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Abstract— High-performance computing datacenters have
been rapidly growing, both in number and size. In addition to
the conventional CPU servers, more GPU servers are being
placed in datacenters to achieve high-speed processing such as
image recognition. From our experiments, the power
consumption during GPU operation is greatly affected by
changes in the temperature of the server intake port. Therefore,
to reduce the total power consumption of datacenters, thermal
management of datacenters can address dominant problems
associated with cooling such as the recirculation of hot air from
the server outlets to their inlets and the appearance of hot spots.
In this paper, we propose a workload placement method for
environments where CPU servers and GPU servers coexist, and
an optimum air-conditioning control method that cooperates
with the workload placement method to reduce the total power
consumption of the servers and air conditioners in datacenters.
Experiment results in an actual machine environment showed
that our proposed method has valid power-saving effects by
adjusting cooling capacity tradeoffs between GPU servers and
air conditioners.

Keywords—workload placement, intake port temperature of GPU
server, optimum control of air conditioner, power-saving effects

L.

Cloud computing provides dynamic and scalable virtual
resources through the Internet to users on demand and is
furthering the development of distributed computing, parallel
computing, and grid computing [1]. Its main advantage is that
it can quickly reduce hardware costs by offering on-demand
access to shared computer resources and data; users can access
high-quality services at low cost. Because power and energy
are first-order concerns in cloud computing, cloud providers
require a low operation overhead at datacenters. Optimizing
cooling presents the single largest area of opportunity for
datacenters to save energy. Due to the increasing power
density and heat generation of newer equipment, cooling and
air-conditioning energy costs now surpass the cost of
powering servers [2]. Moreover, graphics processing unit
(GPU) servers have been frequently used in recent years for
high-speed, large-volume data processing such as artificial
intelligence (Al) inference such as image recognition. Users
can obtain calculation results more quickly by multi-parallel
processing. Generally, GPU servers consume more power
than central processing unit (CPU) servers, and the amount of
heat released to the datacenter space increases in proportion to
the power consumption of the server, so the power
consumption of the air conditioners also increases accordingly
[3]. On the other hand, our basic experimental results make it
clear that the power consumption of the GPU server fluctuates
more in the same temperature range than that of the CPU
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server due to the changes in the server intake port temperature.
Figs. 1-4 show the changes in the GPU parameters when the
server intake port temperature is 20 or 33 °C. We use HPE
Apollo6500 Genl0 with in 4 QuardroRTX8000 GPU cards
inserted and FAST N-Body simulation with CUDA [4] for
running applications on the GPU server in our experiment. Fig.
1 shows the temperature change in the GPU card during GPU
operation when the intake port temperature is 20 or 33 °C.
When the intake port temperature is 20 °C, the temperature of
all GPU cards increases up to and stays around 55 °C while
the application is running. On the other hand, when intake port
temperature is 33 °C, some GPU card temperatures exceed
70 °C, and the average temperature of each one is about 10° C
higher than when the intake port temperature is 20 °C. Fig. 2
shows the power consumption of the GPU cards. The average
power consumption was 15W per GPU card higher when the
intake port temperature was 33 °C than when it was 20 °C.
The difference in fan rotation rate can be considered as one
cause of the increase in the power consumption of the GPU
cards, shown in Fig. 3. The fan rotation rate during application
running was constant when the intake port temperature was
20 °C, whereas it increased as the GPU card temperature
increased when the intake port temperature was 33 °C. Fig. 4
shows the changes in GPU sever power consumption due to
changes in intake port temperature. In the GPU server as a
whole, the power consumption is about 9% higher at the inlet
temperature of 33° C than at the inlet temperature of 20 °C. In
the same temperature range of inlet temperature, such a large
fluctuation in power consumption has not been confirmed in
conventional CPU servers so far. Under a high inlet
temperature such as 30 °C or more, temperature is more likely
to rise inside the GPU server than the CPU server, thereby
increasing the amount of power consumption due to fan
rotation for cooling the heat inside the server.

Therefore, in a datacenter containing GPU servers in addition
to the conventional CPU servers, a new power-saving control
method is required that adjusts the tradeoff between cooling
capacity of GPU servers and air conditioners. In this paper, we
propose an optimum air-conditioning control method that
cooperates with workload placement of Kubernetes-based [5]
CPU and GPU workloads. The proposed method minimizes
total power consumption of air conditioners and servers by
considering changes in power consumption of GPU servers
due to fluctuations in inlet temperature. The power
consumption of air conditioners is minimized by our original
environmental self-adaptation method that categorizes
learning history with the conditions composed of exhaust heat
distribution and temperature information in the room as an
environmental classification standard.
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II. RELATED WORK
A. Workload Placment

Workload placement in datacenters has long been
investigated and is currently still a hot topic in various
research domains. Deelman et al. [6] have done considerable
work on planning, mapping, and data-reuse in workflow
scheduling. They proposed Pegasus [6], which is a
framework that maps complex scientific workflows onto
distributed resources such as the Grid. DAG Man, together
with Pegasus, schedules tasks to the Condor system. Kim et
al. [7] implemented a guest-aware priority-based scheduling
scheme, which is specifically designed to support latency-
sensitive workloads. The proposed scheduling scheme
prioritizes the virtual machines (VMs) to be allocated by
using the information about priorities and status of guest-
level tasks in each VM. It preferentially selects the VMs that
run latency-sensitive applications to be scheduled, and in this
way, reduces the response time to the I/O events of latency-
sensitive workloads. Wang et al. [8] proposed a novel VM
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scheduling algorithm for virtualized heterogonous multicore
architectures. The algorithm exploits the core performance
heterogeneity to optimize the overall system energy
efficiency. Takouna et al. [9] also addressed the VM
scheduling of heterogeneous multicore machines. A
scheduling policy is designed to schedule each virtual
machine to an appropriate processing core on the basis of the
performance sensitivity to the CPU clock frequency and the
performance dependency on the host. Balouch and Bejarzahi
[10] targeted a scheduling algorithm aiming at allocating
VMs to physical hosts of data centers in such a way that the
target host will not be overloaded or over-heated by
scheduling VMs with respect to the temperature and CPU
utilization of processors.

B. Kubernetes Scheduler

Kubernetes (K8s), an open-source container orchestration
tool, has become valuable for managing complex container-
based applications [5] and has been gaining a lot of attention.
Kube-scheduler is the default task scheduler in K8s that uses
Pod as the smallest deployable unit and has been one of the
most active research topics. The scheduler determines which
Nodes are the proper placement for each Pod in the
scheduling queue on the basis of constraints and available
resources. Chang et al. [11] proposed a platform that
dynamically manages the number of Pods deployed on a K8s
cluster in accordance with Node resource usage. In their
platform, Nodes are monitored using multiple monitoring
tools, and the number of Pods is increased or decreased when
the overall CPU usage is above or below a certain threshold.
Townend et al. [12] clarified the importance of considering
the characteristics of hardware and software when scheduling
Pods. In their scheduler, Nodes are monitored and modeled
using specialized machines. In an ideal environment, this
scheduler facilitates a reduction in overall power
consumption. Douhara et al. [13] proposed both a Workload
Allocation Optimizer (WAO)-scheduler and WAO Load
Balancer architecture, which optimize Pod allocation and
task allocation, respectively, as an Al-based power
consumption reduction function for K8s.

C. Optimum control of air conditioners at datacenters

Asa et al. [3] solved a combinatorial optimization problem
by minimizing the total power consumption of air
conditioning and IT equipment in a specific IT load
placement pattern. Nakamura et al. [14] proposed a
datacenter energy management system that reduces power
consumption of cooling and a novel method for semi-optimal
workload placement and cooling. An algorithm for a semi-
optimal solution is introduced, and optimal cooling is
calculated using the resultant workload placement and linear
programming, which is faster than mixed integer
programming.

However, in an environment where GPU servers and CPU
servers are placed together, an optimal control method has yet
to be proposed that minimizes the total power consumption
of servers and air conditioners in consideration of the power
consumption characteristics of GPU servers due to changes
in the inlet temperature. Moreover, no K8s scheduler has
been proposed that implements a placement method that
appropriately adjusts the tradeoff of cooling efficiency
between air conditioners and GPU servers by simultaneously



controlling GPU load placement and Pod placement in
cooperation with suitable air-conditioning settings.

III. PROPOSAL

First, Fig. 5 shows the definition settings of our proposed
method. In the server room of a datacenter, GPU servers and
CPU servers are placed in several Server Placement Areas,
which indicate which server is located in which area of the
room. Air conditioners are also placed at regular intervals. The
Air-Conditioning Control Area is an area to measure the room
temperature effect of air-conditioning control, and it faces
either the intake port side or the discharge port side of the
server. The air blown from the air conditioner is blown out
from the Air-Conditioning Control Area at the inlet side
(Areas 3 and 4 in Fig. 5) via pipes provided under the floor.
Then, in the Air-Conditioning Control Area at the outlet side
(Areas 1, 2, 5, and 6 in Fig. 5), whose temperature has risen
due to the heat of each server exhaust, and an air flow
returning to the air conditioner is generated. Many
temperature sensors are installed in both the Air-Conditioning
Control Area and Server Placement Area, and a temperature
sensor is also installed outside the datacenter. It is assumed
that the correspondence of which temperature sensor indicates
the intake port temperature of each GPU server is also set in
advance, and our power management control system can
obtain this temperature information in real time. We assume
fixed amounts of CPU and GPU workloads are generated at
regular time intervals we call “control turns,” and the problem
to solve is how to schedule these tasks to CPU and GPU
servers with suitable air-conditioning settings that minimize
the total power consumption of servers and air conditioners.
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Formula (1) calculates total power consumption.
P=Yiles Xitq =1 Xie=1 a{I}(O) + c_[}(®) + g_{k}(t) (D)

We assume the start and end times of a control turn as s and
te, there are m air conditioners, n CPU servers, and o GPU
servers respectively at the evaluation environment. The power
consumption of each air conditioner, CPU server, and GPU
server is shown as a_{i)(t), c¢_{j}(t), g _{k}(t) respectively.
a_{i}t) is affected by the amount of exhaust heat generated by
the workload in each Air-Conditioning Control Area, and the
amount of heat exhausted from the server increases in
proportion to the amount of power consumption [3]. We
estimate a_{i}(¢) by categorizing the workload placement
pattern from learning history in the specific room environment,
on the basis of the standard composed of power consumption
of server in each Server Placement Area and some
temperature information of the room. In the workload pattern
with GPU servers, a {i}(t) and g {k}(t) are in a tradeoff
relationship in terms of the adjustment of cooling capacity of
GPU servers and air conditioners. Therefore, the total power
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consumption needs to be predicted on the basis of the change
in the intake port temperature of the GPU servers for each
workload distribution and air-conditioning setting pattern, and
the pattern needs to be selected that minimizes the total power
consumption among them.
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Fig. 6 Functions of power management control systems

Fig. 6 shows all functions of our proposed power
management control system. There are two main function
units in our system: the server control function unit and air-
conditioning control function unit. In the air-conditioning
control function unit, suitable air-conditioning settings need to
be found to meet the overall power consumption requirement
by self-adaptive control.

We define environment standardization called the “Situation”
to express the current server heat environment in the room of
a datacenter. When the Situation differs, the power
consumption of cooling capacity also differs. Fig. 7 shows the
parameter factors of the Situation in our proposed method.
These factors are expected to have a significant effect on the
power consumption of air conditioners in the room. The
average temperature of the total room, outside temperature,
and server calorific value in each Server Placement Area are
parameter elements of the Situation. Each parameter is divided
into multiple ranges, and the combination of the areas of each
range is defined as one situation. At each start time of a control
turn, the situation recognition function obtains the latest
parameters of the Situation and decides the current Situation
by judging each range of the parameter. In Fig.7 for example,
when the average temperature of the total room (factor 1)
divides 0-48 degrees evenly with 8 degrees into 6 ranges (0
degrees or more and less than 8 degrees as factor 1-1; 8
degrees or more and less than 16 degrees as factor 1-2) and
identifies which range the current value belongs to. By
identifying the range of all factors, the Situation is determined.
Then the control value generation function generates air-
conditioning settings with several levels of strength. For
example, air volume (Hz) and target temperature (°C) can be
adjusted as air-conditioning control values. In our proposed
method, the range of the maximum and minimum values of
each control value is evenly divided, and multiple control
stages are provided. At the end of each control turn, pass/fail
judgement about room temperature reward is calculated at the
reward calculation function. The temperature reward
condition is threshold-based, and the threshold is set to an
appropriate temperature that does not exceed the
predetermined GPU power consumption on the basis of the
relationship between the server intake port temperature and



power consumption of GPU server. Moreover, from the
viewpoint of secure operation of a datacenter, sensor
temperature at each Air-Conditioning Control Area also needs
to be under the fixed threshold value at both inlet and outlet
sides of servers. Among several control stages of air
conditioning in each Situation, the control stages that
exceeded the reward threshold are assumed as candidates of
control solutions. Additionally, the learning data storage saves
learning history of air-conditioning control in each Situation.

Situation example

Factorl Factor2 Factor3 Factor4 Factor5 Factor6

15 28 31 31 42 42

L 2

Situation Category
Factorl-2_Factor2-4_Factor3-4_Factor4-4_Factor5-5_Factor6-5

Factor Parameter Classification definition Range Factor range

identification

Divide 0-48°C
into 6 divisions

Factorl Average room temperature 8-16 Factorl-2
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Exhaust heat in Server Placement
Areal
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Fig. 7 Parameter factors of Situation
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Fig. 8 Data types saved in learning data storage

In order to calculate the total power consumption of air
conditioners and servers, it is necessary to save the power
consumption of air conditioners of every control stages in
each situation. Fig.8 shows the image of data types saved here.
Data is classified by every control stage of air conditioning in
each situation, and only the data exceeding the temperature
reward is saved as a candidate control solution. In each data,
predicted temperature transition information of the sensors
and power consumption of operating air conditioners during
the turn are saved. As for temperature information, we assume
that for each GPU placed in each Server Placement Area Ki
for Kigi,Kig2...Kigm, our system holds the temperature of
each sensor closest to the intake port of Kigj(j=1,,,,m) and
obtains this information from every Server Placement Area to
record the temperature distribution around the intake port of
the GPU servers in the entire room at every snapshot of the
control turn. Handing these leaning history data to the server
control function enables the total power consumption of
servers and air conditioners of each workload placement
pattern to be calculated by predicting the power consumption
of placing servers on the basis of the temperature transition of
the intake port during the turn and then adding power
consumption of air conditioners at the specific control stages
to it. In this way, the tradeoff between cooling capacity of
servers and air conditioners can be adjusted by controlling the
temperature distribution in each Server Placement Area at the
turn.
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The server control function mainly calculates the total power
consumption at each workload placement pattern and
determines the best pattern to most reduce it by selecting an
appropriate workload distribution to each Server Placement
Area and air-conditioning control stage in that Situation. First,
it obtains the workload schedule information, which contains
how many CPU and GPU workload processing requests will
come to the datacenter room at the start of the control turn. On
the basis of this information, the server control function
generates workload placement patterns to distribute these
CPU and GPU workloads at each Server Placement Area. It
can divide the entire load of CPU and GPU into n pieces
respectively, and each Server Placement Area can be assigned
a minimum of 0 workloads and a maximum of n workloads of
CPU and GPU. After generating workload placement patterns,
the server control function determines the server calorific
value in each Server Placement Areas of each workload
placement pattern. Server calorific value is defined as Formula

(2).
W(Si) = Pc(Si) xkc + Pg(Si) xkg (2)

Pc(Si) and Pg(Si) are basic power consumptions of a CPU
server and GPU server in the Server Placement Area Si. These
values are the basic power consumption amounts before an
increase in power consumption due to an increase in the
temperature of the server intake port. Kc and kg are thermal
resistance coefficients of CPU server and GPU server, which
show the proportional relationship between server calorific
value and power consumption of the CPU server and GPU
server, respectively. Since these coefficient values vary
depending on the server model used and the operating room
environment, the basic value needs to be calculated on the
basis of the calorific value and the power consumption amount
in advance in the room environment. For example, if there are
12 Pods and 5 GPU workload requests at Serve Placement
Area 1, 0.025KW per Pod workload and 1KW per GPU
workload are required as power consumption of server, and
both kc and kg are 1 in the operating room. Then the server
calorific value in Server Placement Area 1 is calculated as
5.3KW.

On the basis of the average temperature of the total room at
the start of the control turn, outside temperature, and server
calorific value in each Server Placement Area, the appropriate
Situation is determined for each workload placement pattern.
Next, the suitable air-conditioning control stage in that
Situation is determined. There are several air-conditioning
control stages in each Situation, and we assume the learning
history data of each control stage, which includes predicted
temperature transition information of the sensors near the
intake port of GPU servers and power consumption of
operating air conditioners in that turn, is saved in advance. The
control stage that most reduces the total power consumption
of servers and air conditioners will be selected in that Situation.

Power consumption in each Server Placement Area is
calculated by predicting the power consumption of working
CPU servers and GPU servers in that area to process certain
types of workload. As for CPU servers, the server control
function uses server resource utilization such as CPU
utilization as input information and predicts power
consumption of the server on which the Pods are running. As
for GPU servers, the server control function considers the
change in temperature of the server intake port and uses this
parameter, the number of GPU processing cards, and sensor
temperature inside GPU enclosure as input parameters to



predict power consumption. This learning model is prepared
in advance on the basis of learning history of running
workload in the specific room environment and server model.
By adding power consumption of the entire Server Placement
Area and air conditioners during the control turn, the best
control stages of air conditioning in each Situation can be
determined. We assume this total power consumption of
servers and air conditioners to be the best solution at the
specific workload placement pattern to adjust room
temperature distribution to an appropriate level to most reduce
total power consumption of cooling functions in the room.

Finally, the workload placement pattern decision function
chooses the workload placement pattern that has the lowest
power consumption from all generated patterns. In this way,
the optimum workload distribution and air-conditioning
control settings are determined. Even though only CPU
servers exist in the server environment, there is no need to
consider change in the intake port temperature. Also, the
server environment including GPU servers shows a different
tradeoff adjustment approach and is also greatly dependent on
the number of GPU servers and air conditioners and the level
of exhaust heat generation, etc. in the specific room
environment. Therefore, our self-adaptive approach to
adjusting cooling capacity in specific room environment is
effective to reduce the total power consumption in datacenter
rooms, especially ones containing GPU.

IV. EVALUATION

A. Evaluation settings

To evaluate the effectiveness of our proposed method, we
generate 3 different scales of exhaust heat patterns (30, 60,
120 KW) in a datacenter room and evaluate the total power
consumption of servers and air conditioners by changing
workload placement patterns and control stages of air
conditioners. Exhaust heat is generated by a pseudo heat
generator that simulates heat generation of GPU and CPU
workloads. By measurement in the datacenter room in
advance, thermal resistance coefficients kc and kg are set to 1,
and basic power consumptions Pc(Si) and Pg(Si) of each CPU
and GPU workload are set to 0.025 and 1, respectively, in this
experiment. For example, at 30KW exhaust heat patterns, we
simulate 25 GPU workloads and 200 CPU workloads by Pods
placed in the room at the start of a control turn. The workloads
at the 60KW and 120KW patterns are two and four times as
much as at the 30KW pattern, respectively. Datacenter rooms
used in this experiment have four Server Placement Areas and
two air conditioners as shown in Fig. 5. The length of one
control turn is set to 30 minutes.

Table 1 shows our workload distribution ratio pattern and
air-conditioning setting patterns. We prepared a workload
distribution ratio divided by 25% to create patterns, which is
very normal at datacenters. Also, control stages of air
conditioners are also comprehensively prepared in the
possible control values. We change them at three exhaust heat
patterns. Table 1 also shows how we applied these setting
parameters to each exhaust heat pattern in this experiment.
We compared the difference in total power consumption
between the best pattern selected by our proposed method and
the randomly selected pattern among patterns that can be taken
in this experiment. Power consumption of GPU servers in
each Server Placement Area during the control turn is
estimated on the basis of the intake port temperature obtained
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from the temperature sensor nearest to each intake port in the
room, using learning data shown in Fig. 4.

Table 1. Evaluation settings

Workload distribution Air conditioning .
- X Exhaust heat pattern settings
ratio pattern settings pattern
P1  (0%,50%,50%.,0%) C1 (15°C.60Hz) 30KW: P1~P5 & C1~ Cé6
P2 (50%,50%,0%,0%) C2  (19°C,56Hz) 60KW: P1™~P5 & Cl™~ C4
P3  (0%,0%,50%,50%) C3  (23°C,52Hz) 120KW: P3.P4 & Cl1™ C4
P4 (25%,25%,25%,25%) C4 _ (27°C.48Hz)
PS5 (50%.,0%,0%.,50%) C5 (31°C.44Hz)
C6__(35°C.40Hz)

B. Evaluation results

Fig. 9 shows our evaluation results for three exhaust heat
patterns. In all patterns, our proposed method achieved the
lowest power consumption. It reduced total power
consumption by 33.7, 9.4, and 6.8% compared with the other
method at 30, 60, 120KW exhaust heat patterns, respectively.
The power consumption of air conditioners alone is reduced
by 85.9, 35.1, and 44.5%, respectively. This shows that our
proposed method significantly reduced the total power
consumption while considering the increase in GPU server
power consumption due to the intake port temperature change,
lowering the air-conditioning control stage as much as
possible, and balancing the cooling capacity of air
conditioners and server itself in the datacenter room. This
feature is maintained even if the exhaust heat generated in the
room changes, by categorizing heat distribution in each room
area of the current control turn with the Situation we defined,
estimating the temperature distribution at the control turn, and
adopting the suitable air-conditioning control stage that most
reduces the total power consumption in each Situation. Also,
in the environment where GPU servers are placed, our
proposed method considers the power increase of the GPU
server due to the increase in the intake port temperature, and
this phenomenon was not observed in CPU servers even in
very common temperature ranges such as over 30 °C.
Especially in the case where the number of processing GPU
servers increases in the room, a solution needs to be derived
that suppresses the total power consumption by accurately
estimating the power consumption of the servers at the
specific control stage of air conditioners.

Next, Fig.10 shows the difference in power consumption of
the best solution in each workload placement pattern from P1
to PS5 at 60KW heat cases. The results show that when the
workload placement pattern differs, the total power
consumption of best solution, which with air control stages
achieves the most energy-saving, also differs. At 60KW heat
cases, the P3C2 pattern totally requires 36.89KWh during the
control turn, so it reduces the power consumption the most.
On the other hand, the P1C4 pattern requires 39.77KWh, so
there was a difference of 7.2% in total power consumption
between these two patterns. This reduction in overall power
consumption can be a non-negligible effect as the scale of
servers operating at the datacenter increases. Our proposed
method generates multiple workload placement patterns of the
Server Placement Area for the same amount of processing
requests generated in a room, predicts the power consumption
of air conditioning and servers, and selects the patterns with
the smallest total power consumption. As the room
environment differs, the best pattern also differs in accordance
with the distance and wind angle between air conditioners and
servers, hot spots in the room, number of servers, etc., It can
be said that our self-adaptive approach effectively responds to
the changes in these environmental factors.



Finally, Table 2 compares of energy-efficiency parameters of

the best solution in 30, 60, and 120K'W heat patterns, average
power consumption per air conditioner, server power
consumption ratio to basic power consumption, and total
power consumption ratio when converted to 120KW. When
the temperature of the intake port rises, power consumption of
GPU servers increases, and this leads to a higher ratio of server
power consumption to server basic power consumption.
Strengthening the air control stages will reduce this ratio but
increase the power consumption per air conditioner, so there
is in a tradeoff relationship between these two parameters.
Table 2 also shows that when the exhaust heat scale differs,
the proper value of these two parameters also changes. In the
case where the server power consumption ratio rises
extremely due to the temperature of server inlets rising and a
large number of GPU servers working at the turn, power
consumption of servers especially will increase.

With our proposed method, the power consumption ratio can
be suppressed to a certain level by strengthening air-
conditioning control stages to effectively adjust the tradeoff
between cooling capacity of air conditioners and GPU servers.
From the comparison of the 3™ parameter, the total power
consumption ratio when converted to 120KW, it also can be
said that after optimizing control within each single datacenter
room, considering workload distribution among multiple
datacenter rooms can further improve power efficiency. In the
case of our experimental settings, assuming there are enough
air-conditioned rooms with entirely the same environment to
handle workload requests, the best power effective solution is
to process 120KW in 4 rooms with 30KW each, and the worst
solution is to process 120KW in 2 rooms with 60KW each. It
is worth noting that there is a about 10% power efficiency
difference between these two solutions, and this optimal
solution depends heavily on the room environment. As the
next step of optimizing the workload placement and air-
conditioning settings in a single datacenter room, we will next
consider how to distribute the total workload generated at a
datacenter between the rooms in consideration of the
characteristics of each room.
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120KW:proposal (P4C4) |
60kW: P5C1 [ —
60KW: proposal(P3C2) [
sokw: pict -—-—
30KW: proposal(P5Ce) [
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mTotal mServer mAirconditioner  Power consumption [KWh]

Fig. 9 Evaluation results of 3 exhaust heat patterns
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Fig. 10 Comparison of workload placement patterns (60
KW)

279

Table 2. Comparison of energy-efficiency parameters

Average power
consumption

Server power consumption
ratio to server basic power

Total power

Exhaust consumption ratio

heat patterns | /air conditioner consumption (converting1 20KW)
BOKW 0.75SKWh 100.80%| 96.50% (4 rooms
[OKW 3.73KWh 98.10%| 107.10% (2 rooms
120KW 3.55KWh 103.00%| 100% (1 room

V. CONCLUSION

We proposed an optimum control method for workload
placement and air conditioners in datacenter rooms where
CPU servers and GPU servers coexist. Experiment results in
an actual machine environment showed that our proposed
method has valid power-saving effects by adjusting cooling
capacity tradeoffs between GPU servers and air conditioners.
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