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Abstract—Federated learning is a machine learning technique
that enables distributed training without explicitly data shar-
ing between multiple heterogeneous devices. In this paper, we
propose and develop a practical federated learning framework
to effectively support model deployment, aggregation, and client
device monitoring. The proposed approach is designed as a micro-
architecture service using container-related technologies such as
Docker, Kubernetes, and Prometheus.

Index Terms—Federated Learning Framework, Edge Comput-
ing, Micro Service Architecture

I. INTRODUCTION
A. Introduction

Federated learning is a machine learning technique that
enables distributed training without explicitly data sharing
between multiple heterogeneous devices. This avoids the han-
dling issue of sensitive information such as personal data,
secure business data, and confidential information in ma-
chine learning. Its applications span multiple industries and
services, including personal mobile devices, defense, surveil-
lance, healthcare, and smart agriculture [1]-[4].

To build a federated learning platform, it is necessary to
easily and effectively provide frequent communication traffic
between the server and the device in the learning process
[3]. In addition, proper load balancing between devices is
required for cooperative training. To do this, it is necessary
to monitor each device’s resources and status [S5]. In terms of
improving learning performance, determining the reliability of
device training results is also critical [6].

Therefore, we propose and develop a practical federated
learning framework to effectively support model deployment,
aggregation, and device monitoring. The proposed method
utilizes container-related technologies such as Docker [7],
Kubernetes [8], and Prometheus [9]. Through this, stable
model distribution was supported and load balancing by
device became possible. In addition, each device’s resources
and state can be monitored, enabling resource-aware federated
learning to be supported. Training time is measured in terms
of testing the developed platform. In addition, when federated
learning on our platform, it was found that the overall learning
speed was improved by reducing the data transfer overhead.

This work was supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea govern-
ment(MSIT) (No. 2021-0-00907, Development of Adaptive and Lightweight
Edge-Collaborative Analysis Technology for Enabling Proactively Immediate
Response and Rapid Learning).
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B. Related Work

1) Federated Learning: Fig 1 shows the concept of feder-
ated learning [1]-[4]. For federated learning, it is usually com-
posed of a centralized server and several distributed devices.
They do not directly share training samples from data sources,
but they can transmit training results between the server and
distributed devices. The centralized training server aggregates
the distributed training results sent by multiple participating
devices and updates the common machine learning model.
The common updated model is redeployed to the devices, and
new training is performed again in participating devices. By
repeating this, the performance of the trained model gradually
improves [1]-[4].
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Fig. 1. Concept of federated learning [1]-[4].

2) Containerization: Containerization is operating system-
level or application-level virtualization to deliver a software
package called containers [10]-[12]. Multiple containers share
the OS kernel, but they operate in their configuration files
or dependency libraries in an isolated execution environment.
However, they can also communicate with each other through
application programming interfaces(APIs), etc.

Docker is a well-known and popular containerization tech-
nology [7], [10], [11]. These container technologies such as
Docker [10] and container-d [13] can be effectively managed
and controlled through a container orchestration system such
as Docker Swarm [14] and Kubernetes [8], [10].
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C. Proposed Framework and Implementations
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Fig. 2. Proposed framework for federated learning

1) Proposed Federated Learning Framework: Fig 2 shows
the structure of the proposed framework for federated learning.
The framework consists of a centralized server and distributed
devices. The main modules of the cloud server are “Device
Manager”, “Al Model Repository”, and “Data Visualizer”.
The “Device Manager” monitors the state and resources of
the device. It also provides a RESTful(Representational state
transfer) API [15] for registering devices. “Al Model Repos-
itory” serves to distribute and aggregate models of artificial
neural networks to desired target devices.

The central server and distributed devices are grouped into
a Kubernetes cluster [8]. Artificial neural network models are
packaged based on Docker containers. In a cluster network,
each Docker container can be deployed and controlled
on a schedule or API command. Parallel processing and
load balancing are also possible, and RESTful API [15] is
provided for resource-aware federated learning [5], [6], [16].
The proposed framework periodically observes and records
the operational status, computational capabilities, available
memory, and network bandwidth.

2) Implementation: To monitor the device, for each
device, Node Exporter [17] is installed and a container
for network speed measurement is executed. Prometheus
[9] then collects monitoring information provided by Node
Exporter and the network bandwidth monitor process on each
device. It periodically observes and records the operational
status, computational capabilities, available memory, network
bandwidth, etc. Grafana [18] is used for data visualization
as shown in Fig 3. The user registers the desired Al model
and is assigned device resources. This is done through the
provided RESTful API [15]. The user then deploys the model
to the desired devices and runs federated learning.
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Fig. 3. Example of data visualization

3) Experimental Result: Compared to the cloud-based
training method, when using federated learning, data
transmission overhead can be reduced. Therefore, it has the
advantage of reducing the total training time. Table I and Fig
4 show a brief configuration for training time measurement.
We used the ImageNet dataset [19], [20] for the training. As
a result, a speed improvement of about 11% was achieved as
shown in Table II. Where the time-saving rate is expressed as
(1). tyes is a cloud server-based training time, and t,¢,, is a
client device-based training time.
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TABLE I
EXPERIMENTAL CONDITION FOR TRAINING TIME MEASUREMENT
S/W H/W
Server | Ubuntu 20.04 LTS, Xeon 56cores@2.2Ghz,
python 3.8.10, 187 Gbytes RAM,
Model:YOLOv4 [21] | Titan XP GPU x 8ea
Client | Ubuntu 20.04 LTS, 17 12 cores@3.30GHz,

python 3.8.10,
Model: YOLOv4 [21]

15 Gbytes RAM,
GTX1080 GPU x lea
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Fig. 4. Configuration for training time measurement

: Client device-based training time

TABLE I
AVERAGE TRAINING LATENCY FOR 50 REPETITIONS

Cloud server- | Client device- | Time-saving
based training | based training | rate: At
time: ¢, time: %,,cq

6.02 [s] 6.72 [s] ~ -11.6 [%]

II. CONCLUSION

In this paper, we proposed and developed a practical
federated learning framework to effectively support model

deployment,

aggregation, and device monitoring. The

proposed method utilized container-related technologies such
as Docker, Kubernetes, and Prometheus. Through this, stable
model distribution was supported and load balancing by
device became possible. In addition, each device’s resources
and state can be monitored, enabling resource-aware federated
learning to be supported.
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