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Abstract— This study shows how the channel estimation based
Deep Learning (DL) and a power allocation method are
together employed for multi-user detection in a Power domain
Non-Orthogonal Multiple Access (PD-NOMA) network.
Successive interference cancellation (SIC) procedure is
typically employed at receiver side, where numerous users are
decoded in a successive approach. Fading channels may scatter
transferred signal and initiate dependencies between scattered
components, this might influence the channel estimation
technique and therefore impact the SIC procedure and signal
recognition precision. In our proposed scheme, the influence of
Deep Neural Network (DNN) in clearly approximating the
channel parameters for users in NOMA cell is inspected. In our
scenario, we incorporate the Long Short Term Memory
(LSTM) layer with NOMA cell where the LSTM is employed
for complex data management to perform training and
predication. The DNN is trained online on basis of random
channel models and then the trained network is used to
approximate the channel taps that will be utilized by the
receiver in recovering the desired symbols. Additionally,
power factors for user’s devices are optimized to maximize the
sum-rate of users where whole power and Quality of service
(QoS) restrictions are considered. Simulation outcomes in
terms of Bit Error Rate (BER), Outage probability, and sum
rate have shown the dominance of the suggested channel
estimation using DL over standard estimation approach.
Moreover, both fixed power and optimized power schemes are
also assessed when DNN is applied.
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Non-orthogonal multiple access (NOMA) system is
categorized as an encouraging multiple access technique in
forthcoming wireless systems toward improving spectral
efficacy and system throughput. NOMA system can develop
the current resources essentially by opportunistically getting
benefit of the users’ channel environments then deliver
diverse quality of service (QoS) requirements for current
users in the system. NOMA enables various users to get
concurrent access to same time-frequency resources by
principle of superposition different signals in the power or
code ranges [1]. The idea of NOMA is based on that, user
with bad channel surroundings could be shared with user
with good channel status on same assigned subcarrier at
same time slot, in order that the spectrum can be effectively
exploited. In NOMA system, each user equipment can
receive the superposition of signals from users in the cell,
hence the exclusion of interference from non desired users
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come to be essential for managed decoding. Commonly,
multi-user recognition in NOMA can be achieved via SIC
scheme that can be performed in power domain. In SIC
procedure, signals from different users are decoded
sequentially on the basis of the assigned power beside
channel state information (CSI). Broad knowledge of CSI
for each user is demanding because pilot symbols employed
in channel prediction might interfere with signals from
another users, hence affecting the effectiveness of
conventional channel approximation methods, such as
minimum mean square error (MMSE) [2].

Deep learning (DL) procedures have the potential to
adjust to alterations in the path among user and base station
(BS) and can approximate the channel coefficients for each
device, therefore DL is regarded as reliable contenders for
upcoming wireless systems.

In [3], the authors introduced a channel estimation
procedure for multi-user detection scheme with imperfect
CSI. Discrete state model and Kalman filter are employed
to make an estimate of the unspecified parameters of a
varying channel based on uncertainty pattern. Authors
inspected the censoring phenomenon via the Tobit
measurement scheme to accomplish further precise
estimation, while the QoS demands such as minimum signal
to interference and noise ratio (SINR) are satisfied for all
users. Also, a robust mean square error (MSE) estimation
framework is created to minimize the estimation error.
Analytical analysis, and simulation outcomes validated the
efficiency of the framework in terms of channel estimation
reliability.

Authors in [4], investigated changes in the throughput
and outage probability versus signal to noise ratio (SNR) in
NOMA network, on the basis of two categories of partial
channel state information. Authors have discussed both
imperfect CSI and second order statistics (SOS) based
NOMA and proved that SOS scheme can realize improved
performance than the performance attained with imperfect
CSI, but it may reach comparable performance to NOMA
with ideal CSI at low SNR. Results also revealed that
NOMA system can attain improved performance compared
to conventional orthogonal multiple access (OMA)
approach when partial channel state information is applied.

In [5], a pilot-assisted receiver framework is proposed
for uplink SIMO-NOMA system, that incorporates a mixed
channel approximation and signal recognition framework.
Authors gather DL algorithm with SIC identification
scheme to diminish the factors need to be learned.
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Moreover, signal recognition precision enhancement and
noise alleviation have been accomplished by introducing
interference and noise removal parameters at SIC phase.
Simulation outcomes show that the BER performance in
terms of the suggested deep learning structure is better than
conventional MMSE method and the complication of
receiver is reduced.

In [6], authors have introduced a semi-blind recognition
method based on DL, to detect signals for users in co-
operative NOMA network. With the aid of DL scheme and
pilot symbols responses, the suggested approach is able to
detect signals while no separate channel estimation process
is required. The DL network trained offline over Rayleigh
fading environment and then the trained model is utilized as
online detector. Authors also, examined the trained model
using Rician and Nakagami fading models and simulation
consequences prove that the proposed deep learning
detector outperforms traditional detectors.

IL.

In this section, downlink NOMA system is analyzed
where users are connected to BS via numerous channel
gains. In our NOMA cell, it is assumed that we have one BS
with one antenna to assist two users simultaneously and
every user’s device also holds one antenna. Naturally, in
NOMA cell users are receiving the superimposed signal sent
from BS that include desired and interfering signals, sent
via same resource block. Accordingly, incorporating a
mixture of signals using diverse power levels is crucial to
strengthen SIC technique [7] and assist in differentiating
between signals at each receiver equipment.

In PD-NOMA, users that distinguished by good or
strong channel conditions are frequently assigned minimum
power, while users with weak path circumstances can be
assigned more power factors. Each user is labelled by its
fading channel and the distance from BS. In our system we
can identify the nearby equipment as near user and
equipment at edge of cell is known as far user. In the
examined cell, a Rayleigh fading channel is assumed for the
links among BS and each user. On the basis that there are
two users in the examined cell, the fading path for each user
can mathematically be specified with the following, for near
device h,,~(0,d;*) and for far device hf~(0, df_k), where
h; represent the fading path connecting user equipment and
BS, and £ denotes path loss exponent [10].

In this paper, noise samples are considered as Additive
White Gaussian Noise (AWGN), with zero mean and noise
power indicated as a2. With no lack of generality, we can

SYSTEM MODEL

consider that |k, |? > |hf|2. Total transferred power from
BS to users in the cell is identified by P;. In NOMA cell, the
receiver at each equipment has the capability to perform SIC
to remove signals related to users with weak link conditions.
Alternatively, signals belong to users with good channel
circumstances treated as interference. At BS, the antenna
knows how to send the superposition coded signal x which
is formulated as follows [8]

x = \/FTt(,/anxn + ‘/afxf) (@Y)
Where a,, and a; are the power factors for near and far
users independently. Similarly, x,, and x; represent the
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required signals related to near, and far users separately.
Therefore, received signal at far user can be stated as follows
(8]
Yr = xhg + zf 2

Where h; denotes the fading path between BS and far user,
while z; denotes AWGN noise part at far device with zero
mean and ¢2 variance. Far user is typically depicted by weak
path environment, thus the signal x; can be given more
power by BS where af > a,,. Thus, the receiver equipment
for far user will be able to straightway interpret his own
message Xy from y, . Signal obtained at far user can
mathematically expanded as follows:

yf = 1[Ptaf)(fh.f + Ptanxnhf + Zf

The 1% term in (3) indicates the far user’s desired signal, and
the 2™ term denotes the interference signal. Based on (3) The
2
|y | Peay

far user rate could be formulated as
R; =lo 1+—————
f 82 2
( |hf| P.a, + 02>
Typically, near user is characterized by good channel
condition, so the signal received at near user equipment is

simply formulated as follows:
Yo = xh, + 2z,

Y = Peanxphy + \ Peagxehy, + 2,

The 1% term in (5) characterizes the expected signal for near
user, and the 2" component in (5) is the interfering far user
term. In addition, it is noted from (5), that the 2" term is
prevailing due to further power designated to far user. Thus,
at receiver of near user, immediate decoding for far user
signal x¢ should be accomplished at first. After SIC, the
achieved rate for near user R, to decode its own required
signal x,, can be expressed as

3

(4

®)

|h |2Pta
R, = log, (1 + % (6)
III. POWER ALLOCATION

The purpose is to maximize the sum-rate for active users in
examined cell based on optimizing power coefficients for
users in compliance with applied channel gains. The
summation of aforementioned sum-rates for N-users
downlink NOMA cell can be formulated as shown

N
Roym = Z log, <1 + )
k=1

1. Total Power constraint
Designated power for each device in examined cell is a
fraction of the whole power P; conveyed by BS. Therefore,
power portion given for each device need to follow [9]

N

Zax <1 (8)

x=1
where a, is the power fraction for x* user.

2. QoS constraint

To develop user fairness, we can assume that user with bad
channel environment in NOMA cell has a QoS demand,

|hye|? Peatyc
|hi |2 3521 Peatj + 0
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which indicates that a lowest possible rate R,,;, needs to be

assured and consistent with the examined optimization

problem, this constraint can be formulated as shown [9]
lOgZ (1 + 5n) = Rmin (9)

Based on the above-mentioned constraints in (8) & (9) and
sum rate representation, the typical optimization problem can
be shown in this way [8][9]:

max Rgum
N -
_ |hk|2Pt ;§=11aj+0‘2+|hk|2Ptak
- Z log: I |?P, 251 a; + o2 (10
k=1 kPt Zuj=1 %
such that

N

Zaxsl

x=1
lOgZ (1 + 611) 2 Rmin
a,>0Vk=12,..,N

IV. OPTIMIZATION INVESTIGATION

Power optimization in this section is accomplished with
respect to two users in  NOMA cell and the optimization
problem can easily redeveloped as shown

max  Rgym = R, + Ry 1)

<o

S.t.

m—1

(2R — 1) — Ry %p (am - @R - 1) Y o
i=1
a,+a;—1<0

an, af 20

Where m = 2 and R,,;,, is the minimum rate needed in the
cell. In accordance with the aforementioned analysis, the
constraints can be expressed as shown:

Cll@=ap+am+ar—1 12)
Ca(@) = (2Fmin — 1) — plhyp|? (@p — (2Fmin — 1) (@)  (13)

The constraints C; (a), C,(a) are linear in terms of a , then
Ci(a),C,(a) are convex. Now we need to calculate
VRsym(a@) & V?Rg,,, (). Firstly, we can derive a general
expression for the first derivative for R, (@) in terms of
the power factor «; After certain mathematical
manipulations, VRg,,,(a) can generally be represented as

follows [8]
( )

1 (lh(i+k,)|zpc)z Qivic
) :

B PP S g 4 g2 x
|hwio| P aj + o

Similarly, we can deduce a general expression for the second
derivative for objective function Rg,,,(a@) with respect to

ORgym 1
da;  In2

|hi| P,
[hi|?P X5y @ + 02

1
(lh(Hk)lZPt T a + 0'2)

(14)
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power coefficient «; . The general derived form can be
formulated as follows:

{( 7

3 .
oy {<(|h(t+k)|zpt) ai+k[2(|h(i+k)|zpt Z}‘Ll_laj+02)+|h(i+k)|21’tai+k]

. 2
(|h(i+k)|2PrE}i'f llj+tfz)

1
. 2
((lh(i+k)|2Pt Ttk “j+‘72) )}

Rather than utilizing a Hessian matrix to demonstrate that the
objective function is concave, we can make use of the
following conditions [8][9]

azRSum

azRSum - _ L
da;? n2

(|h|*P.)?
(lhilzpt 2521 a; +0o?

)

(15)

L ™ <0 (16)
0%Rsum
2. ﬁ <0 a7
azRSum azRSum azRSum z
3. ( 6a% a2 (aanaaf) ) >0 (18)

Conditions (16) (17) (18) have been satisfied which implies
that the objective function is concave and has a distinctive
global upper limit. Lagrange function and the KKT
conditions can be applied to obtain optimum power
parameters. After some mathematical replacements, the
analytical form expression for the power factors can be
formulated as shown [10]

1 plhnlz—(ZRf—l))
= 1
o (zRf)( plbnl? a9
R 2
@ -1 (plhf +D)
=@ (0 20
f (zRf) < p|hf|2 (20)

V. RNNs AND LSTM

Recurrent Neural Networks (RNNs) are considered as a set
of controlled learning procedure, where RNNs can manage
consecutive data sequences for estimation and identification

[11].

=
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»

Input layer

Input layer

(a) Single neuron element. (b) Recurrent neural network (RNN).

Fig. 1 RNN network construction [11]

As shown in Fig. 1, in RNNs hidden layers have the
potential to play a role as buffer for the network at a certain
time, this arrangement allows the RNNs to deal with prior
complex data for an extended interval of time. In addition,
RNNs can characterize time dependencies between data
sequences with a smaller number of neurons. Alternatively,



conventional RNN based on backpropagation encounters
vanishing gradient problem and slow-going in learning
process [2][11]. Thus, RNNs will not be the most
appropriate neural network for signals that send out over
fading links which may diffuse the signal and initiate a long
term dependencies among its components [12]. LSTM,
which is a one type of RNNs, is frequently employed for
classification based on time series data, where it can
recognize the time dependencies among data sequences
[12]. LSTM layer include LSTM cells, and every cell
comprises a collection of gates as shown in Fig. 2. Based on
the underlying design, the LSTM gates are capable to save
and gain access to data for long intervals of time and also
counteract the error raised by backpropagation method
[2][12]. LSTM has the capability to deal with vector of
complex data, thus incorporating the amplitude and phase
components of input sequence simultaneously. LSTM is
appropriate choice to deal with multi-user recognition when
time series data is presented [13].

hy  Output

Gt X ar G
t }
Cell state X tanh Next cell state
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Fig. 2 Internal structure of LSTM cell

VI. LSTM AND NOMA STRUCTURE

A framework that incorporate the LSTM network with
NOMA system is introduced here. In data driven
communication, the quantity of LSTM cells at every single
layer and the amount of LSTM layers can be implemented
through empirical observations, to make sure that adding up
additional LSTM layers will not produce an obvious gain in
learning stage or remarkably influence the network
convergence [14]. In our DL scheme, the LSTM network
involves 4 layers, each layer is supported by a number of
neurons, and weighted sum of these neurons are going to
enter to a nonlinear activation function. In proposed LSTM
configuration, the input layer consists of 128 neurons, and
the vector of data feeded to input layer are transferred to the
following layer with the aid of weight coefficients, bias, and
activation function. In the next layer, we apply single LSTM
layer with 200 hidden elements. The adjustable weights of
LSTM layer are recurrent R, input W, and bias b. The 3rd
layer in our DNN model is a fully-connected (FC) layer
which handles the outcomes of LSTM layer. The end layer
is regression layer that is responsible for updating network
weights and biases in addition to update the state of the cell.
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In LSTM cell, the output is produced on the basis of
the recent input and the prior cell state. LSTM cell contains
a various kinds of gates, forget, input , and output gates.
These gates will aid in remembering the preceding cell state
and decide if the previous state need to be employed or not
when calculating the output. In addition, LSTM is
characterized by two main states, the cell state C,_; which
is known as inner buffer where all responses are
accumulated, and the other state is called hidden state h,_;
that are exploited for calculating the output. Fig. 2 shows the
inner configuration of LSTM cell, where t indicate the time
instant, x, is the recent input, h;; denote the recent output
channel parameters for user i at time t, and C;_; is the
former cell state [14].

VII. DEEP LEARNING SYSTEM ARCHITECTURE

The transmitted frame is consisting of data and pilot
symbols. The fading path is considered as constant spanning
over one frame and the fading path change from one frame
to another. In our algorithm, to implement an efficient Deep
Neural Network (DNN) model for channel approximation,
two phases are included. In the first phase, online training is
conducted, where the DNN layers are mainly trained with a
diverse Rayleigh channel coefficients [11][14]. In
implementation phase, the trained DNN model will be
employed to generate the estimated fading coefficients
explicitly for users, then the estimated coefficients will be
utilized to retrieve the desired original signals. The proposed
DL algorithm for channel approximation can be listed as
indicated in algorithm 1.

Algorithm 1: Channel Estimation based DL scheme

1. Initialize adjustable parameters of an LSTM layer (W, R, b ), the input
W, the recurrent R, and bias b.

Produce random Rayleigh channel parameters for users

Create known-pilot symbols

Characterize the training & testing sequences (Zy, Zs)

Define Length of training and testing sequences (Lg, Ly)

Set the power coefficients for users initially.

Compute the mean and variance of training data (7, 6%)
Normalizing the training data Zy — Zyy

Characterize the relationship between Consecutive normalizing
training sequences (Xyz, Y yr)

Initialize the training network (T ;)

Apply (Xy7, Ynr) as inputs for training model

Update training model (T,,;) & Predict output coefficients (Y yp)
forI=1:Ly

[T et » Y np] = predictAndUpdateState (Xyr, Y yr)

end

Denormalize ¥ yp = Yp & calculate RMS (Yp — Z)

Update the state of training network (T,,¢¢)

using (@, 0%), Normalize testing data Zg — Zyg

Use (Zys) as inputs for trained network (T p,e;)

for[=1:Lg

[T et » Y np] = predictAndUpdateState (Zys)

end

Denormalize ¥ yp = Yp & calculate RMS (Yp — Zy)

e A T o

VIII. DL SIMULATION ENVIRONMENT & RESULTS

The simulation settings will be presented in this section. The
analyzed downlink NOMA cell includes one BS and two
users, where BS and user equipments are all supplied with



single antenna. Monte-Carlo simulations are implemented
with N = 108 iterations. At starting of each set of iterations,
pilot data are randomly created and identified at BS and at
each user equipment. In our simulation scenario, we assume
that CSI is not available. Hence, we decide to employ the
MMSE classical channel estimation technique scheme [15]
in the examined NOMA cell. Power levels are assigned for
every user in proportion to his channel gain and current
distance from the BS.

Quadrature phase shift keying (QPSK) is employed as
modulation method for both data and pilot symbols.
modulated signals are multiplexed and sent by BS to all
users across uncorrelated Rayleigh fading paths affected by
AWGN, and the noise spectral density is Ny, = —174 dBm
and path loss exponent is 4. At the receiver equipment, the
channel estimation procedure will be originated based on
LSTM neural network, which employs gradient descent
algorithm [14], to enable the LSTM layer to precisely
approximate the desired channel coefficients. At starting of
each training period, the weights and bias values are
prepared at random, while throughout the training period,
weights are adjusted in accordance with gradient descent
procedure. The performance of the LSTM network is
evaluated throughout the training period using root mean
square error (RMSE) and loss functions. NOMA factors are
assigned based on long term evolution (LTE) standard [16].
Training and testing periods are accomplished online during
simulations, and fading parameters produced in testing
stage are not the same as in the training phase. After the
training and testing periods are ended, the trained model
will be working as real-time channel estimator for users. In
simulations, the transferred power is mainly varying from 0
to 40 dBm, and in fixed power allocation (FPA) setting, we
setay = 0.7 , and a,, = 0.3.

In Fig. 3 simulation outcomes show the comparison
between channel estimation based DL algorithm and
channel estimation based on MMSE for far, and near users
in NOMA system in terms of bit error rate (BER) and power
transmitted. Both the far and near users show up appropriate
enhancement in reducing the BER when DL algorithm is
employed compared to MMSE scheme specifically when
the applied power is increased. Power saving is
approximately 3 dBm for both users, when DL method is
applied compared to MMSE method. The dominance of DL
effect in lowering the BER compared to MMSE procedure
is noticed clearly from simulation outcomes for each user
and for different applied power levels.

Fig. 4, illustrates the outage probability metric against
power transmitted for the two examined users in NOMA cell
when DL and MMSE procedures are applied for channel
estimation. Far wuser simulation outcomes imply an
enhancement with 2-3 dB approximately in outage
probability when channel approximation based DL is
performed compared to MMSE method. Comparably, near
user with DL algorithm shows an obvious improvement
compared to results achieved by MMSE procedure. It is
evident that near wuser continuously shows good
performance compared to far user in terms of both DL
algorithm and standard MMSE procedure, this may be
explained by the relaxed channel environment for near user.
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Simulation outcomes for the sum-rate for users are
illustrated in Fig. 5. In this figure, DL algorithm and
conventional scheme based on MMSE are also applied for
the aim of channel approximation parameters. It is
obviously observed that for small SNR, DL channel
approximation algorithm shows improvement over the
conventional MMSE scenario, and this enhancement
increases to more than 1b/s/Hz when transmitted power is
also increased. This results proves the success of the DL
algorithm in estimating channel parameters prior to signal
detection stage.

In Fig. 6 and Fig. 7, two separate simulation
environments are implemented to produce this figures. The
first simulation scenario when FPA structure is utilized for
users in the cell and the other setting when optimized power
method is applied and both setups are simulated when DL
algorithm is utilized for channel approximation for both
users in NOMA cell.

In Fig. 6, for far user case, DL and optimized power
scheme simulation outcomes show performance
improvement compared to DL with FPA scenario for BER
metric vs transmitted power. On the other hand, for near user
outcomes, DL based channel approximation together with
FPA provide comparable results to optimized power
structure, this can be explained that for near user the relaxed
channel environments is more effective than distributed
power.

In Fig. 7, results for the sum-rate are illustrated, and
based on the simulation outcomes, it can be observed that
DL and optimized power distribution show slight
enhancement in sum-rate compared to DL with FPA method
when power applied is low. On the other hand, both
optimized power and FPA methods are providing equivalent
sum rate when power setting is higher than 15 dBm.

IX. CONCLUSION

In this work, we introduce and discuss how the channel
estimation based LSTM and power optimization are
together exploited for multi-user detection in PD-NOMA. In
suggested scheme, the influence of DNN in clearly
predicting the channel parameters for users in NOMA cell
is explored, where LSTM network is employed for complex
data management to carry out training, and prediction. The
proposed DNN is trained online on the basis of the
normalized  generated  channel  parameters. In
implementation phase, the trained DNN model will be
working to generate the approximated fading parameters,
and these predicated channel parameters will be used to
retrieve the transmitted data. Simulation results have
demonstrated that the implied LSTM assisted NOMA can
realize better performance in terms of the BER, Outage
probability, and sum rate. Moreover, user’s power factors
are optimized to maximize the sum rate for users and the
performance of the optimized power and fixed power
schemes are explored when DL algorithm for channel
approximation is applied.
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