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Abstract— High-performance computing datacenters have 

been rapidly growing, both in number and size. In addition to 
the conventional CPU servers, more GPU servers are being 
placed in datacenters to achieve high-speed processing such as 
image recognition. From our experiments, the power 
consumption during GPU operation is greatly affected by 
changes in the temperature of the server intake port. Therefore, 
to reduce the total power consumption of datacenters, thermal 
management of datacenters can address dominant problems 
associated with cooling such as the recirculation of hot air from 
the server outlets to their inlets and the appearance of hot spots. 
In this paper, we propose a workload placement method for 
environments where CPU servers and GPU servers coexist, and 
an optimum air-conditioning control method that cooperates 
with the workload placement method to reduce the total power 
consumption of the servers and air conditioners in datacenters. 
Experiment results in an actual machine environment showed 
that our proposed method has valid power-saving effects by 
adjusting cooling capacity tradeoffs between GPU servers and 
air conditioners. 

Keywords—workload placement, intake port temperature of GPU 
server, optimum control of air conditioner, power-saving effects 

I. INTRODUCTION  
Cloud computing provides dynamic and scalable virtual 

resources through the Internet to users on demand and is 
furthering the development of distributed computing, parallel 
computing, and grid computing [1]. Its main advantage is that 
it can quickly reduce hardware costs by offering on-demand 
access to shared computer resources and data; users can access 
high-quality services at low cost. Because power and energy 
are first-order concerns in cloud computing, cloud providers 
require a low operation overhead at datacenters. Optimizing 
cooling presents the single largest area of opportunity for 
datacenters to save energy. Due to the increasing power 
density and heat generation of newer equipment, cooling and 
air-conditioning energy costs now surpass the cost of 
powering servers [2]. Moreover, graphics processing unit 
(GPU) servers have been frequently used in recent years for 
high-speed, large-volume data processing such as artificial 
intelligence (AI) inference such as image recognition. Users 
can obtain calculation results more quickly by multi-parallel 
processing. Generally, GPU servers consume more power 
than central processing unit (CPU) servers, and the amount of 
heat released to the datacenter space increases in proportion to 
the power consumption of the server, so the power 
consumption of the air conditioners also increases accordingly 
[3]. On the other hand, our basic experimental results make it 
clear that the power consumption of the GPU server fluctuates 
more in the same temperature range than that of the CPU 

server due to the changes in the server intake port temperature. 
Figs. 1-4 show the changes in the GPU parameters when the 
server intake port temperature is 20 or 33 °C.  We use HPE 
Apollo6500 Gen10 with in 4 QuardroRTX8000 GPU cards 
inserted and FAST N-Body simulation with CUDA [4] for 
running applications on the GPU server in our experiment. Fig. 
1 shows the temperature change in the GPU card during GPU 
operation when the intake port temperature is 20 or 33 °C. 
When the intake port temperature is 20 °C, the temperature of 
all GPU cards increases up to and stays around 55 °C while 
the application is running. On the other hand, when intake port 
temperature is 33 °C, some GPU card temperatures exceed 
70 °C, and the average temperature of each one is about 10° C 
higher than when the intake port temperature is 20 °C. Fig. 2 
shows the power consumption of the GPU cards. The average 
power consumption was 15W per GPU card higher when the 
intake port temperature was 33 °C than when it was 20 °C. 
The difference in fan rotation rate can be considered as one 
cause of the increase in the power consumption of the GPU 
cards, shown in Fig. 3. The fan rotation rate during application 
running was constant when the intake port temperature was 
20 °C, whereas it increased as the GPU card temperature 
increased when the intake port temperature was 33 °C. Fig. 4 
shows the changes in GPU sever power consumption due to 
changes in intake port temperature. In the GPU server as a 
whole, the power consumption is about 9% higher at the inlet 
temperature of 33° C than at the inlet temperature of 20 °C. In 
the same temperature range of inlet temperature, such a large 
fluctuation in power consumption has not been confirmed in 
conventional CPU servers so far. Under a high inlet 
temperature such as 30 °C or more, temperature is more likely 
to rise inside the GPU server than the CPU server, thereby 
increasing the amount of power consumption due to fan 
rotation for cooling the heat inside the server. 

Therefore, in a datacenter containing GPU servers in addition 
to the conventional CPU servers, a new power-saving control 
method is required that adjusts the tradeoff between cooling 
capacity of GPU servers and air conditioners. In this paper, we 
propose an optimum air-conditioning control method that 
cooperates with workload placement of Kubernetes-based [5] 
CPU and GPU workloads. The proposed method minimizes 
total power consumption of air conditioners and servers by 
considering changes in power consumption of GPU servers 
due to fluctuations in inlet temperature. The power 
consumption of air conditioners is minimized by our original 
environmental self-adaptation method that categorizes 
learning history with the conditions composed of exhaust heat 
distribution and temperature information in the room as an 
environmental classification standard.  
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               Fig. 1 Temperature change of the GPU card 

 
         Fig. 2 Power consumption change of the GPU card 

 
           Fig. 3 Fan rotate rate change of the GPU card 

 
          Fig. 4 Changes in GPU server power consumption 

II. RELATED WORK 

A. Workload Placment 
Workload placement in datacenters has long been 

investigated and is currently still a hot topic in various 
research domains. Deelman et al. [6] have done considerable 
work on planning, mapping, and data-reuse in workflow 
scheduling. They proposed Pegasus [6], which is a 
framework that maps complex scientific workflows onto 
distributed resources such as the Grid. DAG Man, together 
with Pegasus, schedules tasks to the Condor system. Kim et 
al. [7] implemented a guest-aware priority-based scheduling 
scheme, which is specifically designed to support latency-
sensitive workloads. The proposed scheduling scheme 
prioritizes the virtual machines (VMs) to be allocated by 
using the information about priorities and status of guest-
level tasks in each VM. It preferentially selects the VMs that 
run latency-sensitive applications to be scheduled, and in this 
way, reduces the response time to the I/O events of latency-
sensitive workloads. Wang et al. [8] proposed a novel VM 

scheduling algorithm for virtualized heterogonous multicore 
architectures. The algorithm exploits the core performance 
heterogeneity to optimize the overall system energy 
efficiency. Takouna et al. [9] also addressed the VM 
scheduling of heterogeneous multicore machines. A 
scheduling policy is designed to schedule each virtual 
machine to an appropriate processing core on the basis of the 
performance sensitivity to the CPU clock frequency and the 
performance dependency on the host. Balouch and Bejarzahi  
[10] targeted a scheduling algorithm aiming at allocating 
VMs to physical hosts of data centers in such a way that the 
target host will not be overloaded or over-heated by 
scheduling VMs with respect to the temperature and CPU 
utilization of processors. 

B. Kubernetes Scheduler 
Kubernetes (K8s), an open-source container orchestration 

tool, has become valuable for managing complex container-
based applications [5] and has been gaining a lot of attention. 
Kube-scheduler is the default task scheduler in K8s that uses 
Pod as the smallest deployable unit and has been one of the 
most active research topics. The scheduler determines which 
Nodes are the proper placement for each Pod in the 
scheduling queue on the basis of constraints and available 
resources. Chang et al. [11] proposed a platform that 
dynamically manages the number of Pods deployed on a K8s 
cluster in accordance with Node resource usage. In their 
platform, Nodes are monitored using multiple monitoring 
tools, and the number of Pods is increased or decreased when 
the overall CPU usage is above or below a certain threshold. 
Townend et al. [12] clarified the importance of considering 
the characteristics of hardware and software when scheduling 
Pods. In their scheduler, Nodes are monitored and modeled 
using specialized machines. In an ideal environment, this 
scheduler facilitates a reduction in overall power 
consumption. Douhara et al. [13] proposed both a Workload 
Allocation Optimizer (WAO)-scheduler and WAO Load 
Balancer architecture, which optimize Pod allocation and 
task allocation, respectively, as an AI-based power 
consumption reduction function for K8s.  

C. Optimum control of air conditioners at datacenters 
Asa et al. [3] solved a combinatorial optimization problem 

by minimizing the total power consumption of air 
conditioning and IT equipment in a specific IT load 
placement pattern. Nakamura et al. [14] proposed a 
datacenter energy management system that reduces power 
consumption of cooling and a novel method for semi-optimal 
workload placement and cooling.  An algorithm for a semi-
optimal solution is introduced, and optimal cooling is 
calculated using the resultant workload placement and linear 
programming, which is faster than mixed integer 
programming.  

However, in an environment where GPU servers and CPU 
servers are placed together, an optimal control method has yet 
to be proposed that minimizes the total power consumption 
of servers and air conditioners in consideration of the power 
consumption characteristics of GPU servers due to changes 
in the inlet temperature. Moreover, no K8s scheduler has 
been proposed that implements a placement method that 
appropriately adjusts the tradeoff of cooling efficiency 
between air conditioners and GPU servers by simultaneously 
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controlling GPU load placement and Pod placement in 
cooperation with suitable air-conditioning settings. 

III. PROPOSAL 
First, Fig. 5 shows the definition settings of our proposed 

method. In the server room of a datacenter, GPU servers and 
CPU servers are placed in several Server Placement Areas, 
which indicate which server is located in which area of the 
room. Air conditioners are also placed at regular intervals. The 
Air-Conditioning Control Area is an area to measure the room 
temperature effect of air-conditioning control, and it faces 
either the intake port side or the discharge port side of the 
server. The air blown from the air conditioner is blown out 
from the Air-Conditioning Control Area at the inlet side 
(Areas 3 and 4 in Fig. 5) via  pipes  provided under the floor. 
Then, in the Air-Conditioning Control Area at the outlet side 
(Areas 1, 2, 5, and 6 in Fig. 5), whose temperature  has risen 
due to the heat of each server exhaust, and an air flow 
returning to the air conditioner is generated. Many 
temperature sensors are installed in both the Air-Conditioning 
Control Area and Server Placement Area, and a temperature 
sensor is also installed outside the datacenter. It is assumed 
that the correspondence of which temperature sensor indicates 
the intake port temperature of each GPU server is also set in 
advance, and our power management control system can 
obtain this temperature information in real time. We assume 
fixed amounts of CPU and GPU workloads are generated at 
regular time intervals we call “control turns,” and the problem 
to solve is how to schedule these tasks to CPU and GPU 
servers with suitable air-conditioning settings that minimize 
the total power consumption of servers and air conditioners. 

 
                Fig. 5  Definition settings of proposal 

Formula (1) calculates total power consumption. 
P=∑ ∑ ∑ ∑ 𝑎𝑎_{𝑖𝑖}(𝑡𝑡) + 𝑐𝑐_{𝑗𝑗}(𝑡𝑡) + 𝑔𝑔_{𝑘𝑘}(𝑡𝑡)   (1)   𝑜𝑜
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We  assume the start and end times of a control turn as ts and 
te, there are m air conditioners, n CPU servers, and o GPU 
servers respectively at the evaluation environment. The power 
consumption of each air conditioner, CPU server, and GPU 
server is shown as a_{i}(t), c_{j}(t), g_{k}(t) respectively. 
a_{i}(t) is affected by the amount of exhaust heat generated by 
the workload in each Air-Conditioning Control Area, and the 
amount of heat exhausted from the server increases in 
proportion to the amount of power consumption [3]. We 
estimate a_{i}(t) by categorizing the workload placement 
pattern from learning history in the specific room environment, 
on the basis of the standard composed of power consumption 
of server in each Server Placement Area and some 
temperature information of the room. In the workload pattern 
with GPU servers, a_{i}(t) and g_{k}(t) are in a tradeoff 
relationship in terms of the adjustment of cooling capacity of 
GPU servers and air conditioners. Therefore, the total power 

consumption needs to be predicted on the basis of the change 
in the intake port temperature of the GPU servers for each 
workload distribution and air-conditioning setting pattern, and 
the pattern needs to be selected that minimizes the total power 
consumption among them. 

 
     Fig. 6 Functions of power management control systems 

Fig. 6 shows all functions of our proposed power 
management control system. There are two main function 
units in our system: the server control function unit and air-
conditioning control function unit. In the air-conditioning 
control function unit, suitable air-conditioning settings need to 
be found to meet the overall power consumption requirement 
by self-adaptive control.  

We define environment standardization called the “Situation” 
to express the current server heat environment in the room of 
a datacenter. When the Situation differs, the power 
consumption of cooling capacity also differs. Fig. 7 shows the 
parameter factors of the Situation in our proposed method. 
These factors are expected to have a significant effect on the 
power consumption of air conditioners in the room. The 
average temperature of the total room, outside temperature, 
and server calorific value in each Server Placement Area are 
parameter elements of the Situation. Each parameter is divided 
into multiple ranges, and the combination of the areas of each 
range is defined as one situation. At each start time of a control 
turn, the situation recognition function obtains the latest 
parameters of the Situation and decides the current Situation 
by judging each range of the parameter. In Fig.7 for example, 
when the average temperature of the total room (factor 1) 
divides 0-48 degrees evenly with 8 degrees into 6 ranges (0 
degrees or more and less than 8 degrees as factor 1-1; 8 
degrees or more and less than 16 degrees as factor 1-2) and 
identifies which range the current value belongs to. By 
identifying the range of all factors, the Situation is determined. 
Then the control value generation function generates air-
conditioning settings with several levels of strength. For 
example, air volume (Hz) and target temperature (°C) can be 
adjusted as air-conditioning control values. In our proposed 
method, the range of the maximum and minimum values of 
each control value is evenly divided, and multiple control 
stages are provided.  At the end of each control turn, pass/fail 
judgement about room temperature reward is calculated at the 
reward calculation function. The temperature reward 
condition is threshold-based, and the threshold is set to an 
appropriate temperature that does not exceed the 
predetermined GPU power consumption on the basis of the 
relationship between the server intake port temperature and 
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power consumption of  GPU server. Moreover, from the 
viewpoint of secure operation of a datacenter, sensor 
temperature at each Air-Conditioning Control Area also needs 
to be under the fixed threshold value at both inlet and outlet 
sides of servers. Among several control stages of air 
conditioning in each Situation, the control stages that 
exceeded the reward threshold are assumed as candidates of 
control solutions. Additionally, the learning data storage saves 
learning history of air-conditioning control in each Situation.  

 
               Fig. 7  Parameter factors of Situation  

 
Fig. 8 Data types saved in learning data storage 

In order to calculate the total power consumption of air 
conditioners and servers, it is necessary to save the power 
consumption of air conditioners of  every control stages in 
each situation. Fig.8 shows the image of data types saved here. 
Data is classified by every control stage of air conditioning in 
each situation, and only the data exceeding the temperature 
reward is saved as a candidate control solution. In each data, 
predicted temperature transition information of the sensors 
and  power consumption of operating air conditioners during 
the turn are saved. As for temperature information, we assume 
that for each GPU placed in each Server Placement Area Ki 
for Kig1,Kig2…Kigm, our system holds the temperature of 
each sensor closest to the intake port of Kigj(j=1,,,,m) and 
obtains this information from every Server Placement Area to 
record the temperature distribution around the intake port of 
the GPU servers in the entire room at every snapshot of the 
control turn. Handing these leaning history data to the server 
control function enables the total power consumption of 
servers and air conditioners of each workload placement 
pattern to be calculated by predicting the power consumption 
of placing servers on the basis of the temperature transition of 
the intake port during the turn and then adding power 
consumption of air conditioners at the specific control stages 
to it. In this way, the tradeoff between cooling capacity of 
servers and air conditioners can be adjusted by controlling the 
temperature distribution in each Server Placement Area at the 
turn. 

 The server control function mainly calculates the total power 
consumption at each workload placement pattern and 
determines the best pattern to most reduce it by selecting an 
appropriate workload distribution to each Server Placement 
Area and air-conditioning control stage in that Situation. First, 
it obtains the workload schedule information, which contains 
how many CPU and GPU workload processing requests will 
come to the datacenter room at the start of the control turn. On 
the basis of this information, the server control function 
generates workload placement patterns to distribute these 
CPU and GPU workloads at each Server Placement Area. It 
can divide the entire load of CPU and GPU into n pieces 
respectively, and each Server Placement Area can be assigned 
a minimum of 0 workloads and a maximum of n workloads of 
CPU and GPU. After generating workload placement patterns,  
the server control function determines the server calorific 
value in each Server Placement Areas of each workload 
placement pattern. Server calorific value is defined as Formula 
(2).  

               W(Si)  =  Pc(Si) ×kc  +  Pg(Si) ×kg        (2) 

Pc(Si) and Pg(Si) are basic power consumptions of a CPU 
server and GPU server in the Server Placement Area Si. These 
values are the basic power consumption amounts before an 
increase in power consumption due to an increase in the 
temperature of the server intake port.  Kc and kg are thermal 
resistance coefficients of CPU server and GPU server, which 
show the proportional relationship between server calorific 
value and power consumption of the CPU server and GPU 
server, respectively. Since these coefficient values vary 
depending on the server model used and the operating room 
environment, the basic value needs to be calculated on the 
basis of the calorific value and the power consumption amount 
in advance in the room environment. For example, if there are 
12 Pods and 5 GPU workload requests at Serve Placement 
Area 1, 0.025KW per Pod workload and 1KW per GPU 
workload are required as power consumption of server, and 
both kc and kg are 1 in the operating room. Then the server 
calorific value in Server Placement Area 1 is calculated as 
5.3KW. 

   On the basis of the average temperature of the total room at 
the start of the control turn, outside temperature, and server 
calorific value in each Server Placement Area, the appropriate 
Situation is determined for each workload placement pattern. 
Next, the suitable air-conditioning control stage in that 
Situation is determined. There are several air-conditioning 
control stages in each Situation, and we assume the learning 
history data of each control stage, which includes predicted 
temperature transition information of the sensors near the 
intake port of GPU servers and power consumption of 
operating air conditioners in that turn, is saved in advance. The 
control stage that most reduces the total power consumption 
of servers and air conditioners will be selected in that Situation.  

   Power consumption in each Server Placement Area is 
calculated by predicting the power consumption of working 
CPU servers and GPU servers in that area to process certain 
types of workload. As for CPU servers, the server control 
function uses server resource utilization such as CPU 
utilization as input information and predicts power 
consumption of the server on which the Pods are running. As 
for GPU servers, the server control function considers the 
change in temperature of the server intake port and uses this 
parameter, the number of GPU processing cards, and sensor 
temperature inside GPU enclosure as input parameters to 
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predict power consumption. This learning model is prepared 
in advance on the basis of learning history of running 
workload in the specific room environment and server model. 
By adding power consumption of the entire Server Placement 
Area and air conditioners during the control turn, the best 
control stages of air conditioning in each Situation can be 
determined. We assume this total power consumption of 
servers and air conditioners to be the best solution at the 
specific workload placement pattern to adjust room 
temperature distribution to an appropriate level to most reduce 
total power consumption of cooling functions in the room.  

   Finally, the workload placement pattern decision function 
chooses the workload placement pattern that has the lowest 
power consumption from all generated patterns. In this way, 
the optimum workload distribution and air-conditioning 
control settings are determined. Even though only CPU 
servers exist in the server environment, there is no need to 
consider change in the intake port temperature. Also, the 
server environment including GPU servers shows a different 
tradeoff adjustment approach and is also greatly dependent on 
the number of GPU servers and air conditioners and the level 
of exhaust heat generation, etc. in the specific room 
environment. Therefore, our self-adaptive approach to 
adjusting cooling capacity in specific room environment is 
effective to reduce the total power consumption in datacenter 
rooms, especially ones containing GPU.  

IV. EVALUATION 

A. Evaluation settings 
 To evaluate the effectiveness of our proposed method, we 
generate 3 different scales of exhaust heat patterns (30, 60, 
120 KW) in a datacenter room and evaluate the total power 
consumption of servers and air conditioners by changing 
workload placement patterns and control stages of air 
conditioners. Exhaust heat is generated by a pseudo heat 
generator that simulates heat generation of GPU and CPU 
workloads. By measurement in the datacenter room in 
advance, thermal resistance coefficients kc and kg are set to 1, 
and basic power consumptions Pc(Si) and Pg(Si) of each CPU 
and GPU workload are set to 0.025 and 1, respectively, in this 
experiment. For example, at 30KW exhaust heat patterns, we 
simulate 25 GPU workloads and 200 CPU workloads by Pods 
placed in the room at the start of a control turn. The workloads 
at the 60KW and 120KW patterns are two and four times as 
much as at the 30KW pattern, respectively. Datacenter rooms 
used in this experiment have four Server Placement Areas and 
two air conditioners as shown in Fig. 5. The length of one 
control turn is set to 30 minutes.  

   Table 1 shows our workload distribution ratio pattern and 
air-conditioning setting patterns. We prepared a workload 
distribution ratio divided by 25% to create patterns, which is 
very normal at datacenters. Also, control stages of air 
conditioners are also comprehensively prepared in the 
possible control values. We change them at three exhaust heat 
patterns. Table 1 also shows how we applied these setting 
parameters to each exhaust heat pattern in this experiment.  
We compared the difference in total power consumption 
between the best pattern selected by our proposed method and 
the randomly selected pattern among patterns that can be taken 
in this experiment. Power consumption of GPU servers in 
each Server Placement Area during the control turn is 
estimated on the basis of the intake port temperature obtained 

from the temperature sensor nearest to each intake port in the 
room, using learning data shown in Fig. 4.  

 Table 1.  Evaluation settings       

 
B. Evaluation results 
  Fig. 9 shows our evaluation results for three exhaust heat 
patterns. In all patterns, our proposed method achieved the 
lowest power consumption. It reduced total power 
consumption by 33.7, 9.4, and 6.8% compared with the other 
method at 30, 60, 120KW exhaust heat patterns, respectively. 
The power consumption of air conditioners alone is reduced 
by 85.9, 35.1, and 44.5%, respectively. This shows that our 
proposed method significantly reduced the total power 
consumption while considering the increase in GPU server 
power consumption due to the intake port temperature change, 
lowering the air-conditioning control stage as much as 
possible, and balancing the cooling capacity of air 
conditioners and server itself in the datacenter room. This 
feature is maintained even if the exhaust heat generated in the 
room changes, by categorizing heat distribution in each room 
area of the current control turn with the Situation we defined, 
estimating the temperature distribution at the control turn, and 
adopting the suitable air-conditioning control stage that most 
reduces the total power consumption in each Situation. Also, 
in the environment where GPU servers are placed, our 
proposed method considers the power increase of the GPU 
server due to the increase in the intake port temperature, and 
this phenomenon was not observed in CPU servers even in 
very common temperature ranges such as over 30 °C.  
Especially in the case where the number of processing GPU 
servers increases in the room, a solution needs to be derived 
that suppresses the total power consumption by accurately 
estimating the power consumption of the servers at the 
specific control stage of air conditioners. 

  Next, Fig.10 shows the difference in power consumption of 
the best solution in each workload placement pattern from P1 
to P5 at 60KW heat cases. The results show that when the 
workload placement pattern differs, the total power 
consumption of best solution, which with air control stages 
achieves the most energy-saving, also differs. At 60KW heat 
cases, the P3C2 pattern totally requires 36.89KWh during the 
control turn, so it reduces the power consumption the most. 
On the other hand, the P1C4 pattern requires 39.77KWh, so 
there was a difference of 7.2% in total power consumption 
between these two patterns. This reduction in overall power 
consumption can be a non-negligible effect as the scale of 
servers operating at the datacenter increases. Our proposed 
method generates multiple workload placement patterns of the 
Server Placement Area for the same amount of processing 
requests generated in a room, predicts the power consumption 
of air conditioning and servers, and selects the patterns with 
the smallest total power consumption. As the room 
environment differs, the best pattern also differs in accordance 
with the distance and wind angle between air conditioners and 
servers, hot spots in the room, number of servers, etc., It can 
be said that our self-adaptive approach effectively responds to 
the changes in these environmental factors.  
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 Finally, Table 2 compares of energy-efficiency parameters of 
the best solution in 30, 60, and 120KW heat patterns, average 
power consumption per air conditioner, server power 
consumption ratio to basic power consumption, and total 
power consumption ratio when converted to 120KW. When 
the temperature of the intake port rises, power consumption of 
GPU servers increases, and this leads to a higher ratio of server 
power consumption to server basic power consumption.  
Strengthening the air control stages will reduce this ratio but 
increase the power consumption per air conditioner, so there 
is in a tradeoff relationship between these two parameters. 
Table 2 also shows that when the exhaust heat scale differs, 
the proper value of these two parameters also changes. In the 
case where the server power consumption ratio rises 
extremely due to the temperature of server inlets rising and a 
large number of GPU servers working at the turn, power 
consumption of servers especially will increase.  

   With our proposed method, the power consumption ratio can 
be suppressed to a certain level by strengthening air-
conditioning control stages to effectively adjust the tradeoff 
between cooling capacity of air conditioners and GPU servers. 
From the comparison of the 3rd parameter, the total power 
consumption ratio when converted to 120KW, it also can be 
said that after optimizing control within each single datacenter 
room, considering workload distribution among multiple 
datacenter rooms can further improve power efficiency. In the 
case of our experimental settings, assuming there are enough 
air-conditioned rooms with entirely the same environment to 
handle workload requests, the best power effective solution is 
to process 120KW in 4 rooms with 30KW each, and the worst 
solution is to process 120KW in 2 rooms with 60KW each. It 
is worth noting that there is a about 10% power efficiency 
difference between these two solutions, and this optimal 
solution depends heavily on the room environment. As the 
next step of optimizing the workload placement and air-
conditioning settings in a single datacenter room, we will next 
consider how to distribute the total workload generated at a 
datacenter between the rooms in consideration of the 
characteristics of each room. 

 
Fig. 9  Evaluation results of 3 exhaust heat patterns   

Fig. 10  Comparison of workload placement patterns (60 
KW) 

Table 2. Comparison of energy-efficiency parameters 

 

V. CONCLUSION 
We proposed an optimum control method for workload 
placement and air conditioners in datacenter rooms where 
CPU servers and GPU servers coexist. Experiment results in 
an actual machine environment showed that our proposed 
method has valid power-saving effects by adjusting cooling 
capacity tradeoffs between GPU servers and air conditioners. 
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