A Survey of Autoscaling in Kubernetes

Minh-Ngoc Tran
School of Electronic Engineering
Soongsil University
Seoul, Korea
mipearlskal307@dcn.ssu.ac.kr

Abstract— Autoscaling is the vital feature of cloud
infrastructure to acquire or allocate computing resources on-
demand, which allows users to automatically scale the resources
provisioned to the applications without human action under a
fluctuating workload to optimize the resource cost while
satisfying the Quality of Service (QoS) requirements.
Kubernetes (K8s), the most prevalent container orchestration,
provides built-in autoscalers to deal with the scaling problem in
terms of vertical and horizontal at container level but still has
some limitations. In this paper, we survey the state of the art of
existing approaches to solve the problem of container
autoscaling in Kubernetes, their main characteristics as well as
their current issues. Based on the analysis, new future directions
that can be explored are proposed.

Keywords— autoscaling, Kubernetes

L.

Kubernetes is currently the most popular container
orchestrator used by service providers that offer full lifecycle
management of containerized applications. To guarantee
deployed containerized applications’ performance and
service-level agreement (SLA) overtime against dynamic
user workloads or resources availability, autoscaling is a vital
feature. This feature dynamically acquires or releases
container resources to meet applications’ QoS demand.
Kubernetes fulfills this requirement by providing two auto-
scaler features: Horizontal Pod Autoscaling and Vertical Pod
Autoscaling (we denoted them in this paper as default K8s
HPA and default K8s VPA), however, these default features
have slow adaptation performances against dynamic
workloads.

To improve default K8s autoscaling limitation, there are
various enhanced autoscaling approaches have been
proposed with diverse characteristics and use-cases, such as
different target application architecture, horizontal or vertical
based scaler, reactive or proactive operation, adoption or not
of machine learning techniques, etc. To the best of our
knowledge, there is a lack of studies that put together and
analyze the existing autoscaling works for Kubernetes. The
main goal of this paper is to present a comprehensive
discussion on the current state-of-the-art research on
container-based application autoscaling in Kubernetes
considering the differences in their types and characteristics.
We also mention the issues and challenges of the current
works and propose several new directions for future research.

INTRODUCTION

II. THE CURRENT RESEARCH STATE OF AUTOSCALING

IN KUBERNETES

The general process of autoscaling in Kubernetes includes
three steps: monitoring resources/workload metrics,
analyzing monitored data, and deciding on suitable scaling
methods. Proposed autoscaling solutions focus on improving
the default K8s autoscaling feature in one or all of these steps.
Besides, they also target different types of applications.

978-1-6654-8550-0/22/$31.00 ©2022 IEEE

Dinh-Dai Vu
School of Electronic Engineering
Soongsil University
Seoul, Korea
daivd@dcn.ssu.ac.kr

263

Younghan Kim
School of Electronic Engineering
Soongsil University
Seoul, Korea
younghak@ssu.ac.kr

In this section, we categorize existing approaches for
autoscaling based on four different aspects: application
architectures (architecture of the scaling target application),
methods (how are the containers scaled), timing (when and
how to trigger scaling decision), and indicators (which
metrics was monitored to make scaling decisions).

A. Application Architectures

1) Monolithic Architecture: Monolithic applications
have all or most of their functionalities combined and
packaged within a single process. These applications are
normally deployed as a single Kubernetes container. Because
of its simple implementation, several autoscaling works use
this kind of application for evaluation while focusing their
main contributions on optimizing autoscaling method or
timing. Notable used monolithic applications are simple
HTTP websites [1-4], and CPU-intensive/non-intensive
applications [5] (manually created by adjusting the number of
mathematical functions).

2) Microservice-based Architecture: Microservice-based
applications, in contrast, consist of multiple standalone
services that interact with each other. Autoscaling approaches
targeting this kind of application need to consider the
dependency between services. However, these services are
independently deployable and scalable. Works of [6-9]
propose autoscaling solutions based on analyzing resource
demand for each independent service. Yu et al. [10], and
Coulson et al. [11], on the other hand, analyze microservices
dependency to determine which service to be scaled. Choi et
al. [12] consider the tail latency of the whole microservice
chain to pre-scale services and reduce provisioning time.

B. Methods

1) Horizontal Scaling: In Kubernetes environment,
Horizontal scaling refers to increasing or decreasing the
number of replicas of the same pod to share the load. The
default k8 HPA depends on manually setting up some
threshold values such as CPU utilization, the minimum and
the maximum number of pods. Some researchers try to
provide a better mechanism by considering additional metrics
such as traffic characteristics [1, 13] or response latency [12].
Besides, Some studies aim to custom HPA with machine
learning or heuristic analysis [4, 9-12].

2) Vertical Scaling: The vertical scaling method refers to
increasing or decreasing the assigned resources for
containers. This method requires terminating current
containers and then redeploying them with new assigned
resources. Because of this limitation, vertical scaling receives
less attention from researchers. RUBAS in [14], and
ELASTICDOCKER in [8] address this limitation by utilizing
the container checkpoint technique CRIU [15] for saving the

ICUFN 2022

state of the containers that need scaling before terminating
them.

3) Hybrid Scaling: This method combines both
horizontal and vertical scaling. Current approaches [3, 7, 16]
perform hybrid scaling in a cascading way: using the vertical
scaling method to determine the optimal required resources
for containers first, then using the horizontal one to
dynamically changes the number of container instances.

C. Timing

1) Reactive Scaling: In the reactive method, the system
monitors current workload traffic [10, 13] or resources usage
[2, 3, 6, 8, 14, 17]. If the workload or resource demand
reaches a pre-defined threshold, the system will then
calculate and determine the suitable autoscaling decision.

2) Proactive Scaling: Proactive autoscaling uses
sophisticated techniques to predict future demands to arrange
resource provisioning. It helps to decide to scale up or down
according to a predetermined forecast. In recent years,
artificial intelligence and machine learning have become
prevalent and contributed to building a proactive autoscaler.
Machine learning models can learn from past scaling
decisions and workload behavior to generate scaling
decisions ahead of time, and the accuracy of these models
depends on the large of the achieved dataset. During our
review, the most common machine learning methods for
container scaling were based on regression [9, 18, 19], deep
neural networks [1, 11, 12], and reinforcement learning [5,
7]. In some works such as [4, 20], multiple deep neural
networks are used at the same time with the best performer
will be used for triggering autoscaling decisions. Overall,
with the advantage of pre-scaling applications before real
issues happen(resources overloading, burst workload period,
etc.), proactive scaling methods are better solutions than
reactive scaling methods and will continue to be the dominant
research direction in the future.

D. Indicators

The actions of auto-scalers are based on performance
indicators of the application obtained in the monitoring
phase. These indicators are produced and monitored at
different levels of the system hierarchy from low-level
metrics at the physical or hypervisor level to high-level
metrics at the application level. Table 1 shows the common
metrics for autoscaling.

TABLE L COMMON METRICS USED IN KUBERNETES AUTO-SCALING
Metrics Usage
CPU, RAM,
Network 1/O, Common metrics usually provided by container
Disk
%e;]peonse Metric type is largely used. It is part of SLA
Number of . . .
Requests Mostly seen in horizontal scaling
Custom Add application knowledge to the model and can
Metrics improve accuracy

1) Low-Level Metrics: The simplest solution is to use the
utilization of physical resources as indicators and scale
resources horizontally or vertically to maintain the overall

264

utilization within a pre-defined upper and lower bound.
Typical metrics are CPU and memory usage/utilization [2, 5,
7, 8, 14, 16, 21]. Industry systems also widely adopt this
approach [20]. If the auto-scaler of this kind only supports
horizontal scaling, it can be utilized by both cloud providers
and service providers.

2) High-Level Metrics: They are performance indicators
observed at the application layer. Typical metrics are traffic
or workload rate [1, 4. 9, 11-13, 18, 19], request-response
latency [7, 12, 16], SLA [10]. Only auto-scalers deployed by
service providers can utilize these metrics as they are not
visible to cloud providers. Different from the previous
metrics, they cannot directly trigger scaling actions but can
be used to support making efficient scaling plans. In addition,
these metrics are not straightforward to measure.

II1.

In this part, we discuss the issues of current autoscaling
approaches based on their method kind.

With the horizontal scaling approaches, although they can
guarantee SLA, they cannot optimize resource utilization.
Horizontal scaling methods only change the number of pod
instances while keeping the size of the pod (assigned CPU
and memory resources) unchanged. Hence, during the low-
request period from users, not all assigned resources for each
pod are used (low pod utilization), especially for some
resource-intensive applications. Multiple low pod utilization
will lead to low cluster utilization, which turns out to be
costly for service providers.

With the vertical scaling approaches, in contrast, they
have the limitation of satisfying the quality of service (QoS)
although they can optimize resource utilization. First, the
vertical scaling methods only work with system usage metrics
which are not good enough scaling indicators for application
performance [7]. Second, vertical scaling methods require
service restarting. This is not applicable for some state-
dependent and long booting time services such as database or
message broker. Although applying the container
checkpointing technique in [8, 14] is a workaround solution,
it still costs a huge amount of system resources to checkpoint
the container state if vertical scaling frequently happens in
fluctuated traffic scenarios. Finally, increasing pod assigned
resources sometimes only raise pod performance to a
saturation point as studied in [3], which is not efficient.

Hybrid scaling methods, which combine both the
horizontal and vertical scaling methods, can solve these
methods' standalone problems. However, current hybrid
approaches are executed in a cascading way which means
using vertical scaling to find the suitable resources for the
first deployed pod first, then applying horizontal scaling
afterward. However, because all pods in a Kubernetes
deployment have the same assigned resources, the decided
amount of resources found by the vertical scaling process will
be applied to all pods instantiated by the horizontal scaling
process. This might lead to low pod utilization for the newly
created instances in fluctuated traffic cases. For example,
when the current number of instances is not enough to serve
the incoming traffic, one new instance is horizontally scaled
up but this instance only serves a few requests that the old
instances cannot serve.

CURRENT AUTO-SCALING APPROACHES ISSUES

Iv.

Based on the survey and analysis, we point out some
potential directions for future research

1) Runtime modifying pod resources feature for vertical
scaling: A method that allows Kubernetes container
resources to be modified at runtime without terminating and
restarting should be considered to utilize the benefit of
vertical scaling.

2) Dynamic hybrid autoscaling: Horizontal and vertical
autoscaling should be organized and dynamically applied at
the same time because of the limitation of the cascading
process as analyzed in the above part

3) Hybrid autoscaling for microservice-based
applications: There are limited works [7, 20] on hybrid
autoscaling for microservice-based architecture. Current
works have only addressed the problem of which component
in a single microservice chain to scale. Dynamically deciding
which scaling method (horizontal/vertical) to use on a
component, multiple service chain consideration, the long tail
latency of a whole service chain instantiation duration when
scaling up consideration are some potential directions

4) Infrastructure-level autoscaling: Service providers do
not always have enough resources in their current clusters for
scaling up their service instances. Most of the current
research focus on pod-level autoscaling, node-level and
cluster-level autoscaling need to be considered

FUTURE DIRECTION DISCUSSION

V.

Many research works have targeted Kubernetes
autoscaling problem and many auto-scalers with diverse
characteristics and designs to improve the default autoscaling
features have been proposed recently. In this paper, we
surveyed the development of auto-scaling techniques for
container applications in Kubernetes in terms of target
application architecture, scaling method, scaling timing, and
scaling indicators. We identified current research issues and
discussed some promising future directions.

CONCLUSION

ACKNOWLEDGMENT

This work was partly supported by Institute of Information
& communications Technology Planning & Evaluation (II'TP)
grants funded by the Korea government (MSIT) (No. 2020-0-
00946, Development of Fast and Automatic Service recovery
and Transition software in Hybrid Cloud Environment)

REFERENCES

[1] M. Imdoukh, I. Ahmad, “Machine learning-based auto-scaling for
containerized applications”, in Neural Computing and Applications,

Vol.32, 2020, pp. 9745-9760.
Nguyen, T. T., Yeom, Y. J., Kim, T., “Horizontal pod autoscaling in

Kubernetes for elastic container orchestration”, Sensors, Vol. 20, No.
16, 2020, p. 4621.

(2]

265

(3]

(4]

(6]

(7]

(8]

(9]

[10]

[11]

[12

[13]

[14

[15]

[16]

[17]

(18]

[19]

[20]

(21]

Balla, D., Simon, C., & Maliosz, M.. “Adaptive scaling of Kubernetes
pods”. In NOMS 2020-2020 IEEE/IFIP Network Operations and
Management Symposium, Apr. 2020, pp. 1-5.

Toka, L., Dobreff, G., Fodor, B., & Sonkoly, B. “Machine learning-
based scaling management for kubernetes edge clusters”. IEEE
Transactions on Network and Service Management, Vol. 18, No. 1,
2021, pp. 958-972.

Rossi, F., “Auto-scaling Policies to Adapt the Application Deployment
in Kubernetes”. In ZEUS, 2020, pp. 30-38.

A. Khaleq, I. Ra, “Agnostic approach for microservices autoscaling in
cloud applications”, In Proceddings of the 2019 International
Conference on Computational Science and Computational Intelligence,
Dec. 2019, pp. 1411-1415.

A. Khaleq, I. Ra, “Intelligent Autoscaling of Microservices in the
Cloud for Real-Time Applications”. IEEE Access, Vol. 9, Feb. 2021,
pp- 35464-35476.

Al-Dhuraibi, Y. and Paraiso, F. “Autonomic Elasticity of Docker
Containers with ELASTICDOCKER”, In Proceedings of the 10th
International Conference on Cloud Computing (CLOUD), 2017, pp.
472-479.

Rudrabhatla, C. K, “A Quantitative Approach for Estimating the
Scaling Thresholds and Step Policies in a Distributed Microservice
Architecture”. IEEE Access, Vol. 8, 2020, pp. 180246-180254.

G. Yu, P. Chen, Z. Zheng., “Microscaler: Cost-effective Scaling for
Microservice Applications in the Cloud with an Online Learning
Approach”. IEEE Transaction on Cloud Computing (Early Access),
2020, pp. 1-1.

Coulson, N. C., Sotiriadis, S., & Bessis, N. “Adaptive microservice
scaling for elastic applications”. IEEE Internet of Things Journal, Vol.
7, No. 5, 2020, pp. 4195-4202.

B. Choi, J. Park, C. Lee, D. Han., “pHPA: A Proactive Autoscaling
Framework for Microservice Chain”. In APNet 2021: 5th Asia-Pacific
Workshop on Networking (APNet 2021), 2021, pp. 65-71.

L. Phuc, L-A. Phan, T. Kim., “Traffic-Aware Horizontal Pod
Autoscaler in Kubernetes-Based Edge Computing Infrastructure”.
IEEE Access, Vol. 10, 2022, pp. 18966-18977.

Rattihalli, G., Govindaraju, M., Lu, H., & Tiwari, D., “Exploring
potential for non-disruptive vertical auto scaling and resource
estimation in kubernetes”. In 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD), 2019, pp. pp. 33-40.

CRIU Checkpoint/Restore
https://criu.org/Main_Page

L. Baresi, D. Hu, G. Quattrocchi, L. Terracciano., “KOSMOS: Vertical
and Horizontal Resource Autoscaling for Kubernetes”. In International
Conference on Service-Oriented Computing - ICSOC 2021, 2021, pp.
821-829.

W-S. Zheng, L-H. Yen, “Auto-scaling in Kubernetes-Based Fog
Computing Platform”. In New Trends in Computer Technologies and
Applications. ICS 2018, 2019, pp. 338-345.

H. Zhao, H. Lim, M. Hanif, C. Lee., “Predictive Container Auto-
Scaling for Cloud-Native Applications”. In 2019 International
Conference on Information and Communication Technology
Convergence (ICTC), 2019, pp. 1280-1282.

D-H. Luong, H-T. Thieu, A. Outtagarts, Y. Ghamri-Doudane.,
“Predictive Autoscaling Orchestration for Cloud-native Telecom
Microservices”. In 2018 IEEE 5G World Forum (SGWF), 2018, pp.
153-158.

Rzadca, K et al., “Autopilot: workload autoscaling at Google”. In
Proceedings of the Fifteenth European Conference on Computer
Systems, 2020, pp. 1-16.

B. Thurgood, R. Lennon “Cloud Computing With Kubernetes Cluster
Elastic Scaling”. In ICFNDS '19: Proceedings of the 3rd International

Conference on Future Networks and Distributed Systems, 2019, pp. 1-
7.

In Available:

Userspace,

