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Abstract—In this paper, we systematically model the performance
of running Al inference tasks on Mobile Cloud (MC) systems. Mobile
devices collect the monitoring data and perform the model inference
tasks. When the mobile devices cannot respond timely, the mobile
device oftfloads a portion of inference tasks to the cloud server. We aim
to model the performance of tasks running in such a MC system and
also the resource capacities that the cloud server must have to achieve
the required task performance.
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L INTRODUCTION

Al applications have become increasingly popular and been
widely deployed in various scenarios. In an Al application, an
Al model is typically first trained, and is then deployed in
systems to perform model inference tasks based on the input data.

In this paper, we systematically model the performance of
running inference Al tasks on Mobile Cloud (MC) systems. In
such a MC architecture, a collection of mobile devices are
connected to a cloud server [2][3]. The model inference service
is deployed in both mobile devices and the cloud server. Mobile
devices collect the monitoring data (such as the occurring
events captured by the sensor-enabled surveillance cameras in
a factory or a farm) and perform the model inference tasks
based on the input data and react with the corresponding actions
based on the inference outcome. However, when the arrival rate
of the incoming data becomes too big, the mobile devices may
not be able to respond timely. When this happens, the mobile
device offloads a portion of inference tasks to the cloud server
by the way of uploading the incoming data (such as the photos
taken by the surveillance camera) to the cloud. The model
inference service is invoked in cloud by taking the uploaded
data as input.

Given the arrival rate of the tasks (e.g., the arrival rate of the
incoming data), we aim to model the performance of tasks
running in a MC system and also the resource capacities such as
processing speed that the cloud server has to have, so that the
tasks can achieve the required performance (i.e., required
average response time of the tasks).

II.  RELATED WORKS

Many studies have been conducted on mobile cloud
computing [1][2][3][6][9][12][13]. Some focus on the
infrastructure of the system. MAUI [3] implemented the cloud
computing system with VM migration and code partitioning for
saving energy. In [4], device clones are used in the CloneCloud
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for keeping mobile applications unmodified to reduce the cost.
Moreover, MobiCloud [5] transforms the traditional Mobile Ad
Hoc Networks to a service oriented architecture by deploying a
service on each mobile node that has sufficient computing
capacity.

In addition, different methods have been developed to
optimize the time and energy cost in mobile clouds [10][11]. In
[7] and [8], the NP-hard property is proven for the centralized
optimization problem in the multi-user cloud system. Game-
theory methods is used to find the Nash Equilibrium in a
distributed manner. In [14], a heuristic offloading decision
algorithm is presented to achieve jointly optimization in terms
of offloading decision, communication and computation
resources.

III.  MODELLING THE OFFLOAD-ENABLED MOBILE CLOUD
SYSTEM

The architecture of a mobile cloud is illustrated in Figure 1.
Assume that the arrival rate of the tasks at mobile device m; is
A; and u; is the processing rate of m; (i.e., the number of tasks
that can be completed by m;). If 4; is equal or greater than u;,
the average response time of the tasks arriving at m;, denoted by
Ti, will be infinitely big. If 4; is less than u;, Ti can be calculated
by Equation (1) according to the queuing theory.

__1 (1)
e u; — /11'
w; in Equation (1) can be calculated by Equation (2), where w?
is the average computation workload (e.g., the number of
instructions) of the tasks arriving at m; while f; is the
performance of m;, i.e., the workload that m; can compute in a
time unit.
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Fig. 1. The architecture of the offload-enabled mobile cloud
system
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When T; is greater than the required response time of the
tasks, denoted by T}, the tasks arriving at m; needs to be

offloaded. Let A¢ and A} denote the rate of the tasks offloaded

(2)

u; =

to the cloud and the rate of the tasks remaining in m;, respectively.

We have A9 = A; — AL, In order to satisfy the required average
response time T{, AF can be calculated by Equation (3) by
transforming Equation (1) and combining Equation (2).
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We also have 1?2 = 1; — Ak. Based on the above discussions,

A? can be calculated by Equation (4).
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We can calculate A7 for every mobile device. Then the total
arrival rate of the tasks at the cloud, denoted by A€, is: A€

N
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The average response time of a task offloaded to the cloud
(denoted by T€) can be calculated by Equation (5), where u€ is
the processing rate of the cloud.

1
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The average computation workload of the tasks offloaded to
the cloud (denoted by w4¢) can be calculated by Equation (6).

(6)
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Then, u€ in Equation (5) can be calculated by Equation (7),
where f€ is the performance of the cloud, i.e., the workload that
the cloud can process in a time unit.

u¢ = r
wc
When a task is offloaded from mobile device m; to the cloud,
the input data of the task (e.g., the data that is needed for an Al
model to infer the outcome) need to be transmitted to the cloud,
which incurs the communication time from m; to the cloud
(denoted by T/™°). Let r/™¢ denote the bandwidth between m;

(7)

and the cloud and W” denote the average size of the message that
has to be communicated from m; to the cloud when the tasks in

m,; are offloaded. We can treat the network between a mobile
device and the cloud as a processing system (i.e., the network
mc

processes the messages). Then rv"v—b is the processing rate of the

system (i.e., the number of messzliges that can be processed by
the network in a time unit). Therefore, T/™¢ can be calculated by
Equation (8) also based on the queuing theory.

1 8
TimC = rmc ( )

wr A

The average response time of an offloaded task in mobile
device m; (denoted by T;), which is the time duration between
the time point when m; starts offloading for the task to the time
when the task is completed in the cloud, is given by Equation (9).
We neglect the time for the output data to be send back to m; due
to the output data size is in general much smaller than input data.

Tio=TimC+TC (9)
In order to meet the required response time of T}, the
following inequality should hold.

TP < T} (10)
Combining Equations (5)-(10), we can calculate the minimal
performance of the cloud server (denoted by f;) to meet the
required response time T for the tasks arriving at ;.

( )

[ 1
fic = A4+ -
k TiL

(11)

Finally, the minimal performance the cloud server to meet
the required response time for the tasks in all mobile devices
should be:

c — C
£ = max{f} (12)
IV. EXPERIMENTS

In this section, we presents the experimental results based on the
models presented in Section 3. The default values of the
parameters in the experiments are listed in Table 1 unless
otherwise stated.

Tab. 1. The default values of the parameters in the experiments on mobile cloud system

wi [125%0.8, 125%1.2] Workload of the task in mobile device i

Wl.b [16*%0.2, 16¥1.2] Communication data of the task in mobile device i

fi [200*0.8, 200*1.2] The processing speed of mobile device i
e [50*0.8, 50*1.2] The network bandwidth between mobile device j and edge

device i

A [2.0%0.8, 2.0*%1.2] The arrival rate of the tasks at mobile device i.

Tk [1.2%0.9, 1.2*1.1] The required response time of the tasks arriving at mobile i.
e [50%0.8, 50*%1.2] The network bandwidth between mobiles and the cloud
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Fig. 2 The change in Timc (communication time from a mobile device to the
cloud server) as /1i increases. The legends - max, min and mean — represent the
maximum, minimum and average of Tl-mC (IjKN).

Fig. 2 shows T{™ increases as A; increases. This is because
more tasks have to be offloaded to meet the performance
requirement, which leads to the increase in T;™. Note that when
A; is higher than 3, the performance requirement (TF=1.2)
cannot be met for the tasks in at least one mobile device since
the maximum 7/ (shown by the blue diamond legend in the
figure) will be over 1.2.

Fig. 3 shows T¢ decreases as A; increases. This can be
explained as follows. When a task is offloaded to the cloud
server. The turnaround time for the offloaded task equals to
T/™ + T¢. Since we need to maintain the task’s required
performance (i.e., TF=1.2), T must be reduced by increasing
the computation capacity of the cloud server to compensate for
the increase in T;™°.

Tab. 2 shows the experimental results over A;. It can be seen
from the table that as A; increases, A, u¢ and f° increase. This
result is to be expected since more tasks have to be offloaded
from the mobile devices to the cloud server as A;increases.

Tab. 2 The experimental results over A;

A € uc fe
1.400 6.332 7.582 946.219
1.600 8.332 9.639 1202.915
1.800 10.332 11.713 1461.852
2.000 12.332 13.816 1724.294
2.200 14.332 15.967 1992.666
2.400 16.332 18.208 2272.310
2.600 18.332 20.655 2577.738
2.800 20.332 23.775 2967.084
3.000 22.332 33.670 4202.001
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Fig. 3 The change in T € as /11‘ increases.

Table 3 shows the experimental results over the number of
mobile devices (N) in the MC. As can be seen from the table, A7
and T/ remain unchanged as N increases. This is to be
expected because the values of other parameters, including the
required performance of tasks (T{), the tasks’ arrival rate (1;)
and the processing speed of the mobile devices (f;), are fixed in
the experiments. Further, A¢ increase when N increases. This is
because more mobile devices offload their tasks to the cloud.
This in turn demands the more powerful cloud server in order to
meet the required tasks’ performance, and hence the increase in
f€ and u®. It can be seen that the increased capacity of the cloud
server enables T¢ to stay constant as N increases. This result
indicates that our models can effectively capture the increasing
demand for the cloud server as the number of the mobile devices
in the MC increases.

Table 4 shows the experimental results as the mean
computation workload (i.e., meanwd in the table, which the
average of wf) increases. It can be seen from this table that as
the mean computation workload increases up to 225, A¢, u¢ and
f€ all increase, which are to be expected while T¢ decreases.
The reason why T¢ increases is because as w increases, the
tasks’ arrival rate (i.e., A¥) that mobile devices can cope with
will decrease. This results in the increase in the arrival rate of
the offloaded tasks. Consequently, the arrival rate of the
communication tasks (i.e., the messages that the network
between a mobile device and the cloud has to transmit in a time
unit) between the mobile devices and the cloud will increase.

Tab. 3 The experimental results over the number of mobile devices

N| AT | g u a2 | T

10 | 1.233 | 0.529 | 1727.854 | 13.823 | 12333 | 0.671
20 | 1.233 | 0.529 | 3269.521 | 26.156 | 24.667 | 0.671
30 | 1.233 | 0.529 | 4811.187 | 38.49 37 0.671
40 | 1.233 | 0.529 | 6352.855 | 50.823 | 49.333 | 0.671
50 | 1.233 | 0.529 | 7894.521 | 63.156 | 61.667 | 0.671




Tab. 4 The impact of the mean computation workload of tasks (N=30, meanwb=16, meanlmd=1.5)

meanwd A° uc f TC

125 20.68 22.551 2860.452 0.534

150 27.927 30.293 4506.138 0.423

175 34.611 38.278 6743.68 0.273

200 38.623 46.477 9260.412 0.127

225 41.708 48.906 | 10784.428 0.139

250 Nan Nan Nan Nan

Tab. 5 The impact of the communication volume

wp A¢ u‘ fe T* maxtmc | mintmc meantmc
14 | 20.68 | 22.208 | 2816.919 | 0.655 0.545 0.225 0.335
16 | 20.68 | 22.618 | 2868.92 | 0.516 0.684 0.263 0.413
18 | 20.68 | 22.567 | 2862.519 | 0.53 0.67 0.28 0.461
20 | 20.68 | 25.692 | 3258.875 | 0.2 1 0.33 0.564
22 | 20.68 | 38.945 | 4939.985 | 0.055 1.145 0.365 0.633

This in turn increases the communication that the offloaded tasks
have to experience. Eventually, the cloud has to compensate by
reducing its response time for the offloaded tasks in order to
meet the tasks’ performance requirement (i.e., T/*). This is also
the reason why f¢ has to increase at a higher rate than A°. For
example, when meanwd increases from 125 to 150, A€ increases
by around 35%, but f€ increases by 58%. Note that when
meanwd increases to 250, the cloud will not be able to meet the
tasks’ performance requirement, no matter how much resource
capacity is allocated to the cloud server. The reason is because
with this value of meanwd, the communication time alone
between at least one mobile device and the cloud server is
greater than the tasks’ performance requirement, which means
that the offloaded tasks will not meet the performance
requirement even if the cloud server takes zero second to
complete the tasks.

Table 5 shows the experimental results as the
communication volume of the tasks (i.e., w?) increases. It can
be observed from Table 5 that as the average of communication
volume (Wl-b) increases, the communication time between the
mobile devices and the cloud, including maxtme (i.e., the max
of T/™¢, 1 < i < N), mintme (min of T;™“) and meantmc (mean
of T/™¢), increase. This is to be expected. Moreover, as w/
increases, u€ and f¢ also increase T° while decreases. This is
because when Wib increases, a task’s communication time,
which is one part of the total turnaround time of an offloaded
task, increases. Consequently, the cloud has to reduce the other
part of the total turnaround time (i.e., T¢ - the cloud response
time) in order to meet the task’s performance requirement,
which can only be achieved by increasing f¢ (i.e., the
processing speed of the cloud server). Since the computation
workload of the tasks remain unchanged in the experiments, the
processing rate of the cloud (i.e., u¢) also increases as the result
of the increase in f€.

V.

In this paper, we consider a mobile cloud system where the
Al inference services are deployed in mobile devices and the
cloud server. The data arrive at the mobile devices and then the
inference services deployed in the mobile devices need to
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process the Al inference tasks and meet the required response
time. If a mobile device cannot meet the tasks’ performance
requirement, it can offload the tasks to run on the cloud server.
We present an approach to modelling the task performance in
such a scenario and also model the minimal resource capacity
that the cloud server has to be equipped with in order to meet
the performance requirement. The experimental results show
that the proposed modelling approach can accurately capture
the task performance and the resource demand in order to meet
the performance requirement.
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