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Abstract— This study shows how the channel estimation based 
Deep Learning (DL) and a power allocation method are 
together employed  for multi-user detection in a Power domain 
Non-Orthogonal Multiple Access (PD-NOMA) network. 
Successive interference cancellation (SIC) procedure is 
typically employed at receiver side, where numerous users are 
decoded in a successive approach. Fading channels may scatter 
transferred signal and initiate dependencies between scattered 
components, this might influence the channel estimation 
technique and therefore impact the SIC procedure and signal 
recognition precision. In our proposed scheme, the influence of 
Deep Neural Network (DNN) in clearly approximating the 
channel parameters for users in NOMA cell is inspected. In our 
scenario, we incorporate the Long Short Term Memory 
(LSTM) layer with NOMA cell where the LSTM is employed 
for complex data management to perform training and 
predication.  The DNN is trained online on basis of  random 
channel models and then the trained network is used to 
approximate the channel taps that will be utilized by the 
receiver in recovering the desired symbols. Additionally, 
power factors for user’s devices are optimized to maximize the 
sum-rate of users where whole power and Quality of service 
(QoS) restrictions are considered. Simulation outcomes in 
terms of Bit Error Rate (BER), Outage probability, and sum 
rate have shown the dominance of the suggested channel 
estimation using DL over standard estimation approach. 
Moreover, both fixed power and optimized power schemes are 
also assessed when DNN is applied.  
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I. INTRODUCTION  
Non-orthogonal multiple access (NOMA) system is 
categorized as an encouraging multiple access technique in 
forthcoming  wireless systems toward improving spectral 
efficacy and system throughput. NOMA system can develop 
the current resources essentially by opportunistically getting  
benefit of  the users’ channel environments then deliver 
diverse quality of service (QoS) requirements for current  
users in the system. NOMA enables various users to get 
concurrent access to same time-frequency resources by 
principle of superposition different signals in the power or 
code ranges [1]. The idea of NOMA is based on that, user 
with bad channel surroundings could be shared with user 
with good channel status on same assigned subcarrier at 
same time slot, in order that the spectrum can be effectively 
exploited. In NOMA system, each user equipment can 
receive the  superposition of signals from users in the cell, 
hence the exclusion of interference from non desired users 

come to be essential for managed decoding. Commonly, 
multi-user recognition in NOMA can be achieved via SIC 
scheme that can be performed in power domain.   In SIC 
procedure, signals from different users are decoded 
sequentially on the basis of  the assigned power beside  
channel state information (CSI). Broad knowledge of CSI 
for each user is demanding because pilot symbols employed 
in channel prediction  might interfere with signals from 
another users, hence affecting the effectiveness of 
conventional channel approximation  methods, such as 
minimum mean square error (MMSE) [2].  

Deep learning (DL) procedures have the potential to 
adjust to alterations in the path among user and base station 
(BS) and can approximate the channel coefficients for each 
device, therefore DL is regarded as reliable contenders for 
upcoming wireless  systems. 

In [3], the authors introduced a channel estimation 
procedure for multi-user  detection scheme with imperfect 
CSI. Discrete state model and Kalman filter are employed 
to make an estimate of the unspecified parameters of a 
varying channel based on uncertainty pattern. Authors 
inspected the censoring phenomenon via the Tobit 
measurement scheme to accomplish further precise 
estimation, while the QoS demands such as minimum signal 
to interference and noise ratio (SINR) are satisfied for all 
users. Also, a robust mean square error (MSE) estimation 
framework is created  to minimize the estimation error. 
Analytical analysis, and  simulation outcomes validated the 
efficiency of the framework in terms of channel estimation 
reliability.  

Authors in [4], investigated changes in the throughput 
and outage probability versus signal to noise ratio (SNR) in 
NOMA network, on the basis of  two categories of partial 
channel state information. Authors have discussed  both 
imperfect CSI and second order statistics (SOS) based 
NOMA and proved that SOS scheme can realize improved 
performance than the performance attained with imperfect 
CSI, but it may reach comparable performance to NOMA 
with ideal CSI at low SNR. Results also revealed that 
NOMA system can attain improved  performance compared 
to conventional orthogonal multiple access (OMA) 
approach when partial channel state information is applied.  

In [5], a pilot-assisted receiver framework is proposed 
for uplink SIMO-NOMA system, that incorporates a  mixed 
channel approximation and signal recognition framework. 
Authors gather DL algorithm with SIC identification 
scheme to diminish the factors need to be learned. 
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Moreover, signal recognition precision enhancement and 
noise alleviation have been accomplished by introducing  
interference and noise removal parameters at SIC phase. 
Simulation outcomes show that the BER performance in 
terms of the suggested deep learning  structure is better than 
conventional MMSE method and the complication of 
receiver is reduced.  

In [6], authors have introduced a semi-blind recognition 
method based on DL, to detect signals for users in co-
operative NOMA network. With the aid of DL scheme and 
pilot symbols responses, the suggested approach is able to 
detect signals while no separate channel estimation process 
is required. The DL network trained offline over Rayleigh 
fading environment and then the trained model is utilized as  
online detector. Authors also, examined the trained model 
using Rician and Nakagami fading models and simulation 
consequences prove that the proposed deep learning 
detector outperforms traditional detectors.  

II. SYSTEM MODEL    
In this section,  downlink NOMA system is analyzed 

where users are connected to BS via numerous channel 
gains. In our NOMA cell, it is assumed that we have one BS 
with one antenna to assist two users simultaneously and 
every user’s device also holds one antenna. Naturally, in 
NOMA cell users are receiving the superimposed signal sent 
from BS that include desired and interfering signals,  sent 
via same resource block. Accordingly, incorporating a 
mixture of signals using diverse power levels is crucial to 
strengthen SIC  technique [7] and assist in differentiating  
between signals at each receiver equipment.  

In PD-NOMA, users that distinguished by good or 
strong channel conditions are frequently assigned minimum 
power, while users with weak path circumstances can be 
assigned more power factors. Each user is labelled by its 
fading channel and the distance from BS. In our system we 
can identify the nearby equipment as near user and 
equipment at edge of cell is known as far user. In the 
examined cell, a Rayleigh fading channel is assumed for the 
links among BS and each user. On the basis that there are 
two users in the examined cell, the fading path for each user 
can mathematically be specified with the following, for near 
device ℎ𝑛𝑛~(0, 𝑑𝑑𝑛𝑛

−𝑘𝑘) and for far device  ℎ𝑓𝑓~(0, 𝑑𝑑𝑓𝑓
−𝑘𝑘), where 

ℎ𝑖𝑖 represent the fading path connecting user equipment and 
BS, and k denotes path loss exponent [10].  

In this paper, noise samples are considered as  Additive 
White Gaussian Noise (AWGN), with zero mean and noise 
power indicated as 𝜎𝜎2. With no lack of generality, we can 
consider that |ℎ𝑛𝑛|2 > |ℎ𝑓𝑓|2

. Total transferred power from 
BS to users in the cell is identified by 𝑃𝑃𝑡𝑡. In NOMA cell, the 
receiver at each equipment has the capability to perform SIC 
to remove signals related to users with weak link conditions. 
Alternatively,  signals belong to users with good channel 
circumstances treated as interference. At BS,  the  antenna 
knows how to send the superposition coded signal 𝑥𝑥 which 
is formulated as follows [8] 

 
                    𝑥𝑥 = √𝑃𝑃𝑡𝑡(√𝛼𝛼𝑛𝑛𝑥𝑥𝑛𝑛 + √𝛼𝛼𝑓𝑓𝑥𝑥𝑓𝑓)                         (1) 
Where 𝛼𝛼𝑛𝑛,  and 𝛼𝛼𝑓𝑓 are the power factors  for near  and far 
users independently. Similarly,  𝑥𝑥𝑛𝑛 , and 𝑥𝑥𝑓𝑓  represent the 

required signals related to near, and far users separately. 
Therefore, received signal at far user can be stated as follows 
[8] 
                              𝑦𝑦𝑓𝑓 = 𝑥𝑥ℎ𝑓𝑓 + 𝑧𝑧𝑓𝑓                                       (2) 
Where ℎ𝑓𝑓 denotes the fading path between BS and far user, 
while 𝑧𝑧𝑓𝑓 denotes AWGN noise part at far device with zero 
mean and 𝜎𝜎2 variance. Far user is typically depicted by weak 
path environment, thus the signal 𝑥𝑥𝑓𝑓  can be given more 
power by BS where 𝛼𝛼𝑓𝑓 > 𝛼𝛼𝑛𝑛. Thus, the receiver equipment 
for far user will be able to straightway interpret his own 
message 𝑥𝑥𝑓𝑓  from 𝑦𝑦𝑓𝑓 . Signal obtained at far user can 
mathematically expanded as follows:      
            𝑦𝑦𝑓𝑓 = √𝑃𝑃𝑡𝑡𝛼𝛼𝑓𝑓𝑥𝑥𝑓𝑓ℎ𝑓𝑓 + √𝑃𝑃𝑡𝑡𝛼𝛼𝑛𝑛𝑥𝑥𝑛𝑛ℎ𝑓𝑓 + 𝑧𝑧𝑓𝑓              (3) 
 
The 1st term in (3) indicates the far user’s desired signal, and  
the 2nd term denotes the interference signal. Based on (3) The 
far user rate could be formulated as    
  

                  𝑅𝑅𝑓𝑓 = log2 (1 +
|ℎ𝑓𝑓|2𝑃𝑃𝑡𝑡𝛼𝛼𝑓𝑓

|ℎ𝑓𝑓|2𝑃𝑃𝑡𝑡𝛼𝛼𝑛𝑛 + 𝜎𝜎2
)            (4) 

Typically, near user is characterized by good channel 
condition, so the signal received at near user equipment is 
simply formulated as follows:   

𝑦𝑦𝑛𝑛 = 𝑥𝑥ℎ𝑛𝑛 + 𝑧𝑧𝑛𝑛 
                 𝑦𝑦𝑛𝑛 = √𝑃𝑃𝑡𝑡𝛼𝛼𝑛𝑛𝑥𝑥𝑛𝑛ℎ𝑛𝑛 + √𝑃𝑃𝑡𝑡𝛼𝛼𝑓𝑓𝑥𝑥𝑓𝑓ℎ𝑛𝑛 + 𝑧𝑧𝑛𝑛        (5) 

 
The 1st term in (5) characterizes the expected signal for near 
user, and the 2nd component in (5) is the interfering far user 
term. In addition, it is noted from (5), that the 2nd term is 
prevailing due to further power designated to far user. Thus, 
at receiver of near user, immediate decoding for far user 
signal 𝑥𝑥𝑓𝑓  should be accomplished at first. After SIC, the 
achieved rate for near user 𝑅𝑅𝑛𝑛  to decode its own required 
signal 𝑥𝑥𝑛𝑛 can be expressed as  

                     𝑅𝑅𝑛𝑛 = log2 (1 +
|ℎ𝑛𝑛|2𝑃𝑃𝑡𝑡𝛼𝛼𝑛𝑛

𝜎𝜎2 )                      (6) 

III. POWER ALLOCATION  
The purpose is to maximize the sum-rate for active users in 
examined cell based on optimizing power coefficients for 
users in compliance with applied channel gains. The 
summation of aforementioned sum-rates for N-users  
downlink NOMA cell can be formulated  as shown 
  

𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ log2 (1 +
|ℎ𝑘𝑘|2𝑃𝑃𝑡𝑡𝛼𝛼𝑘𝑘

|ℎ𝑘𝑘|2 ∑ 𝑃𝑃𝑡𝑡𝛼𝛼𝑗𝑗
𝑘𝑘−1
𝑗𝑗=1 + 𝜎𝜎2)

𝑁𝑁

𝑘𝑘=1
                   (7) 

 
1. Total Power constraint  
Designated power for each device in examined cell is a 
fraction of the whole power 𝑃𝑃𝑡𝑡 conveyed by BS. Therefore, 
power portion given for each device need to follow [9] 

                                ∑ 𝛼𝛼𝑥𝑥

𝑁𝑁

𝑥𝑥=1
≤ 1                                        (8)  

where  𝛼𝛼𝑥𝑥 is the power fraction for 𝑥𝑥𝑡𝑡ℎ user. 
2. QoS constraint 
To develop user fairness, we can assume that user with bad 
channel environment in NOMA cell has a QoS demand, 
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which indicates that a lowest possible rate  𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 needs to be 
assured and consistent with the examined optimization 
problem, this constraint can be formulated as shown [9]   
                                      log2(1 + 𝛿𝛿𝑛𝑛) ≥ 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚                    (9) 
  
Based on the above-mentioned constraints in (8) & (9) and 
sum rate representation, the typical optimization problem can 
be shown in this way [8][9]: 

 
max

𝛼𝛼
 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠

=  ∑ log2 (
|ℎ𝑘𝑘|2𝑃𝑃𝑡𝑡 ∑ 𝛼𝛼𝑗𝑗

𝑘𝑘−1
𝑗𝑗=1 + 𝜎𝜎2 + |ℎ𝑘𝑘|2𝑃𝑃𝑡𝑡𝛼𝛼𝑘𝑘

|ℎ𝑘𝑘|2𝑃𝑃𝑡𝑡 ∑ 𝛼𝛼𝑗𝑗
𝑘𝑘−1
𝑗𝑗=1 + 𝜎𝜎2 )

𝑁𝑁

𝑘𝑘=1
              (10) 

 
             such that   

 ∑ 𝛼𝛼𝑥𝑥

𝑁𝑁

𝑥𝑥=1
≤ 1              

            log2(1 + 𝛿𝛿𝑛𝑛) ≥ 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚     
             𝛼𝛼𝑘𝑘 ≥ 0  ∀𝑘𝑘 = 1,2, … , 𝑁𝑁 

IV. OPTIMIZATION INVESTIGATION 
Power optimization in this section is accomplished with 
respect to two users in  NOMA cell and the optimization 
problem can easily redeveloped as shown 

max
𝛼𝛼

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑅𝑅𝑛𝑛 + 𝑅𝑅𝑓𝑓                          (11)
 𝑆𝑆. 𝑡𝑡.     

(2𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 − 1) − |ℎ𝑘𝑘|2𝜌𝜌 (𝛼𝛼𝑚𝑚 − (2𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 − 1) ∑ 𝛼𝛼𝑖𝑖

𝑚𝑚−1

𝑖𝑖=1
) ≤ 0

𝛼𝛼𝑛𝑛 + 𝛼𝛼𝑓𝑓 − 1 ≤ 0
𝛼𝛼𝑛𝑛 , 𝛼𝛼𝑓𝑓  ≥ 0

Where 𝑚𝑚 = 2  and 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum rate needed in the 
cell. In accordance with the aforementioned analysis, the 
constraints can be expressed as shown: 
 
𝐶𝐶1(𝛼𝛼) = 𝛼𝛼𝑛𝑛 + 𝛼𝛼𝑚𝑚 + 𝛼𝛼𝑓𝑓 − 1                                                       (12) 
𝐶𝐶2(𝛼𝛼) = (2𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 − 1) − 𝜌𝜌|ℎ𝑚𝑚|2(𝛼𝛼𝑚𝑚 − (2𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 − 1)(𝛼𝛼𝑛𝑛)    (13)        

                                                                                    
The constraints 𝐶𝐶1(𝛼𝛼), 𝐶𝐶2(𝛼𝛼)  are linear in terms of 𝛼𝛼 , then 
𝐶𝐶1(𝛼𝛼), 𝐶𝐶2(𝛼𝛼) are convex. Now we need to calculate 
∇𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆(𝛼𝛼) &  ∇2𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆(𝛼𝛼). Firstly, we can derive a general 
expression for the first derivative for 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆(𝛼𝛼)  in terms of  
the power factor 𝛼𝛼𝑖𝑖 . After certain mathematical 
manipulations,  ∇𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆(𝛼𝛼) can generally be represented as 
follows [8]  
 
𝜕𝜕𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆

𝜕𝜕𝛼𝛼𝑖𝑖
= 1

𝑙𝑙𝑙𝑙2  (
|ℎ𝑖𝑖|2𝑃𝑃𝑡𝑡

|ℎ𝑖𝑖|2𝑃𝑃𝑡𝑡 ∑ 𝛼𝛼𝑗𝑗
𝑖𝑖
𝑗𝑗=1  + 𝜎𝜎2)        

 

− 1
𝑙𝑙𝑙𝑙2 ∑ {(

(|ℎ(𝑖𝑖+𝑘𝑘)|2𝑃𝑃𝑡𝑡)
2

𝛼𝛼𝑖𝑖+𝑘𝑘

(|ℎ(𝑖𝑖+𝑘𝑘)|2𝑃𝑃𝑡𝑡 ∑ 𝛼𝛼𝑗𝑗𝑖𝑖+𝑘𝑘
𝑗𝑗=1 + 𝜎𝜎2)

)
𝑁𝑁−𝑖𝑖

𝑘𝑘=1
× 

                               (
1

(|ℎ(𝑖𝑖+𝑘𝑘)|2𝑃𝑃𝑡𝑡 ∑ 𝛼𝛼𝑗𝑗𝑖𝑖+𝑘𝑘−1
𝑗𝑗=1 + 𝜎𝜎2)

)}                       (14)  

 
Similarly, we can deduce a general expression for the second 
derivative for objective function 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆(𝛼𝛼)  with respect to 

power coefficient  𝛼𝛼𝑖𝑖  . The general derived form can be 
formulated as follows:  
  
𝜕𝜕2𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆

𝜕𝜕𝛼𝛼𝑖𝑖2 = − 1
𝑙𝑙𝑙𝑙2  {(

(|ℎ𝑖𝑖|2𝑃𝑃𝑡𝑡)2

(|ℎ𝑖𝑖|2𝑃𝑃𝑡𝑡 ∑ 𝛼𝛼𝑗𝑗
𝑖𝑖
𝑗𝑗=1  + 𝜎𝜎2)2)        

 

− ∑ {((|ℎ(𝑖𝑖+𝑘𝑘)|2𝑃𝑃𝑡𝑡)
3

𝛼𝛼𝑖𝑖+𝑘𝑘[2(|ℎ(𝑖𝑖+𝑘𝑘)|2𝑃𝑃𝑡𝑡 ∑ 𝛼𝛼𝑗𝑗
𝑘𝑘+𝑖𝑖−1
𝑗𝑗=1 +𝜎𝜎2)+|ℎ(𝑖𝑖+𝑘𝑘)|2𝑃𝑃𝑡𝑡𝛼𝛼𝑖𝑖+𝑘𝑘]

(|ℎ(𝑖𝑖+𝑘𝑘)|2𝑃𝑃𝑡𝑡 ∑ 𝛼𝛼𝑗𝑗
𝑖𝑖+𝑘𝑘
𝑗𝑗=1 +𝜎𝜎2)

2 )𝑁𝑁−𝑖𝑖
𝑘𝑘=1 ×

( 1
(|ℎ(𝑖𝑖+𝑘𝑘)|2𝑃𝑃𝑡𝑡 ∑ 𝛼𝛼𝑗𝑗

𝑖𝑖+𝑘𝑘−1
𝑗𝑗=1 +𝜎𝜎2)

2)}}                                                  (15) 

 
Rather than utilizing a Hessian matrix to demonstrate that the 
objective function is concave, we can make use of the 
following conditions [8][9]  

1. 𝜕𝜕2𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝛼𝛼𝑛𝑛2

< 0                                                           (16) 

2. 𝜕𝜕2𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝛼𝛼𝑓𝑓

2 < 0                                                           (17) 

3. (𝜕𝜕2𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝛼𝛼𝑓𝑓

2
𝜕𝜕2𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆

𝜕𝜕𝛼𝛼𝑛𝑛2
− (𝜕𝜕2𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆

𝜕𝜕𝛼𝛼𝑛𝑛𝜕𝜕𝛼𝛼𝑓𝑓
)

2
) > 0                 (18)  

 
Conditions (16) (17) (18)  have been satisfied which implies 
that the objective function is concave and has a distinctive 
global upper limit. Lagrange function and the KKT 
conditions can be applied to obtain optimum power 
parameters. After some mathematical replacements, the 
analytical form expression for the power factors can be 
formulated as shown  [10]    
  

𝛼𝛼𝑛𝑛 = 1
(2𝑅𝑅𝑓𝑓)

(𝜌𝜌|h𝑛𝑛|2−(2𝑅𝑅𝑓𝑓−1)
𝜌𝜌|h𝑛𝑛|2 )                                      (19)      

 𝛼𝛼𝑓𝑓 = (2𝑅𝑅𝑓𝑓−1)
(2𝑅𝑅𝑓𝑓)

(𝜌𝜌|ℎ𝑓𝑓|2+1)
𝜌𝜌|ℎ𝑓𝑓|2 )                                           (20)    

                                                                              

V. RNNS AND LSTM                                                            
Recurrent Neural Networks (RNNs) are considered as a set 
of controlled learning procedure, where RNNs can manage 
consecutive data sequences for estimation and identification 
[11].  

 
Fig. 1  RNN network construction [11] 

As shown in Fig. 1, in RNNs hidden layers have the 
potential to play a role as buffer for the network at a certain 
time, this arrangement allows the RNNs to deal with prior 
complex data for an extended interval of time. In addition, 
RNNs can characterize time dependencies between data 
sequences with a smaller number of neurons. Alternatively, 
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conventional RNN based on backpropagation encounters 
vanishing gradient problem and slow-going in learning 
process [2][11]. Thus, RNNs will not be the most 
appropriate neural network for signals that send out over 
fading links which may diffuse the signal and initiate a long 
term dependencies among its components [12]. LSTM, 
which is a one type of RNNs, is frequently employed for 
classification based on time series data, where it  can  
recognize  the time dependencies among data sequences 
[12]. LSTM layer include LSTM cells, and every cell 
comprises a collection of gates as shown in Fig. 2. Based on 
the underlying design, the LSTM gates are capable to save 
and gain access to data for long intervals of time and also 
counteract the error raised by backpropagation method 
[2][12]. LSTM has the capability to deal with vector of 
complex data, thus incorporating the amplitude and phase 
components of input  sequence simultaneously. LSTM is 
appropriate choice to deal with multi-user recognition when  
time series data  is presented [13]. 

 
Fig. 2   Internal structure of LSTM cell  

VI. LSTM AND NOMA STRUCTURE 
A framework that incorporate the LSTM network with  
NOMA system is introduced here.  In data driven 
communication, the quantity of LSTM cells at every single 
layer and the amount of LSTM layers can be implemented 
through empirical observations, to make sure that adding up 
additional LSTM layers will not produce an obvious gain in 
learning stage or remarkably influence the network 
convergence [14]. In our DL scheme, the LSTM network 
involves 4 layers, each layer is supported by a number of 
neurons, and weighted sum of these neurons are going to 
enter to a nonlinear activation function. In proposed LSTM 
configuration, the input layer consists of 128 neurons, and 
the vector of data feeded to input layer are transferred to the 
following layer with the aid of weight coefficients, bias, and 
activation function. In the next layer, we apply single LSTM 
layer with 200 hidden elements. The adjustable weights of 
LSTM layer are recurrent R, input W, and bias b. The 3rd 
layer in our DNN model is a fully-connected (FC)  layer 
which handles the outcomes of LSTM layer. The end layer 
is regression layer that is responsible for updating network 
weights and biases in addition to update the state of the cell.  

In LSTM cell, the output is produced on the basis of  
the recent input and the prior cell state. LSTM cell contains 
a various kinds of gates, forget, input , and output gates. 
These gates will aid in remembering the preceding cell state 
and decide if the previous state need to be employed or not 
when calculating the output. In addition, LSTM is 
characterized by two main states, the cell state 𝐶𝐶𝑡𝑡−1 which 
is known as inner buffer where all responses are 
accumulated, and the other state is called hidden state ℎ𝑡𝑡−1 
that are exploited for calculating the output. Fig. 2 shows the 
inner configuration of LSTM cell, where 𝑡𝑡 indicate the time 
instant, 𝑥𝑥𝑡𝑡  is the recent input, ℎ𝑡𝑡𝑡𝑡  denote the recent output 
channel parameters for user 𝑖𝑖  at time 𝑡𝑡 , and 𝐶𝐶𝑡𝑡−1  is the 
former cell state [14].  

VII. DEEP LEARNING SYSTEM ARCHITECTURE 
The transmitted frame is consisting of data and pilot 
symbols. The fading path is considered as constant spanning 
over one frame and the fading path change from one frame 
to another. In our algorithm, to implement an efficient Deep 
Neural Network (DNN) model for channel approximation, 
two phases are included. In the first phase, online training is 
conducted, where the DNN layers are mainly trained with a  
diverse Rayleigh channel coefficients [11][14]. In 
implementation  phase, the trained DNN model will be 
employed to generate the estimated fading coefficients  
explicitly for users,  then the estimated coefficients will be 
utilized to retrieve the desired original signals. The proposed 
DL algorithm for channel approximation can be listed as 
indicated in algorithm 1.  
Algorithm 1: Channel Estimation based DL scheme   
1. Initialize adjustable parameters of an LSTM layer (W, R, b ), the input 

W, the recurrent R, and bias b. 
2. Produce random Rayleigh channel parameters for users 
3. Create known-pilot symbols  
4. Characterize the training & testing sequences (𝒁𝒁𝑻𝑻, 𝒁𝒁𝑺𝑺)  
5. Define Length of training and testing sequences (𝑳𝑳𝑺𝑺, 𝑳𝑳𝑻𝑻)  
6. Set the power coefficients for users initially. 
7. Compute the mean and variance of training data (𝝁𝝁𝑻𝑻, 𝝈𝝈𝑻𝑻

𝟐𝟐)  
8. Normalizing the training data 𝒁𝒁𝑻𝑻 → 𝒁𝒁𝑵𝑵𝑵𝑵 
9. Characterize the relationship between Consecutive normalizing   

training sequences (𝑿𝑿𝑵𝑵𝑵𝑵, 𝒀𝒀𝑵𝑵𝑵𝑵) 
10. Initialize the training network (𝑻𝑻𝒏𝒏𝒏𝒏𝒏𝒏) 
11. Apply (𝑿𝑿𝑵𝑵𝑵𝑵, 𝒀𝒀𝑵𝑵𝑵𝑵) as inputs for training model 
12. Update training model (𝑻𝑻𝒏𝒏𝒏𝒏𝒏𝒏) & Predict output coefficients  (𝒀𝒀𝑵𝑵𝑵𝑵) 
13. for I =1 : 𝑳𝑳𝑻𝑻 

[𝑻𝑻𝒏𝒏𝒏𝒏𝒏𝒏 , 𝒀𝒀𝑵𝑵𝑵𝑵] = predictAndUpdateState (𝑿𝑿𝑵𝑵𝑵𝑵, 𝒀𝒀𝑵𝑵𝑵𝑵) 
end 

14. Denormalize 𝒀𝒀𝑵𝑵𝑵𝑵 → 𝒀𝒀𝑷𝑷 & calculate RMS (𝒀𝒀𝑷𝑷 − 𝒁𝒁𝑺𝑺) 
15. Update the state of training network (𝑻𝑻𝒏𝒏𝒏𝒏𝒏𝒏) 
16. using (𝝁𝝁𝑻𝑻, 𝝈𝝈𝑻𝑻

𝟐𝟐), Normalize testing data 𝒁𝒁𝑺𝑺 → 𝒁𝒁𝑵𝑵𝑵𝑵  
17. Use  (𝒁𝒁𝑵𝑵𝑵𝑵) as inputs for trained network (𝑻𝑻𝒏𝒏𝒏𝒏𝒏𝒏) 
18. for I =1:𝑳𝑳𝑺𝑺 

[𝑻𝑻𝒏𝒏𝒏𝒏𝒏𝒏 , 𝒀𝒀𝑵𝑵𝑵𝑵] = predictAndUpdateState (𝒁𝒁𝑵𝑵𝑵𝑵) 
end 

19. Denormalize 𝒀𝒀𝑵𝑵𝑵𝑵 → 𝒀𝒀𝑷𝑷 & calculate RMS (𝒀𝒀𝑷𝑷 − 𝒁𝒁𝑺𝑺) 

VIII.   DL SIMULATION ENVIRONMENT & RESULTS   
The simulation settings will be presented in this section. The 
analyzed downlink NOMA cell includes  one BS and two 
users, where BS and user equipments are all supplied with 
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single  antenna. Monte-Carlo simulations are implemented 
with 𝑁𝑁 = 106 iterations. At starting of each set of iterations, 
pilot data are  randomly created and identified at BS and at 
each  user equipment. In our simulation scenario, we assume 
that CSI is not available. Hence, we decide to employ the 
MMSE classical channel estimation technique scheme [15] 
in the examined NOMA cell. Power levels are assigned for 
every user in proportion to his channel gain and current 
distance from the BS. 

Quadrature phase shift keying (QPSK) is employed as 
modulation method for both data and pilot symbols. 
modulated signals are multiplexed  and sent by BS to all 
users across uncorrelated Rayleigh fading paths affected by 
AWGN, and the noise spectral density is  𝑁𝑁0 = −174 dBm 
and path loss exponent is 4. At the receiver equipment, the 
channel estimation procedure will be originated based on 
LSTM neural network, which employs gradient descent 
algorithm [14], to enable the LSTM layer to precisely 
approximate the desired channel coefficients. At starting of 
each training period, the weights and bias values are 
prepared at random, while throughout the training period,  
weights are adjusted in accordance with gradient descent 
procedure. The performance of the LSTM  network is 
evaluated throughout the training period using root mean 
square error (RMSE) and loss functions. NOMA factors are 
assigned based on long term evolution (LTE) standard [16]. 
Training and testing periods are accomplished online during 
simulations, and fading parameters  produced in testing 
stage are not the same as in the training phase. After the 
training and testing periods are  ended, the trained model 
will be working as real-time channel estimator for users. In 
simulations, the transferred power is mainly varying from 0 
to 40 dBm, and in fixed power allocation (FPA) setting, we 
set 𝛼𝛼𝑓𝑓 = 0.7 , and 𝛼𝛼𝑛𝑛 = 0.3.  

In Fig. 3 simulation outcomes show the comparison 
between channel estimation based DL algorithm and 
channel estimation based on MMSE for far, and near users 
in NOMA system in terms of bit error rate (BER) and power 
transmitted. Both the far and near users show up appropriate  
enhancement in reducing the BER when DL algorithm  is 
employed compared to MMSE scheme specifically when 
the applied power is increased. Power saving is 
approximately 3 dBm for both users, when DL method is 
applied compared to MMSE method. The dominance of DL 
effect in lowering the BER compared to MMSE procedure 
is noticed clearly  from simulation outcomes for each user 
and for different applied power levels.   

Fig. 4, illustrates the outage probability metric against 
power transmitted for the two examined users in NOMA cell 
when  DL and MMSE procedures  are applied for channel 
estimation. Far user simulation outcomes imply an 
enhancement with 2-3 dB approximately in outage 
probability when channel approximation based DL is 
performed compared to MMSE method. Comparably, near 
user with DL algorithm shows an obvious improvement 
compared to results achieved by MMSE procedure. It is 
evident that near user continuously shows good 
performance compared to far user  in terms of both DL 
algorithm and standard MMSE procedure, this may be 
explained by the relaxed channel environment for near user. 

Simulation outcomes for the sum-rate for users  are 
illustrated in Fig. 5. In this figure, DL  algorithm and 
conventional scheme based on MMSE are also applied for 
the aim of channel approximation parameters.  It is 
obviously observed that for small SNR, DL channel 
approximation algorithm shows improvement over the 
conventional MMSE scenario, and this enhancement 
increases to more than 1b/s/Hz when transmitted power is 
also increased. This results proves the success of the DL 
algorithm in estimating channel parameters prior to signal 
detection stage.  

In Fig. 6 and Fig. 7, two separate simulation 
environments are implemented to produce this figures. The 
first simulation scenario when FPA structure is utilized for 
users in the cell and the other setting when optimized power 
method is applied and both setups are simulated when DL 
algorithm is utilized for channel approximation for both 
users in NOMA cell.  

In Fig. 6, for far user case, DL and optimized power 
scheme simulation outcomes show performance 
improvement compared to DL with FPA scenario for BER 
metric vs transmitted power. On the other hand, for near user 
outcomes, DL based channel approximation together with 
FPA provide comparable results to optimized power 
structure, this can  be explained that for near user the relaxed 
channel environments is more effective than distributed 
power.  

In Fig. 7, results for the sum-rate are illustrated, and 
based on the simulation outcomes, it can be observed that 
DL and optimized power distribution show slight 
enhancement in sum-rate compared to DL with FPA method 
when power applied is low. On the other hand, both 
optimized power and FPA methods are providing equivalent 
sum rate when power setting is higher than 15 dBm.  

IX. CONCLUSION 
In this work, we introduce and discuss how the channel 
estimation based LSTM and power optimization are 
together exploited for multi-user detection in PD-NOMA. In 
suggested scheme, the influence of DNN in clearly 
predicting the channel parameters for users in NOMA cell 
is explored, where LSTM network is employed for complex 
data management to carry out training, and prediction. The 
proposed DNN is trained online on the basis of the 
normalized generated channel parameters. In 
implementation phase, the trained DNN model will be 
working to generate the approximated fading parameters, 
and these predicated channel parameters will be used to 
retrieve the transmitted data. Simulation results have 
demonstrated that the implied LSTM assisted NOMA can 
realize better performance in terms of the BER, Outage 
probability, and sum rate. Moreover, user’s power factors 
are optimized to maximize the sum rate for users and the 
performance of the optimized power and fixed power 
schemes are explored when DL algorithm for channel 
approximation is applied. 
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Fig. 3   BER vs Power for Ch. Est.based DL & MMSE . 

 
Fig. 4   Outage Prob. vs Power for Ch. Est.based DL & MMSE  

 
Fig. 5   Sum rate vs Power for Ch. Est.based DL & MMSE . 

 
Fig. 6 BER vs Power for Ch. Est. based DL (Optimized & FPA)        

 
Fig. 7 Sum rate vs Power for Ch. Est. based DL (Optimized & FPA) 
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