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Abstract—In this short paper, a reinforcement learning based
back-off mechanism is proposed for a Reconfigurable Intelligent
Surface (RIS)-assisted wireless sensor network. The proposed
scheme has the capability to enable the sensors to access the
RIS in an interference-free manner based on the intelligently
selected back-off values. One of the main features of the proposed
scheme is that sensors can avoid access interference without
any need of additional signaling. Simulation results demonstrate
that the proposed scheme significantly achieves higher network
throughput and energy efficiency compared to benchmark Binary
Exponential Back-off (BEB).

Index Terms—back-off, interference, medium access control,
RIS, Q-learning, wireless sensor networks.

I. INTRODUCTION

In recent years, significant research attention has devoted to
explore novel wireless communication paradigms in which the
implicit randomness of the wireless propagation environment
are exploited in order to improve the energy efficiency of
wireless networks [1]. In this regard, Reconfigurable Intelli-
gent Surface (RIS) emerges as a promising technology, which
has the capability of reconfiguring the wireless propagation
environment [2]. RIS is an inexpensive electromagnetic mate-
rial comprising of a large number of nearly-passive elements
that are able to perform specific task based on the applica-
tion requirements, such as, reflection, refraction, absorption,
beamforming, etc. [3].

The inherent nearly-passive property of the RIS elements
means that they have ultra-low power requirements that makes
RIS an attractive technology from an energy efficiency view-
point. RIS has the capability of amplifying and forwarding the
incoming signal by using RIS resources (i.e., RIS elements)
as reflector without utilizing any power amplifier [4]. More
precisely, by carefully mapping the phase shifts of each reflec-
tive passive element, it is possible to constructively fuse each
reflected signal at the receiver. In this way, very low energy
is consumed by a RIS compared to a regular amplifier/relay
transceiver [4]. Many recent studies, i.e., [4], [5] showed that
properly designed phase shifts with a sufficiently large RIS can
outperform relay-assisted systems in terms of energy efficiency
and data rate.

Although recent research illustrates that RIS is in a position
to enhance physical layer performance, such as, achievable
data rate, wireless coverage, and energy efficiency signifi-
cantly, studies on multiple users accessing an RIS-enabled
shared medium is still in its infancy [6]. Currently, only
a couple of studies have investigated RIS-assisted medium
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access control (MAC) [6], [7]. In [7], the authors proposed an
RIS-assisted handshaking based MAC for wireless networks
that can improve the signal-to-noise (SNR) ratio, decrease
the transmit power, and serve more number of users. In
[6], the authors discussed about three different types of Al-
assisted MAC protocols for RIS-aided wireless networks, i.e.,
centralized Al-assisted MAC, distributed Al-assisted MAC,
and hybrid Al-assisted MAC; and analyzed the performance
comparison among these three types in terms of throughput
and energy efficiency.

From a MAC design viewpoint, energy efficiency can be
further enhanced by avoiding access interference though it is
challenging to coordinate the channel access of large number
of RIS-assisted sensors in terms of interference-free DATA
transmission. Therefore, in this preliminary study, a RIS-
assisted sensor network is considered, in addition to that, a
distributed reinforcement learning (RL)-based MAC protocol
is proposed to access the RIS elements in an interference-free
way to increase the throughput and energy efficiency of the
network.

II. SYSTEM MODEL

A multi-sensor uplink wireless communication system is
considered where an RIS that consists of N number of
passive elements is equipped with a RIS controller to aid
communications of I number of sensors. The RIS controller is
directly connected to the sink through an independent wireless
channel [7]. The sensors and sink are equipped with one
antenna. It is assumed that each RIS element has discrete phase
shift and constant amplitude. For simplicity, we assume that
the whole RIS serve one sensor at a time and the optimal
phase shift of the RIS elements are known to sensors.

Time is slotted where the slot length is the combination of
DATA duration and guard time. Additionally, transmission of
DATA occurs at the beginning of a slot. For simplicity, the
sensors are assumed to be positioned very close to each other
so that signal-to-noise-interference-ratio (SINR) between the
sink and the sensors are the same [7]. According to [4], [7],
the SINR from sensor ¢ (i.e., i € [1,]) to the sink can be
calculated as

Py i|Hi9:G; + h}|?
1 *
0'2 + Zj:l,j?ﬁi RX,J|H]¢]G] + h’] |2

where Py, Hi, ¢i, G;, h}, and o2 stand for the transmit
power of sensor ¢, channel gain from sensor ¢ to the sink via

pi = (1)
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the RIS, phase shift matrix of the RIS for sensor ¢, channel
gain from sensor ¢ to the RIS, channel gain from sensor ¢ to
the sink, and Gaussian noise variance, respectively.

III. PROPOSED SCHEME

The proposed scheme operation is as follows. After DATA
reception, sink sends back ACK or NACK to the desired sensor
using the direct sensor-sink link. In short, If sink receives more
than one RIS reflected DATA at the same time slot, then, the
received SINR would unable to meet the minimum threshold
requirement. This is because due to the access interference
at the RIS, the received SINR at the sink is much lower. In
such case, sink responds back with a NACK. Otherwise, sink
responds back with an ACK. Based on the received ACK or
NACK, corresponding sensor decides either to perform next
RIS-assisted DATA transmission or retransmission of the failed
DATA.

To alleviate interference at the RIS, the sensors perform
back-off using reinforcement learning (i.e., Q-learning). The
advantage of Q-learning is that no additional signaling is
required; thus, network overhead can effectively be minimized.

A sensor is defined as an agent of Q-learning and maintains
two Q tables. One table is for state-action values and the other
one is for the back-off values. The initial Q-values are set to
zero and are updated according to the reward obtained after
an action is performed in a state using following equation

Q(st,ar) = (1-a)Q(s¢, ar) +afry+ mng(stJrha)L 2

where a;, sy, T4, «, 7y represent the action, state, reward,
learning rate, and discount factor, respectively [8].

In this preliminary work, an agent, that is, a sensor predicts
the environmental state at a time slot on the basis of received
ACK or NACK at its previous time slot. Therefore, the state
space can be defined as

S ={v. ¢}, 3)

where ¥ and ( represent successful and unsuccessful RIS-
assisted DATA transmission of a sensor, respectively. Suppose,
at time slot ¢ — 1, if RIS-assisted DATA transmission was
successful for sensor 7, then, at time slot ¢, the state would be,
85+ = P¢_1, Otherwise, s;+ = (;—1. Here, s, € S.

In addition to that, action space can be defined as

A= {x, B8}, 4)

where x represents RIS-assisted DATA transmission at the
current time slot (back-off value is 0) and RIS-assisted DATA
transmission at a later time slot is defined by 3. Suppose, at
time slot ¢, sensor ¢ selects the action x;, therefore, a; ; = x:
and a;+ € A.

Consequently, if the selected action for sensor 7 at time
slot ¢ is [3;, then, back-off value would be chosen from a
separate table. The back-off values are discrete for S; and
B € {Bo,P1,---,Bm} where By and 3, represent minimum
and maximum discrete back-off value, respectively. It is worth
mentioning that the range of discrete minimum and maximum

back-off value is different for the above mentioned two states
and for ( state, the Q value of y sets to -100.

Once an action is performed, by using the total reward 7, a
sensor rates its action quality. The r, is the combination of two
reward factors. The first reward factor, r1, indicates whether
or not an access interference occurred at the RIS. A negative
1 is awarded if interference occurred. Conversely, a positive 1
is rewarded. The r; can be written as

+1, if ACK is received 5)
T =
"7} =1, if NACK is received.

The second reward factor, ry, indicates the goodness of
selected back-off value, can be written as

¢tx - ]-
(brnax - 1’
where ¢y is the number of transmission attempts and ¢ ax
is the maximum allowable number of transmission attempts.

The total reward for learning the back-off value to avoid access
interference at the RIS is as follows

2
re=» T, (7)
=1

On obtaining the r; corresponding to a selected back-off,
the sensor can update both Q tables. Thus, 7; sets the goal
to determine a back-off value that is able to avoid access
interference at the RIS.

According to [4], the total energy consumption of the
network can be calculated as

rg=1- ¢max >1 (6)

gtotal = Ptx + -Pris + Rx- (8)

where Fgjs is the static power consumption of RIS hardware
and P is the reception power consumption of the sink.

IV. PERFORMANCE EVALUATION

The performances are evaluated in terms of network
throughput and network energy efficiency through computer
simulation using MATLAB. For performance comparison, we
consider two existing schemes: RIS-assisted sensor network
with Binary Exponential Back-off (BEB) mechanism [9] and
a relay-based sensor network with the proposed Q learning
scheme. The simulation parameters are summarized in Table
L.

The two performance matrices, i.e., network throughput (1)
and network energy efficiency (Eqfr) are defined as

n= ”RT'ID [bits /sec] 9)
Eur = "R 1hies /1, (10)
Etotal

where np, lp, and T represent the number of DATA suc-
cessfully received at the sink, DATA packet size, and total
simulation time, respectively.

Fig. 1 shows the network throughput performance varying
number of sensors. It is exhibited that a higher network
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TABLE I
SYSTEM PARAMETERS AND VALUES
Parameters Values
Number of sensors 60

Average traffic load 0.5 [packets/sec]

Data packet size 1044 bits
ACK/NACK packet size 20 bits
Bit rate 250 kbps
P 15 dBm
a? -80 dBm
« 0.1
o1 0.9
Guard time 0.144 ms
Total simulation time 210 s
g2 K100 : : .
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Fig. 1. Network throughput versus number of sensors.
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g. 2. Network energy efficiency versus number of sensors.

throughput is achieved that highlights the ability of the pro-
posed initial study to adjust the back-off resulting in access
interference mitigation. Thus, lower packet loses are occurred
and an improved throughput performance is observed com-
pared to BEB.

Fig. 2 shows the network energy efficiency performance
varying number of sensors. It is exhibited that the proposed
initial study has higher network energy efficiency compared
to BEB back-off and relay. This is because the proposed
initial study has effectively learned the Back-off values that
can overcome access interference at the RIS and thus, reduce
the total energy consumption of the network. On the other
hand, the results of BEB indicate that inefficient back-off
value selection results in higher packet losses, more number
of retransmissions, and higher energy consumption; therefore,
leading to a lower energy efficiency. As for relay, it needs
reception and processing power to receive and process a
DATA, respectively that results in higher energy consumption
in the network degrading the network energy efficiency.

V. CONCLUSION

With the aim to mitigate RIS access interference problem, a
reinforcement learning based MAC protocol is proposed, that
demonstrated the capability of Q-learning to determine back-
off values which actually able to improve the network’s per-
formance. Future works include developing a deep Q-learning
based resource allocation algorithm which will be able to
conserve more energy in RIS-assisted wireless networks.
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