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Abstract—In this paper, we systematically model the performance 
of running AI inference tasks on Mobile Cloud (MC) systems. Mobile 
devices collect the monitoring data and perform the model inference 
tasks. When the mobile devices cannot respond timely, the mobile 
device offloads a portion of inference tasks to the cloud server. We aim 
to model the performance of tasks running in such a MC system and 
also the resource capacities that the cloud server must have to achieve 
the required task performance. 
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I.  INTRODUCTION  
AI applications have become increasingly popular and been 

widely deployed in various scenarios. In an AI application, an 
AI model is typically first trained, and is then deployed in 
systems to perform model inference tasks based on the input data. 

In this paper, we systematically model the performance of 
running inference AI tasks on Mobile Cloud (MC) systems. In 
such a MC architecture, a collection of mobile devices are 
connected to a cloud server [2][3]. The model inference service 
is deployed in both mobile devices and the cloud server. Mobile 
devices collect the monitoring data (such as the occurring 
events captured by the sensor-enabled surveillance cameras in 
a factory or a farm) and perform the model inference tasks 
based on the input data and react with the corresponding actions 
based on the inference outcome. However, when the arrival rate 
of the incoming data becomes too big, the mobile devices may 
not be able to respond timely. When this happens, the mobile 
device offloads a portion of inference tasks to the cloud server 
by the way of uploading the incoming data (such as the photos 
taken by the surveillance camera) to the cloud. The model 
inference service is invoked in cloud by taking the uploaded 
data as input.  

Given the arrival rate of the tasks (e.g., the arrival rate of the 
incoming data), we aim to model the performance of tasks 
running in a MC system and also the resource capacities such as 
processing speed that the cloud server has to have, so that the 
tasks can achieve the required performance (i.e., required 
average response time of the tasks). 

II. RELATED WORKS  
Many studies have been conducted on mobile cloud 

computing [1][2][3][6][9][12][13]. Some focus on the 
infrastructure of the system. MAUI [3] implemented the cloud 
computing system with VM migration and code partitioning for 
saving energy. In [4], device clones are used in the CloneCloud 

for keeping mobile applications unmodified to reduce the cost. 
Moreover, MobiCloud [5] transforms the traditional Mobile Ad 
Hoc Networks to a service oriented architecture by deploying a 
service on each mobile node that has sufficient computing 
capacity. 

 In addition, different methods have been developed to 
optimize the time and energy cost in mobile clouds [10][11]. In 
[7] and [8], the NP-hard property is proven for the centralized 
optimization problem in the multi-user cloud system. Game-
theory methods is used to find the Nash Equilibrium in a 
distributed manner. In [14], a heuristic offloading decision 
algorithm is presented to achieve jointly optimization in terms 
of offloading decision, communication and computation 
resources. 

III. MODELLING THE OFFLOAD-ENABLED MOBILE CLOUD 
SYSTEM  

 The architecture of a mobile cloud is illustrated in Figure 1. 
Assume that the arrival rate of the tasks at mobile device  is 

 and  is the processing rate of  (i.e., the number of tasks 
that can be completed by ). If  is equal or greater than , 
the average response time of the tasks arriving at , denoted by 
Ti, will be infinitely big. If  is less than , Ti can be calculated 
by Equation (1) according to the queuing theory.   

  ( 1 ) 

 in Equation (1) can be calculated by Equation (2), where  
is the average computation workload (e.g., the number of 
instructions) of the tasks arriving at  while  is the 
performance of , i.e., the workload that  can compute in a 
time unit.  

 

 

 

Fig. 1. The architecture of the offload-enabled mobile cloud 
system 
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  ( 2 ) 

 When Ti is greater than the required response time of the 
tasks, denoted by , the tasks arriving at mi needs to be 
offloaded. Let   and  denote the rate of the tasks offloaded 
to the cloud and the rate of the tasks remaining in mi, respectively. 
We have . In order to satisfy the required average 
response time ,  can be calculated by Equation (3) by 
transforming Equation (1) and combining Equation (2). 

  ( 3 ) 

 We also have . Based on the above discussions, 
 can be calculated by Equation (4). 

 

 otherwise 

 

( 4 ) 

  

 We can calculate  for every mobile device. Then the total 
arrival rate of the tasks at the cloud, denoted by is: 

. 

 The average response time of a task offloaded to the cloud 
(denoted by ) can be calculated by Equation (5), where  is 
the processing rate of the cloud. 

  ( 5 ) 

 

 The average computation workload of the tasks offloaded to 
the cloud (denoted by ) can be calculated by Equation (6). 

 
 

( 6 ) 

 Then,  in Equation (5) can be calculated by Equation (7), 
where  is the performance of the cloud, i.e., the workload that 
the cloud can process in a time unit. 

  ( 7 ) 

 When a task is offloaded from mobile device  to the cloud, 
the input data of the task (e.g., the data that is needed for an AI 
model to infer the outcome) need to be transmitted to the cloud, 
which incurs the communication time from  to the cloud 
(denoted by ). Let  denote the bandwidth between   

and the cloud and denote the average size of the message that 
has to be communicated from  to the cloud when the tasks in  

 are offloaded. We can treat the network between a mobile 
device and the cloud as a processing system (i.e., the network 
processes the messages). Then  is the processing rate of the 
system (i.e., the number of messages that can be processed by 
the network in a time unit). Therefore,  can be calculated by 
Equation (8) also based on the queuing theory. 

  ( 8 ) 

 The average response time of an offloaded task in mobile 
device mi (denoted by ), which is the time duration between 
the time point when mi starts offloading for the task to the time 
when the task is completed in the cloud, is given by Equation (9). 
We neglect the time for the output data to be send back to mi due 
to the output data size is in general much smaller than input data. 

  ( 9 ) 
 In order to meet the required response time of  , the 
following inequality should hold. 

  (10) 
 Combining Equations (5)-(10), we can calculate the minimal 
performance of the cloud server (denoted by ) to meet the 
required response time  for the tasks arriving at mi. 

 

 

( 11 ) 

 Finally, the minimal performance the cloud server to meet 
the required response time for the tasks in all mobile devices 
should be: 

  ( 12 ) 
 

IV. EXPERIMENTS 
In this section, we presents the experimental results based on the 
models presented in Section 3. The default values of the 
parameters in the experiments are listed in Table 1 unless 
otherwise stated. 

Tab. 1. The default values of the parameters in the experiments on mobile cloud system 
 [125*0.8, 125*1.2] Workload of the task in mobile device i  
 [16*0.2, 16*1.2] Communication data of the task in mobile device i 

 [200*0.8, 200*1.2] The processing speed of mobile device i 
 [50*0.8, 50*1.2] The network bandwidth between mobile device j and edge 

device i 
 [2.0*0.8, 2.0*1.2] The arrival rate of the tasks at mobile device i.  
 [1.2*0.9, 1.2*1.1] The required response time of the tasks arriving at mobile i. 
 [50*0.8, 50*1.2] The network bandwidth between mobiles and the cloud 
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Fig. 2 The change in  (communication time from a mobile device to the 
cloud server) as  increases. The legends - max, min and mean – represent the 
maximum, minimum and average of  (1 j N). 
 Fig. 2 shows  increases as  increases. This is because 
more tasks have to be offloaded to meet the performance 
requirement, which leads to the increase in . Note that when 

 is higher than 3, the performance requirement ( =1.2) 
cannot be met for the tasks in at least one mobile device since 
the maximum  (shown by the blue diamond legend in the 
figure) will be over 1.2. 

 Fig. 3 shows  decreases as  increases. This can be 
explained as follows. When a task is offloaded to the cloud 
server. The turnaround time for the offloaded task equals to 

+ . Since we need to maintain the task’s required 
performance (i.e., =1.2),  must be reduced by increasing 
the computation capacity of the cloud server to compensate for 
the increase in .   

 Tab. 2 shows the experimental results over . It can be seen 
from the table that as  increases, ,   and  increase. This 
result is to be expected since more tasks have to be offloaded 
from the mobile devices to the cloud server as increases. 

Tab. 2 The experimental results over  

    
1.400 6.332 7.582 946.219 

1.600 8.332 9.639 1202.915 
1.800 10.332 11.713 1461.852 

2.000 12.332 13.816 1724.294 

2.200 14.332 15.967 1992.666 

2.400 16.332 18.208 2272.310 

2.600 18.332 20.655 2577.738 

2.800 20.332 23.775 2967.084 
3.000 22.332 33.670 4202.001 

 
Fig. 3 The change in  as  increases. 
 
 Table 3 shows the experimental results over the number of 
mobile devices (N) in the MC. As can be seen from the table,  
and  remain unchanged as N increases. This is to be 
expected because the values of other parameters, including the 
required performance of tasks ( ), the tasks’ arrival rate ( ) 
and the processing speed of the mobile devices ( ), are fixed in 
the experiments. Further,  increase when N increases. This is 
because more mobile devices offload their tasks to the cloud. 
This in turn demands the more powerful cloud server in order to 
meet the required tasks’ performance, and hence the increase in 

 and . It can be seen that the increased capacity of the cloud 
server enables  to stay constant as N increases. This  result 
indicates that our models can effectively capture the increasing 
demand for the cloud server as the number of the mobile devices 
in the MC increases. 

 Table 4 shows the experimental results as the mean 
computation workload (i.e., meanwd in the table, which the 
average of ) increases. It can be seen from this table that as 
the mean computation workload increases up to 225, ,  and 

 all increase, which are to be expected while  decreases. 
The reason why  increases is because as  increases, the 
tasks’ arrival rate (i.e., ) that mobile devices can cope with 
will decrease. This results in the increase in the arrival rate of 
the offloaded tasks. Consequently, the arrival rate of the 
communication tasks (i.e., the messages that the network 
between a mobile device and the cloud has to transmit in a time 
unit) between the mobile devices and the cloud will increase.  

Tab. 3 The experimental results over the number of mobile devices 

N       

10 1.233 0.529 1727.854 13.823 12.333 0.671 

20 1.233 0.529 3269.521 26.156 24.667 0.671 

30 1.233 0.529 4811.187 38.49 37 0.671 

40 1.233 0.529 6352.855 50.823 49.333 0.671 

50 1.233 0.529 7894.521 63.156 61.667 0.671 

0

0.2

0.4

0.6

0.8

1

1.2

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

co
m

m
 ti

m
e 

fro
m

 m
ob

ile
 to

 cl
ou

d

Mean arrival rate of tasks 

 max  min

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Cl
ou

d 
Re

sp
on

se
 T

im
e

Mean arrival rate of tasks 

268



Tab. 4 The impact of the mean computation workload of tasks (N=30, meanwb=16, meanlmd=1.5) 
meanwd  uc fc Tc 

125 20.68 22.551 2860.452 0.534 
150 27.927 30.293 4506.138 0.423 
175 34.611 38.278 6743.68 0.273 
200 38.623 46.477 9260.412 0.127 
225 41.708 48.906 10784.428 0.139 
250 Nan Nan Nan Nan 

Tab. 5 The impact of the communication volume 
  uc fc Tc maxtmc mintmc meantmc 

14 20.68 22.208 2816.919 0.655 0.545 0.225 0.335 
16 20.68 22.618 2868.92 0.516 0.684 0.263 0.413 
18 20.68 22.567 2862.519 0.53 0.67 0.28 0.461 
20 20.68 25.692 3258.875 0.2 1 0.33 0.564 
22 20.68 38.945 4939.985 0.055 1.145 0.365 0.633 

This in turn increases the communication that the offloaded tasks 
have to experience. Eventually, the cloud has to compensate by 
reducing its response time for the offloaded tasks in order to 
meet the tasks’ performance requirement (i.e., ).  This is also 
the reason why  has to increase at a higher rate than . For 
example, when meanwd increases from 125 to 150,  increases 
by around 35%, but  increases by 58%. Note that when 
meanwd increases to 250, the cloud will not be able to meet the 
tasks’ performance requirement, no matter how much resource 
capacity is allocated to the cloud server. The reason is because 
with this value of meanwd, the communication time alone 
between at least one mobile device and the cloud server is 
greater than the tasks’ performance requirement, which means 
that the offloaded tasks will not meet the performance 
requirement even if the cloud server takes zero second to 
complete the tasks. 

 Table 5 shows the experimental results as the 
communication volume of the tasks (i.e., ) increases. It can 
be observed from Table 5 that as the average of communication 
volume ( ) increases, the communication time between the 
mobile devices and the cloud, including maxtmc (i.e., the max 
of , ), mintmc (min of ) and meantmc (mean 
of ), increase. This is to be expected.  Moreover, as  
increases,  and  also increase  while decreases. This is 
because when  increases, a task’s communication time, 
which is one part of the total turnaround time of an offloaded 
task, increases. Consequently, the cloud has to reduce the other 
part of the total turnaround time (i.e.,  - the cloud response 
time) in order to meet the task’s performance requirement, 
which can only be achieved by increasing  (i.e., the 
processing speed of the cloud server). Since the computation 
workload of the tasks remain unchanged in the experiments, the 
processing rate of the cloud (i.e., ) also increases as the result 
of the increase in .   

V. CONCLUSIONS 
In this paper, we consider a mobile cloud system where the 

AI inference services are deployed in mobile devices and the 
cloud server. The data arrive at the mobile devices and then the 
inference services deployed in the mobile devices need to 

process the AI inference tasks and meet the required response 
time. If a mobile device cannot meet the tasks’ performance 
requirement, it can offload the tasks to run on the cloud server. 
We present an approach to modelling the task performance in 
such a scenario and also model the minimal resource capacity 
that the cloud server has to be equipped with in order to meet 
the performance requirement. The experimental results show 
that the proposed modelling approach can accurately capture 
the task performance and the resource demand in order to meet 
the performance requirement. 
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