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Abstract— Autoscaling is the vital feature of cloud 
infrastructure to acquire or allocate computing resources on-
demand, which allows users to automatically scale the resources 
provisioned to the applications without human action under a 
fluctuating workload to optimize the resource cost while 
satisfying the Quality of Service (QoS) requirements. 
Kubernetes (K8s), the most prevalent container orchestration, 
provides built-in autoscalers to deal with the scaling problem in 
terms of vertical and horizontal at container level but still has 
some limitations. In this paper, we survey the state of the art of 
existing approaches to solve the problem of container 
autoscaling in Kubernetes, their main characteristics as well as 
their current issues. Based on the analysis, new future directions 
that can be explored are proposed. 
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I. INTRODUCTION 
Kubernetes is currently the most popular container 

orchestrator used by service providers that offer full lifecycle 
management of containerized applications. To guarantee 
deployed containerized applications’ performance and 
service-level agreement (SLA) overtime against dynamic 
user workloads or resources availability, autoscaling is a vital 
feature. This feature dynamically acquires or releases 
container resources to meet applications’ QoS demand. 
Kubernetes fulfills this requirement by providing two auto-
scaler features: Horizontal Pod Autoscaling and Vertical Pod 
Autoscaling (we denoted them in this paper as default K8s 
HPA and default K8s VPA), however, these default features 
have slow adaptation performances against dynamic 
workloads.  

To improve default K8s autoscaling limitation, there are 
various enhanced autoscaling approaches have been 
proposed with diverse characteristics and use-cases, such as 
different target application architecture, horizontal or vertical 
based scaler, reactive or proactive operation, adoption or not 
of machine learning techniques, etc. To the best of our 
knowledge, there is a lack of studies that put together and 
analyze the existing autoscaling works for Kubernetes. The 
main goal of this paper is to present a comprehensive 
discussion on the current state-of-the-art research on 
container-based application autoscaling in Kubernetes 
considering the differences in their types and characteristics. 
We also mention the issues and challenges of the current 
works and propose several new directions for future research. 

II. THE CURRENT RESEARCH STATE OF AUTOSCALING 
IN KUBERNETES 

The general process of autoscaling in Kubernetes includes 
three steps: monitoring resources/workload metrics, 
analyzing monitored data, and deciding on suitable scaling 
methods. Proposed autoscaling solutions focus on improving 
the default K8s autoscaling feature in one or all of these steps. 
Besides, they also target different types of applications.  

In this section, we categorize existing approaches for 
autoscaling based on four different aspects: application 
architectures (architecture of the scaling target application), 
methods (how are the containers scaled), timing (when and 
how to trigger scaling decision), and indicators (which 
metrics was monitored to make scaling decisions). 

A. Application Architectures 
1) Monolithic Architecture: Monolithic applications 

have all or most of their functionalities combined and 
packaged within a single process. These applications are 
normally deployed as a single Kubernetes container. Because 
of its simple implementation, several autoscaling works use 
this kind of application for evaluation while focusing their 
main contributions on optimizing autoscaling method or 
timing. Notable used monolithic applications are simple 
HTTP websites [1-4], and CPU-intensive/non-intensive 
applications [5] (manually created by adjusting the number of 
mathematical functions). 

2) Microservice-based Architecture: Microservice-based 
applications, in contrast, consist of multiple standalone 
services that interact with each other. Autoscaling approaches 
targeting this kind of application need to consider the 
dependency between services. However, these services are 
independently deployable and scalable. Works of [6-9] 
propose autoscaling solutions based on analyzing resource 
demand for each independent service. Yu et al. [10], and 
Coulson et al. [11], on the other hand, analyze microservices 
dependency to determine which service to be scaled. Choi et 
al. [12] consider the tail latency of the whole microservice 
chain to pre-scale services and reduce provisioning time. 

B. Methods 
1) Horizontal Scaling: In Kubernetes environment, 

Horizontal scaling refers to increasing or decreasing the 
number of replicas of the same pod to share the load. The 
default k8s HPA depends on manually setting up some 
threshold values such as CPU utilization, the minimum and 
the maximum number of pods. Some researchers try to 
provide a better mechanism by considering additional metrics 
such as traffic characteristics [1, 13] or response latency [12]. 
Besides,  Some studies aim to custom HPA with machine 
learning or heuristic analysis [4, 9-12]. 

2) Vertical Scaling: The vertical scaling method refers to 
increasing or decreasing the assigned resources for 
containers. This method requires terminating current 
containers and then redeploying them with new assigned 
resources. Because of this limitation, vertical scaling receives 
less attention from researchers. RUBAS in [14], and 
ELASTICDOCKER in [8] address this limitation by utilizing 
the container checkpoint technique CRIU [15] for saving the 
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state of the containers that need scaling before terminating 
them. 

3) Hybrid Scaling: This method combines both 
horizontal and vertical scaling. Current approaches [3, 7, 16] 
perform hybrid scaling in a cascading way: using the vertical 
scaling method to determine the optimal required resources 
for containers first, then using the horizontal one to 
dynamically changes the number of container instances. 

C. Timing 
1) Reactive Scaling: In the reactive method, the system 

monitors current workload traffic [10, 13] or resources usage 
[2, 3, 6, 8, 14, 17]. If the workload or resource demand 
reaches a pre-defined threshold, the system will then 
calculate and determine the suitable autoscaling decision.  

2) Proactive Scaling: Proactive autoscaling uses 
sophisticated techniques to predict future demands to arrange 
resource provisioning. It helps to decide to scale up or down 
according to a predetermined forecast. In recent years, 
artificial intelligence and machine learning have become 
prevalent and contributed to building a proactive autoscaler. 
Machine learning models can learn from past scaling 
decisions and workload behavior to generate scaling 
decisions ahead of time, and the accuracy of these models 
depends on the large of the achieved dataset. During our 
review, the most common machine learning methods for 
container scaling were based on regression [9, 18, 19], deep 
neural networks [1, 11, 12], and reinforcement learning [5, 
7]. In some works such as [4, 20], multiple deep neural 
networks are used at the same time with the best performer 
will be used for triggering autoscaling decisions. Overall, 
with the advantage of pre-scaling applications before real 
issues happen(resources overloading, burst workload period, 
etc.), proactive scaling methods are better solutions than 
reactive scaling methods and will continue to be the dominant 
research direction in the future. 

D. Indicators 
The actions of auto-scalers are based on performance 

indicators of the application obtained in the monitoring 
phase. These indicators are produced and monitored at 
different levels of the system hierarchy from low-level 
metrics at the physical or hypervisor level to high-level 
metrics at the application level. Table 1 shows the common 
metrics for autoscaling. 

TABLE I.  COMMON METRICS USED IN KUBERNETES AUTO-SCALING 

Metrics Usage 
CPU, RAM, 
Network I/O, 
Disk 

Common metrics usually provided by container 

Response 
Time Metric type is largely used. It is part of SLA 

Number of 
Requests Mostly seen in horizontal scaling 

Custom 
Metrics 

Add application knowledge to the model and can 
improve accuracy 

 
1) Low-Level Metrics: The simplest solution is to use the 

utilization of physical resources as indicators and scale 
resources horizontally or vertically to maintain the overall 

utilization within a pre-defined upper and lower bound. 
Typical metrics are CPU and memory usage/utilization [2, 5, 
7, 8, 14, 16, 21]. Industry systems also widely adopt this 
approach [20]. If the auto-scaler of this kind only supports 
horizontal scaling, it can be utilized by both cloud providers 
and service providers. 

2) High-Level Metrics: They are performance indicators 
observed at the application layer. Typical metrics are traffic 
or workload rate [1, 4. 9, 11-13, 18, 19], request-response 
latency [7, 12, 16], SLA [10]. Only auto-scalers deployed by 
service providers can utilize these metrics as they are not 
visible to cloud providers. Different from the previous 
metrics, they cannot directly trigger scaling actions but can 
be used to support making efficient scaling plans. In addition, 
these metrics are not straightforward to measure. 

III. CURRENT AUTO-SCALING APPROACHES ISSUES 
In this part, we discuss the issues of current autoscaling 

approaches based on their method kind. 
With the horizontal scaling approaches, although they can 

guarantee SLA, they cannot optimize resource utilization. 
Horizontal scaling methods only change the number of pod 
instances while keeping the size of the pod (assigned CPU 
and memory resources) unchanged. Hence, during the low-
request period from users, not all assigned resources for each 
pod are used (low pod utilization), especially for some 
resource-intensive applications. Multiple low pod utilization 
will lead to low cluster utilization, which turns out to be 
costly for service providers.  

With the vertical scaling approaches, in contrast, they 
have the limitation of satisfying the quality of service (QoS) 
although they can optimize resource utilization. First, the 
vertical scaling methods only work with system usage metrics 
which are not good enough scaling indicators for application 
performance [7]. Second, vertical scaling methods require 
service restarting. This is not applicable for some state-
dependent and long booting time services such as database or 
message broker. Although applying the container 
checkpointing technique in [8, 14] is a workaround solution, 
it still costs a huge amount of system resources to checkpoint 
the container state if vertical scaling frequently happens in 
fluctuated traffic scenarios. Finally, increasing pod assigned 
resources sometimes only raise pod performance to a 
saturation point as studied in [3], which is not efficient.   

Hybrid scaling methods, which combine both the 
horizontal and vertical scaling methods, can solve these 
methods' standalone problems. However, current hybrid 
approaches are executed in a cascading way which means 
using vertical scaling to find the suitable resources for the 
first deployed pod first, then applying horizontal scaling 
afterward. However, because all pods in a Kubernetes 
deployment have the same assigned resources, the decided 
amount of resources found by the vertical scaling process will 
be applied to all pods instantiated by the horizontal scaling 
process. This might lead to low pod utilization for the newly 
created instances in fluctuated traffic cases. For example, 
when the current number of instances is not enough to serve 
the incoming traffic, one new instance is horizontally scaled 
up but this instance only serves a few requests that the old 
instances cannot serve. 
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IV. FUTURE DIRECTION DISCUSSION  
Based on the survey and analysis, we point out some 

potential directions for future research 
1) Runtime modifying pod resources feature for vertical 

scaling: A method that allows Kubernetes container 
resources to be modified at runtime without terminating and 
restarting should be considered to utilize the benefit of 
vertical scaling. 

2) Dynamic hybrid autoscaling: Horizontal and vertical 
autoscaling should be organized and dynamically applied at 
the same time because of the limitation of the cascading 
process as analyzed in the above part 

3) Hybrid autoscaling for microservice-based 
applications: There are limited works [7, 20] on hybrid 
autoscaling for microservice-based architecture. Current 
works have only addressed the problem of which component 
in a single microservice chain to scale. Dynamically deciding 
which scaling method (horizontal/vertical) to use on a 
component, multiple service chain consideration, the long tail 
latency of a whole service chain instantiation duration when 
scaling up consideration are some potential directions 

4) Infrastructure-level autoscaling: Service providers do 
not always have enough resources in their current clusters for 
scaling up their service instances. Most of the current 
research focus on pod-level autoscaling, node-level and 
cluster-level autoscaling need to be considered 

V. CONCLUSION  
Many research works have targeted Kubernetes 

autoscaling problem and many auto-scalers with diverse 
characteristics and designs to improve the default autoscaling 
features have been proposed recently. In this paper, we 
surveyed the development of auto-scaling techniques for 
container applications in Kubernetes in terms of target 
application architecture, scaling method, scaling timing, and 
scaling indicators. We identified current research issues and 
discussed some promising future directions. 
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