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Abstract—Studies on vehicle-to-everything (V2X) and edge
computing to provide autonomous driving services mainly focus
on low latency. However, in order to provide driving safety,
it is also important to evaluate the performance considering
the reliability of communication. In this paper, we evaluate the
object detection performance according to the packet loss of V2X
communication when transmitting video frames in consideration
of the environment where camera sensor data is transmitted from
the vehicle to the edge computer to recognize and judge.
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I. INTRODUCTION

Research on key technologies of sensing, computation, con-
trol, and communication is being actively conducted in order to
give advanced recognition, judgment, and control functions to
autonomous vehicles. Vehicle-to-everything (V2X) communi-
cation technologies are focused on developing high-speed data
transmission, low latency, and high reliability, and computing
technologies are focused on developing efficient computing
power and low processing time. Moreover, integrated research
to provide autonomous driving services with the help of high-
performance computing resources such as edge and cloud via
V2X communication is also active [1]–[3]. Research on edge
computing with V2X is mainly focused on providing low
latency [1], [4], [5]. However, it is also important to analyze
performance in terms of communication reliability. Packet loss
may occur due to wireless communication when sensor data
is transmitted to an edge computer through V2X to provide a
sensor-sharing assisted driving service. As a result, recognition
and judgment performance may suffer. When sending 3D
point cloud data from a LiDAR sensor via a vehicle ad-
hoc network (VANET), the effect of packet loss on object
detection performance was investigated in paper [6]. The
authors assume that packet loss has a minor influence on
the visualization of 3D point cloud data where packet loss
affects 3D point cloud data uniformly. In this paper, We reflect
on the packet loss pattern of V2X communication to video
frames using a system-level simulator and evaluate the object
detection performance according to packet loss using Berkeley
DeepDrive (BDD) dataset and you only look at once version
5 medium (Yolov5m) learning model [7]–[9]. The main con-
tribution is that the object detection performance is evaluated

TABLE I
LIST OF ABBREVIATIONS

Abbreviations Definitions
V2X Vehicle-to-everything
BDD Berkeley DeepDrive
Yolo You only look at once
Yolov5m Yolo version 5 medium
BS Base station
RSU Road side unit
C-V2X Cellular V2X
3GPP 3rd Generation Partnership Project
OFDM Orthogonal frequency division multiplexing
PHY Physical layer
SC-FDMA Single carrier frequency division multiple access
MAC Medium access control
TTI Transmission time interval
DMRS Demodulation reference symbols
ITS Intelligent transport system
LTE Long-term evolution
RB Resource block
PRB Physical resource block
MCS Modulation and coding scheme
eNodeB Evolved node B
R-CNN Region-based convolutional neural network
RoI Region of interest
SSD Single-shot multi-box detector
AP Average precision
mAP Mean average precision
IoU Intersection over union
AWGN Additive white Gaussian noise
PDR Packet delivery ratio
QAM Quadrature amplitude modulation

considering packet loss of V2X communication. Based on the
results, we provide the required V2X communication distance,
modulation and coding scheme (MCS), and packet delivery
rate (PDR) to reliably provide object detection performance.
The abbreviations appeared in this paper are given in Table I.

II. BACKGROUND

A. Scenario

Fig. 1 shows the sensor-sharing assisted driving service
scenario. Through V2X communication, the vehicle transmits
sensed data to an edge node with high processing capability,
such as a base station (BS) or RSU, which performs perception
and planning for driving. Autonomous driving is achieved by
sending control commands back to the vehicle via V2X. We
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Fig. 1. Sensor-sharing assisted driving service scenario.

assume that the camera sensor data is transmitted to the RSU
in this scenario, and we evaluate the effect of V2X packet loss
on object detection accuracy.

B. V2X

LTE-V2X sidelink (C-V2X for short) defined by 3GPP
Release 14 utilizes the orthogonal frequency division multi-
plexing (OFDM) at the phsycal (PHY) layer and single carrier
frequency division multiple access (SC-FDMA) at the medium
access control (MAC) layer, which is identical as the uplink
PHY and MAC of the legacy LTE. Therefore, a time-frequency
resource grid of Fig. 2 is used for resource allocation to
transmit a packet with multiplexing.

In the time domain, the resource grid is divided in subframe
units of 1 ms, which is the transmission time interval (TTI).
One subframe is divided into two slots of 0.5 ms. In one
subframe, 14 OFDM symbols are transmitted. There are 9 data
symbols, 4 demodulation reference symbols (DMRS), and 1
guard band symbol, where the number of data symbols is less
than the legacy LTE having 2 DMRS. This is due to adapt for
high Doppler spread of the dynamically moving vehicle.

C-V2X utilizes 10 MHz or 20 MHz bandwidth at 5.9 GHz
of intelligent transport system (ITS) band. In the frequency
domain, the signal is divided into multiple subcarriers. The 12
subcarriers of each 15 kHz and one slot of 0.5 ms configures
the resource block (RB). The two RB (RB pair) in one
subframe of 1 ms, called a physical resource block (PRB), is
the minimum unit for resource allocation. In case of 10 MHz
bandwidth, there are 50 RBs in one slot (50 PRBs in one
subframe). The group of RBs in one subframe is a subchannel.
When the C-V2X vehicle transmits a packet, the vehicle first
derives the number of RBs it should occupy per 1 subframe.
Here, the number of required RBs is determined by the packet
size and the MCS. As the MCS increases and the packet size
decreases, the number of required RBs also decreases. Then,
the vehicle allocates the subchannel configured as a group of
RBs. In C-V2X, there are two methods for resource allocation.
In mode 3, the base station (eNodeB) allocates the resource to
the vehicle inside its coverage, while the vehicle autonomously
allocates the resource in mode 4.

C. Object detection algorithm

The popular object detection algorithms for autonomous
driving are classified into two types, two-stage object detection

Fig. 2. Time-frequency resource grid for C-V2X.

and one-stage object detection algorithms, according to the ob-
jection localization and object classification learning method.
Two-stage object detection algorithm classifies objects after
localization. There are faster region-based convolutional neural
networks (R-CNN) and mask R-CNN. Faster R-CNN was
proposed to improve the processing speed and accuracy of R-
CNN and fast R-CNN. To extract the region of interest (RoI),
a region proposal network, a learning layer, is added instead of
the existing selective search to allow for end-to-end learning
[10]. Mask R-CNN uses the RoIAlign pooling layer to map
the object area more accurately, making it possible to rec-
ognize even smaller objects [11]. One-stage object detection
algorithm performs object location and classification at once,
and there are single-shot multi-box detector (SSD) and you
only look at once (Yolo) algorithms. Yolo has been proposed
to detect objects in real-time [12]. By dividing the image into
grids, Yolo learns the confidence of the bounding boxes, which
are the area where objects are likely, and the classes of objects.
By multiplying the confidence of the bounding boxes by the
probability of classes, the object location and classification
are performed simultaneously. Since the bounding box is
generated based on a grid, it is difficult to detect small objects.
SSD has been proposed to detect objects of different sizes
efficiently, and for this, they use multi-scale feature maps
[13]. This paper uses the Yolov5m model for real-time object
detection. Since Yolo is developed up to version 5, it has been
improved to detect even small objects. We use the Yolov5m
model, one of the most recent versions of the Yolov5 models,
which has medium accuracy, processing speed, and complexity
among Yolov5 models.

To evaluate the object detection performance, we use the
mean average precision (mAP) when the intersection over
union (IoU) threshold is 0.5, i.e., mAP@.5. The IoU is the
area of overlapped region between prediction and ground
truth region over the area of union. The detection criterion is
whether the IoU exceeds a threshold. Based on IoU, precision
and recall are calculated. The precision is the proportion
of correctly detected results out of all detected results. The
recall is the proportion of correctly detected results out of all
ground truths. The precision-recall curve is obtained using the
precision and recall, and the average precision (AP) is the
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area under precision-recall curve. The AP of each class can
be calculated, and the mean of APs of all classes is mAP.

III. SYSTEM MODEL AND SIMULATION RESULTS

As explained in Section II-A, the required number of RBs
for packet transmission is determined by MCS and packet
size. In our paper, the sample driving video requires data
rate of 5 Mbps. Fig. 3 shows the maximum data rate of
C-V2X with the bandwidth of 10 MHz depending on the
MCS variation. The maximum data rate is calculated assuming
that the transmitting vehicle monopolizes the resource grid of
Fig. 2 (i.e., a vehicle transmits a packet using all RBs in one
subframe with a frequency of 1 kHz). According to Fig. 3,
MCS must be at least 7 to satisfy 5 Mbps. Therefore, in
this paper, MCS is controlled from 7 to 20. The remaining
parameters for simulation are shown in Table II.

We use LTEV2Vsim, a system-level C-V2X simulation by
MATLAB, and Yolov5m open-source and BDD dataset for
object detection [7]–[9]. Our simulation environment is as
follows. We set two nodes (one RSU and one vehicle) in
the road, as shown in Fig. 1. The vehicle transmits a video
streaming data at 1 kHz frequency to the RSU utilizing C-
V2X, where the channel is additive white Gaussian noise
(AWGN) with shadowing. It is assumed that the resource of
the vehicle is allocated by the eNodeB as in the mode 3
method. Note that because we evaluate the object detection
performance according to packet loss, the control data sent
back from RSU to the vehicle does not consider in this
simulation environment.

Fig. 4 shows the ratio of the subchannel size that must
be occupied to satisfy the data rate of 5 Mbps compared to
the total bandwidth of 9 MHz (the guard-band of 1 MHz is
excluded) depending on the MCS variation. As shown, the
ratio decreases as the MCS increases. This is because the mod-
ulation increases from QPSK (MCS 7∼10) to 16QAM (MCS
11∼20) as the MCS number increases, and the coding rate
gradually increases in each modulation. Note that the higher
MCS, the lower the subchannel occupancy rate, allowing more
users.

Fig. 5a shows the packet delivery ratio (PDR) depending
on the distance between the RSU and the vehicle. The PDR
decreases as the distance and MCS increase. Fig. 5b shows the
distances according to MCS that satisfy PDR of 0.95, 0.99, and
0.999 based on Fig. 5a. As the MCS increases, the distance
to maintain the PDR decreases.

The object detection performance is evaluated when the
5 Mbps of video frames are received at each MCS and distance
pair that satisfies the PDR of Fig. 5b. Fig. 6 represents the
average mAP of the target PDR. The average mAP is 0.128
while transmitting at MCS and distance pairs corresponding to
a PDR of 0.95. The average mAP rises as the PDR increases.
Fig. 7 shows the received video frame according to the PDR.
When the PDR is 0.999, it is visually similar to the original
frame. The impairments such as color change and image
distortion become more severe as the PDR drops to 0.99 and
0.95. As a result, the object detection performance is degraded.
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TABLE II
PARAMETERS FOR SIMULATION

Parameter Value
Dataset BDD dataset

# of training dataset 70,000
# of test dataset 10,000

Bit rate of video data 5 Mbps
Object detection model Yolov5m

Channel model AWGN channel
Shadowing 3 dB

Antenna gain 3 dB
Transmitter power 23 dBm
Transmit frequency 1 kHz

MCS [7∼20]
Bandwidth 10 MHz
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Fig. 4. Ratio of subchannel band to 9 MHz bandwidth depending on MCS.

According to the simulation results, when the PDR de-
creases to 0.95, the object detection performance (mAP)
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Fig. 5. (a) PDR according to distance. (b) Distance according to MCS.

suffers greatly. Furthermore, in order to maintain a high PDR
for mAP performance, it is necessary to select an appropriate
MCS and distance. If the required distance to provide service
is as long as 500 m, MCS 7 should be used to transmit 5 Mbps
of video data. In this case, the subchannel occupancy rate of
low MCS is high, limiting the utilization of multiple users.
If the service can be supplied at a distance of 300 m, MCS
can be used up to 13 which reduces the subchannel occupancy
rate, allowing C-V2X service to be provided to more users.

IV. CONCLUSION

This paper evaluates object detection performance in the
terms of C-V2X packet loss when sending video frames. The
BDD dataset and the Yolov5m deep learning model are used.
For object detection, a PDR of 0.99 or higher is required, and
a lower PDR rapidly degrades object detection performance.
The PDR depends on the MCS and the service distance
between the vehicle and RSU. The MCS has an impact on
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Fig. 6. mAP@.5 according to target PDR.

the subchannel occupancy rate affecting multi-user support.
In the future, we will expand our research to analyze the
trade-off between accuracy and communication error including
experimental results, and to consider multiple users.
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