineering (ICATIECE), 2019, pp. 188-
191, doi: 10.1109/ICATIECE45860.2019.9063806.

[14] A. H. Eljack, A. H. M. Hassan and H. H. Elamin,
”Performance Analysis of ONOS and Floodlight SDN

287

Controllers based on TCP and UDP Traffic,” 2019
International Conference on Computer, Control, Electrical,
and Electronics Engineering (ICCCEEE), 2019, pp. 1-6,
doi: 10.1109/ICCCEEE46830.2019.9071189.

[15] A. Shirvar and B. Goswami, ”Performance Comparison of
Software-Defined Network Controllers,” 2021
International Conference on Advances in Electrical,
Computing, Communication and Sustainable Technologies
(ICAECT), 2021, pp. 1-13, doi:
10.1109/ICAECT49130.2021.9392559.

[16] K. Basu, M. Younas, A. W. Wan Tow and F. Ball,
"Performance Comparison of a SDN Network between
Cloud-Based and Locally Hosted SDN Controllers," 2018
IEEE Fourth International Conference on Big Data
Computing Service and Applications (BigDataService),
2018, pp. 49-55, doi:
10.1109/BigDataService.2018.00016.

[17] D. Lunagariya and B. Goswami, "A Comparative
Performance Analysis of Stellar SDN Controllers using
Emulators," 2021 International Conference on Advances in
Electrical, Computing, Communication and Sustainable
Technologies (ICAECT), 2021, pp. 1-9, doi:
10.1109/ICAECT49130.2021.9392391.

[18] L. Mamushiane, A. Lysko and S. Dlamini, "A comparative
evaluation of the performance of popular SDN
controllers," 2018 Wireless Days (WD), 2018, pp. 54-59,
doi: 10.1109/WD.2018.8361694.

[19] Ali, J., Lee, S. and Roh, B.H., 2018, April. Performance
analysis of POX and Ryu with different SDN topologies.

In Proceedings of the 2018 international conference on
information science and system (pp. 244-249).

[20] Ali, J., Roh, B.H. and Lee, S., 2019. QoS improvement
with an optimum controller selection for software-defined
networks. Plos one, 14(5), p.e0217631.

[21] Ali, J. and Roh, B.H., 2021. Quality of service
improvement with optimal software-defined networking
controller and control plane clustering. Comput. Mater.
Contin, 67, pp.849-875.

[22] De Oliveira RLS, Shinoda AA, Schweitzer CM, Prete LR.
Using Mininet for emulation and prototyping software-
defined networks. in Proc. IEEE Colombian Conf. on
Commun. and Computing (COLCOM); 2014; 1–6.

[23] Lu, YH., Leu, FY. (2020). Dynamic Routing and
Bandwidth Provision Based on Reinforcement Learning in
SDN Networks. In: Barolli, L., Amato, F., Moscato, F.,
Enokido, T., Takizawa, M. (eds) Advanced Information
Networking and Applications. AINA 2020. Advances in
Intelligent Systems and Computing, vol 1151. Springer,
Cham. https://doi.org/10.1007/978-3-030-44041-1_1

[24] M. Bloem, T. Alpcan, S. Schmidt and T. Basar, ”Malware
Filtering for Network Security Using Weighted Optimality
Measures,” 2007 IEEE International Conference on
Control Applications, 2007, pp. 295-300, doi:
10.1109/CCA.2007.4389246.

288

