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Abstract—Smart agriculture researchers bring numerous tools
and prospects to the farm ecosystem to improve its productivity
and, mainly, its sustainability. Artificial Intelligence (AI) is widely
used in precision agriculture as Internet of Things (IoT) tech-
nologies have brought a huge volume of data to exploit to provide
useful insights for farmers such as weather prediction, pest
development detection, or harvest time estimation. AI algorithms
are mostly executed in the cloud due to their inherent computing
constraints, thus requiring the different sensors to offload their
data to the appropriate server. Depending on the amount and
volume of data exchanged, the need for computer offloading
may induce privacy, security, and latency issues in addition
to weighting on the sensor’s battery consumption as wireless
transmission methods have a high-energy demand. To overcome
this difficulty, recent research has tried to bring AI computation
closer to the end device with edge or fog computing and more
recently with the Tiny Machine Learning (TinyML) paradigm
that aims to embed the AI algorithm directly into the sensor’s
microcontroller. In that context, this paper proposes a prototype
of smart sensor capable of detecting fruits presence with TinyML.
We then study the energy consumption of our system in different
IoT scenarios.

Index Terms—Agriculture, AI (Artificial Intelligence), IoT
(Internet of Things), LoRaWAN, Smart Farming, TinyML

I. INTRODUCTION

It is estimated that the world population will increase to
reach approximately 9 billion by 2050. The Food and Agricul-
ture Organization (FAO) of the united state nation, therefore,
estimates that by then, food production must increase by
around 60 % if we want to ensure global food security [1].
To answer this raising concern, Smart Farming (SF) tech-
nologies, also called Precision Agriculture (PA) are reshaping
the agricultural practices and industry to make them more
productive and sustainable [2]. SF tools gather information
and communication technologies (ICT) such as Artificial In-
telligence, IoT (Internet of Things) Platforms, and Robotics to
provide sustainable modern solutions.
One of the fields that could bring significant progress to
agriculture is the use of AI-powered computer vision analysis
to evaluate the crop’s growth process or detect unwanted
situations such as pest development or weed multiplication.
Such AI algorithms rely heavily on the cloud due to their need
for heavy computing capacity. This asks for adapted network
architectures and raise concern in term of privacy, security, and
latency but moreover increase the need for energy as heavy

data offloading call for a larger data throughput [3]. However,
battery lifetime is a crucial parameter for agricultural purposes
as sensors can be spread over long distances without access
to electricity [4]. To overcome those issues, researchers have
looked into bringing the computation process closer to the
end device that collects the data with fog or edge comput-
ing methods to avoid unnecessary communications. However,
more recent research on embedded AI has shown that the
Tiny ML paradigm now allows micro-controller with small
computing capabilities to perform AI directly on the device
[5]. In this context future agricultural sensors could perform
AI inference directly on the device and only communicates the
result as small messages through energy-efficient Low power
networks (LPWAN) such as LoRaWAN.
We propose in this paper a prototype of a smart intelligent
sensor for fruit presence detection in the context of the smart
farm. This proposal is based on the development of embedded
vision AI algorithms with Tiny ML. This will allow the farmer
to know when and where fruits need attention (for example
when to harvest them or when to apply fertilizer) thanks to
communication between the AI sensor and the Smart Farm
environment using LoRaWAN. An energy analysis of the
system in different network scenarios is then conducted to
validate our hypothesis that TinyML usage can improve battery
lifetime.

Fig. 1. Overall Architecture

II. STATE OF THE ART

Researches on Tiny ML are relatively new and could be the
answer to a wide number of applications. In the Agricultural
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domain, the potential applications are vast such as livestock
management or insect detection [6], but SF implementations
are still limited and we assume that they will be rising in the
future. Most research concentrate on the industrial domain, a
good survey on recent advancements in Tiny ML has been
made by authors in [7]. For other practical implementations,
TinyML has been used in multiple scenarios such as adaptive
traffic Control [8] or wildlife conservation [9]. TinyML also
offers multiple advantages over Fog, Edge, or Cloud com-
puting including improvement in terms of privacy, security,
latency, and energy as addressed by the authors in [10].

III. ARCHITECTURE PROPOSAL

A. Scenario

We propose a battery-powered sensor with a camera placed
in front of a fruit field. The sensor uses TinyML algorithm
to infer the number of fruits. Then, the sensor sends the
number to a decision platform through a LoRaWAN network
to extend the battery lifetime. This number is then analyzed
and a decision is made regarding the necessary action to
take, for example, harvesting if enough fruits are present or
fertilizer application if fruits are too small or absent. The
necessary actions are then communicated to the performers
as seen in Figure 1. Our architecture is made up of four main
components:

1) Smart sensor: In charge of performing the TinyML, it is
a microcontroller equipped with a low-resolution camera and
a LoRaWan communication module. We choose LoRaWAN as
it is a widely used LPWAN protocol in agricultural Wireless
Sensor Network (WSN) as discussed by the authors in [4].

2) Gateway: The gateway is in charge of the link between
the local LoRaWAN network and the Internet.

3) Cloud decision platform: The information received
from the sensor is stored in a database. The system then
decides regarding other parameters such as time, weather, or
farmer’s occupation, to ask for an action.

4) Performer: The decided action is then communicated to
the performer for example a farmer or a robot.

B. Environment development

In order to implement our proposal, we choose the following
modules: For the smart sensor, an Arduino Portenta H7
microcontroller with a Lora Vision shield is used. Its 32-
bit architecture and low power consumption abilities make
it an adapted choice for TinyML algorithms. Moreover, the
Arduino ecosystem facilitates the implementation of complex
algorithms into microcontrollers that should help the replica-
bility and comparison of our work to other researchers.
To create the TinyML algorithm, we used Edge Impulse [11],
the development platform based on tensor flow lite.
Finally, to communicate with Lora we use a Laird RG1868
gateway and The Thing Network (TTN) environment to store
our data online. TTN is a LoRaWAN network server, built on
an open-source core that allows users to build and manage
LoRaWAN networks easily.

C. Phases
In this section, we describe the end-to-end phases imple-

mented in our prototype.
1) Phase 1: Data collection: Collecting data from real

devices is the first step to train the model. Recent TinyML
development is limited to performing on-device inference
and cannot do on-device learning. The creation process of a
TinyML model is presented in figure 2. It consists of first
gathering data and then pre-train the model independently
from the device and afterward deploying it to the hardware and
finally testing. To collect the data we use the Edge impulse tool
to directly gather pictures from the Arduino Portenta 7. For our
experimentation, we trained our model to detect strawberries
by collecting 100 pictures containing 0 to 10 instances of the
fruit.

Fig. 2. TinyML algorithm building process with Edge Impulse

2) Phase 2:TinyML model training : To perform our fruit
detection we use Edge Impulse FOMO (Faster Objects, More
Objects) method [11]. It is a novel machine-learning algorithm
that brings object detection to highly constrained devices. It
allows the device to count objects, find the location of objects
in an image, and track multiple objects in real-time using up
to 30x less processing power and memory than other similar
dedicated algorithms such as MobileNet SSD or YOLOv5
[12].

3) Phase 3: On-device inferring: Once the model is
deployed on the Hardware, it can detect how many fruits are
in front of it. To save energy, the inference process should be
performed only for the minimum amount of time so that the
microcontroller can stay in sleep mode otherwise.

4) Phase 4: Results transmission: After we get the fruit
number, we use LoRaWAN protocol to communicate it to a
cloud decision platform. This result could be later processed
by the hypothetical decision system of our scenario to ask for
harvesting.

IV. EXPERIMENTATION

A. Model performance Evaluation
In order to test our solution, the algorithm is implemented

directly on the device. For our dataset of 100 images, the accu-
racy of the FOMO algorithm reaches 90.2% according to Edge
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Impulse testing tools and similar accuracy was obtained in
real-life tests. The results show that the estimated peak RAM
usage is 243,9 kb and the firmware size is 77,5 kb, respectively
24.39 % and 3.88 % of Arduino’s capacity, leaving space for
some improvement opportunities. The average inference time
that will be later used to calculate the energy consumption of
the system is 148 ms. You can find the sources on GitHub to
reproduce our experiment [13].

B. Energy consumption evaluation
To show the energy effectiveness of our proposal, several

simulations were performed using OMNET++ simulator and
INET Framework [14] on a PC running Ubuntu 20.04 with
16GB RAM and an Intel I7 8565U. Three scenarios were
considered. The first one, where the TinyML algorithm runs
directly on the microcontroller and the inference result is
communicated through LoRaWAN. The second one, where the
TinyML algorithm also runs directly on the microcontroller,
and the result is communicated through WiFi. Finally, the third
one, where only the taken picture is sent through WiFi to
represent data offload and to validate the impact of TinyML
on energy consumption. IoT device energy consumption eval-
uation is a complex process as discussed in [15]. For each
scenario, the device only wakes up from sleep mode once a
day. When awake, the device is in full power mode during
the image capture, the model inference process, and the data
communication. During the wireless communication process,
we also add the energy consumption of our network interface
regarding the volume of data to be transmitted. Either the
short message representing the number of fruits detected in
scenarios 1 and 2 (50 bytes in our platform) or the image size
to transmit in scenario 3 (20kb). Indeed the volume of data
to transmit increase the energy consumption of the system
and TinyML allows us to send the minimum amount of data
required. In order to perform the simulation, we need to collect
the energy consumption characteristics of our hardware. In
table I, we gather the values found for the different running
modes in the hardware datasheet. Thanks to those data the
simulator can estimate the approximate energy needed and
therefore the impact of each transmission on the battery
lifetime.

TABLE I
POWER CONSUMPTION OF THE SYSTEM

Mode Current Consumption
Standby 2.95 µA

Run 121 mA
Transmission Lora 21.5 mA
Transmission WiFi 310 mA

Finally, the simulator computes the sensor lifetime expec-
tations for a 2000 mA battery until every scenario runs out of
power. The results for each one are presented in figure 3 where
the evaluation of the battery level over time can be observed.

It appears that Scenario 1 where TinyML and Lora are
used, is the most energy-efficient one as it can last up to

Fig. 3. Evolution of Battery level over time

105 days, this is 3 times longer than Scenario 3. Scenario
2 also show that TinyML can save battery in the case of full
WiFi usage as the battery last 1,5 time longer than Scenario 3.
The battery lifetime expectation results are regrouped in figure
4. . The results validate the hypothesis that TinyML sensors
could increase battery life in such context since it allows us
to diminished the need for power-hungry data communication
by minimizing the size of the messages to transmit.

Fig. 4. Battery Lifetime of the system in days

V. CONCLUSION

In this paper, TinyML and LoRaWAN were used to propose
an energy-efficient model capable of fruit detection to show
the capabilities of such technologies in the agricultural domain.
Experimentation showed that our model had a 90 % accuracy
level and was three times more energy-efficient than a cloud-
based model for the same application, opening the way for a
new range of computer vision applications in Smart Farming
based on battery-powered sensors. Despite promising results,
the TinyML paradigm presents some limitations regarding on-
device learning capabilities, as the neural network needs to be
pre-trained before being embedded into the microcontroller
unit. Therefore, the TinyML sensor can not adapt itself to the
specific environment it will be deployed in. Later research
should be conducted on how to update the model once
the sensors are deployed to increase the accuracy after the
aquisition, which means performing firmware updates over the
air with LPWAN networks for TinyML applications.
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