
 

 

Intent-based 5G UPF configuration via Kubernetes 
Operators in the Edge 

 

Ákos Leiter, István Kispál, Attila Hegyi, Péter Fazekas, Nándor Galambosi, Péter Hegyi, Péter Kulics, József Bíró 
email: {akos.leiter, istvan.kispal, attila.hegyi, peter.fazekas, nandor.galambosi, peter.hegyi, peter.kulics, jozsef.biro}@nokia-bell-labs.com 

Nokia Bell Labs, Bókay János utca 36-42, 1083 Budapest, Hungary, 
  

Abstract—The expected growing number of edge clouds in 

the telecommunication industry requires new types of 

configuration management approaches in order to deal with 

the increased complexity. The Kubernetes Operator pattern 

widely used for lifecycle management of cloud native 

applications could be also applied to network management and 

configuration. In this paper we present our approach on using 

Kubernetes Operators to automatically adapt the 

configuration of the edge-located User Plane Functions (UPFs) 

to intents coming from an Edge Application. The owner of the 

Edge Application does not need to deal with network-related 

configuration as the chain of Kubernetes Operators manage it. 

Furthermore, we also provide numerical results about the 

speed of automatic configuration. 

Keywords—intent, Kubernetes, 5G, ULCL, local-breakout 

I. INTRODUCTION  

Intent-based networking (IBN) with its declarative 
description of requirements where only the desired state is 
requested has depicted new approaches for the networking 
industry. This is different from the existing approaches 
where detailed steps of execution are used for tasks. One of 
the benefits of IBN comes with its layered abstraction levels 
which provides interfaces to business and low-level technical 
solutions as well. This is important for application 
developers too who require specific network settings for their 
services: they do not have to deal with network configuration 
at all. Application developers only need to request a specific 
network service (via intent) and the rest is taken care by the 
network operator. 

In this paper, we advocate breaking down the end-to-end 
automation problem into ever smaller and smaller 
automation problems, that are solved by small control loops, 
called Controllers. This approach is depicted in Figure 1. 
Each controller receives intents via its Northbound Interface 
(NBI), and compares the desired state specified in the intent 
with the actual state of the world in a closed loop. If the two 
differ, then the controller tries to push the actual state toward 
the desired state. In our vision most of the controllers only 
break down their NB intent to lower-level intents, that are 
handled/realized by their own lower-level control loops. At 
the end, typically only the lowest-level controllers act on 
real-world objects (i.e. Physical Network Functions – PNFs, 
Containerized Network Functions - CNFs, switch/application 
configurations, cloud resources). Arbitrary numbers of intent 
processing layers can be introduced based on the location, 
execution targets etc.  of services. The layered approach also 
implies that every orchestration problem is handled at the 
lowest possible layer, in other words, only those problems 
are delegated upwards that cannot be solved at the current 
layer. Kubernetes’ architecture also follows similar 

principles. It is based on multiple cooperating control loops 
(i.e., various resource controllers, the Kubernetes scheduler, 
kubelets, kubeproxies, custom Kubernetes Operators) that 
are driven by intents called Kubernetes Resources.  

Interestingly the concept of independently cooperating 
control loops is also analogous to how telco network 
operations used to work in most Communication Service 
Providers (CSP). The only catch is that the control loops 
were implemented by human operators (as opposed to 
Kubernetes Operators). Different groups of 
operators/engineers were specialized on continuously 
configuring different parts of the infrastructure, and if they 
couldn’t solve an issue, they delegated it to the upper layer of 
engineers. 

 

Figure 1 – Intent-based distributed orchestration vision 

In this paper, we present how an Edge Application can 
request local-breakout (as a service) in the Edge without the 
need of understanding the networking in that particular site. 
Note that, in our case we use the phrase “local-breakout” as 
utilizing 3GPP Uplink Classifier (ULCL) [1] functionality 
for directing traffic locally at the edge, not in the context of 
roaming. Furthermore, we present numerical results to have 
an insight on the speed of such a  (Day-2) configuration of 
edge UPF after a particular Kubernetes Service requests 
local-breakout. 

The remaining sections are organized as follows: Section 
II presents related works. Our edge architecture is shown in 
Section III. Measurement results are elaborated in Section 
IV. Conclusion and Future work are placed in Sections V 
and VI respectively.  

II. RELATED WORKS 

The detailed description of Kubernetes Operators [2] and 
Operator SDK [3] what we used for our implementation can 
be found in the mentioned references. But scientific papers 
also investigate their usage. Ruxiao Duan et al. [4] present a 
maturity-level proposal for Kubernetes Operators. This rather 
pertains for application of lifecycle-management operators. 
In our case, we have a broader scope of usage for Kubernetes 

186978-1-6654-8550-0/22/$31.00 ©2022 IEEE ICUFN 2022



 

 

Operators. It is worth mentioning, that Kubernetes Operators 
can be used for machine learning applications, Ali Kanso et 
al. [5] presents their KubeRay, a Kubernetes Operator to 
create Ray clusters. Kubernetes may be needed to be 
redesigned to fit for Edge Application. Andrew Jeffery et 
al.[6] investigate the bottleneck of Kubernetes, especially 
etcd in Edge use cases. The usage of Kubernetes Operators 
has been spreading not just in IT, but in telecommunication 
industry too; e.g.: Osama Arouk et al. [7] show a demo about 
RAN element deployment by Kubernetes Operators.  

III. ARCHITECTURE 

A. Edge Architecture 

Edge clouds should have a well-defined architecture from 
both software and networking point of view. Figure 2 depicts 
our vision about a replicable edge stack. According to this 
vision every workload (platform service, application or 
network function) running in an edge cloud is hosted in a 
Kubernetes cluster. The diagram depicts dedicated 
orchestration functions for the hardware layer (bare metal 
provisioning) and for the lifecycle management of the 
Kubernetes clusters (K8s LCM), but these are less interesting 
for the topic of this paper. For the purposes of this paper the 
orchestration of workloads atop the Kubernetes clusters were 
split into low-level and high-level orchestration parts. The 
primary goal of low-level orchestration in this sense is to 
disseminate Kubernetes resources across multiple 
Kubernetes clusters in multiple edge sites. Examples for low-
level orchestration toolsets include ArgoCD [8], FluxCD [9], 
Redhat ACM [10], etc. High-level orchestration includes 
end-to-end orchestration of telco networks, slice 
management functions, automatic placement of software 
components, e.g. ONAP [11] or vendor-specific products.  

There are two basic approaches for cloud resources 
ownership depicted in the Figure 2 (although practical 
buildouts and offers may have other options): 1) local, self-
managed/self-owned compute, network and storage 
resources 2) Hyperscalers’ edge stack offerings [12] [13] 
[14]. Platform services provide various APIs for the 
workload running in the edge cloud, e.g.: service mesh and 
HW acceleration (GPU, SRIOV etc.). The layered edge stack 
must contain the basic networking, development and 
telecommunication services.  

 

Figure 2 – Our vision on services in edge context 

From telecommunication point of view, the presence of UPF 
is likely  but here is the place also for O-RAN services like 
near-Real Time RAN Intelligent Controller (RIC). On the 
top of all the above-mentioned items, the real tenant 
workloads can be placed, but not necessarily using all of 
platform services. They can be third-party applications (e.g.: 

remote gaming servers, CDN caches) or additional 
telecommunication functions (e.g.: vRAN or analytics 
network elements). 

B. 3GPP System view 

 

Figure 3 - Uplink Classifier architectural view with Edge 

Computing 

Figure 3 presents how the Uplink Classifier-based approach 
of edge local-breakout works according to 3GPP[1]. A new 
edge-UPF is injected between the UE and the central UPF 
(where the main PDU Session Anchor (PSA1) resides). This 
edge UPF contains the so-called Uplink Classifier (UL CL). 
According to configured policies, the UL CL detects which 
packets of the traffic flowing in the PDU session should be 
terminated in a secondary PSA2 in the edge UPF and which 
packets should be forwarded to PSA1. PSA2 has the 
connection to a local data network (DN2) through the edge 
UPF’s N6 interface. Edge Applications are available via 
DN2. 

C. Kubernetes view 

Overall, as mentioned above, that orchestration architecture 
is based on a hierarchy of reconciliation loops (typically 
Kubernetes Operators) built on top of each other. The 
reconciliation loops together form a dynamic system that is 
continuously pushing the state of the actual world toward a 
desired state defined in the highest-level intents.  
1) Lifecycle operator 

For the UPF lifecycle management we have implemented a 
Kubernetes controller, that handles the UPF Custom 
Resources [15]; we use this custom resource definition to 
describe a UPF instance. The controller is a Helm operator, 
generated by the Operator SDK [3] and is responsible for 
basic lifecycle management tasks of the UPF, like install 
and uninstall. The Lifecyle Operator uses the 
quay.io/operator-framework/helm-operator Docker image. 
The Lifecyle Operator continuously watches the UPF 
Custom Resource’s state to validate whether the CR is in the 
desired state or not. 

 
Figure 4 - Lifecycle operator architectural view for 

installing UPF 

187



 

 

Our approach follows GitOps principles. The UPF 
custom resources are primarily stored in a Git repository, as 
YAML manifest files. Any changes in those files are 
automatically detected by a GitOps CD tool (in our case 
ArgoCD) and the manifests are automatically synched to the 
target Kubernetes clusters, and that in turn triggers the 
Lifecycle Operator described above to install/delete the UPF 
instance. This whole procedure is depicted in Figure 4, while 
a fraction of a UPF Custom Resource manifest can be found 
in Code 1. This model allows not just the setting of 
Kubernetes-related parameters e.g.: NodePort, etc., but it 
ensures UPF-level configuration too (DNN, PLNM etc.). 

 
Code 1: Example of UPF CR 

apiVersion: mco.bl.nokia.com/v1alpha1 

kind: UPF 

metadata: 
    name: upf-psa1-operated 

spec: 

    image: 
      repository: registry-test.net/5g 

      name: upf 

      tag: A-1.0 

    service: 
      oam: 

        telnet: 

          nodePort: 30023 

          port: 2323 
          targetPort: 2323 

[…] 

    plmn: 

    - mcc: "999" 

    - mnc: "99" 

2) Edge Local Breakout Controller 

Edge Local Breakout Controller (LBO Controller) is an 
operator too, depicted in Figure 5. LBO controller has two 
CRs: LBO Claim and LBO Config. LBO claim is the high-
level intent for doing (Day 2) configuration. LBO Claims 
(Code 2) are responsible for defining the IP address ranges 
for local-breakout (IP packets with destination address in 
this range should be sent to the local N6 interface of UPF). 
If something is changed in the LBO Claims, then it will 
trigger automatic update to the system via the LBO 
Controller. LBO Config is just a practical configuration 
specific CRD containing information such as the SMF 
connection credentials, or the policies which has to be 
updated. LBO controller is the main entity which is 
responsible for hiding vendor specific configuration 
methods. Meanwhile, the LBO Claim is abstract enough to 
contain the only needed local-breakout parameters.  

 
Figure 5 - Edge Local Breakout Controller with its CRs 

Of course, these are implementation specific, 
standardization may be needed with LBO Claims-like 
objects on the long run. Even though the UL CL sits in the 
UPF, the configuration is done via SMF configuration and 

SMF pushes the configuration update to UPF via N4 
interface for particular PDU sessions 

Code 2: Example of LBO Claim 

apiVersion: mco.bl.nokia.com/v1beta1 

kind: LboClaim 

metadata: 

  name: lboclaim-1 
spec: 

  dstIpRange: 10.0.0.1/32 

3) External Edge Service Controller 

We also consider edge applications on Kubernetes bases. 
Figure 6 shows how edge applications fit into the existing 
picture. So far, the IP address range was static in the LBO 
Claim, in this section we present how it can be dynamic.: 
This is needed, because in practical cases the edge 
application’s IP address will only be assigned after it’s 
deployment and is not known in advance. They should only 
annotate their service – in this case a Load-balancer Service 
– with “external-edge-service=yes” annotation. This is 
watched by a new operator called External Edge Service 
Controller. (Edge) Applications usually need IP address for 
external reachability.  

 

Figure 6 - Exposing Kubernetes Services via the Edge 

UPF 

This IP address - which is an externally reachable IP address 
- is different from the default Cluster IP and can be 
configured by external Service types like the LoadBalancer. 
Thus, there should be another Kubernetes entity for external 
IP address assignment, in our case, it is MetalLB[16]. The 
external service controller then gets the assigned external IP 
and creates an LBO Claim from it. The claim is then being 
processed by the previous controller. 

IV. MEASUREMENT 

We have designed a measurement scenario to conclude 
how much time it takes for an application’s external IP 
address to be configured for local-breakout in the edge-
located UPF (depicted in Figure 7). The measurement starts 
with creating a Kubernetes Service for the particular fraction 

188



 

 

of Pods. Later, external IP address is assigned by MetalLB. 
Then, the External Edge Service Controller recognizes that 
particular Kubernetes Service annotation which tells that, the 
Service needs external reachability. At the end of the 
configuration loop through the chain of the previously 
mentioned Kubernetes Operators, the UPF is configured with 
the actual local-breakout configuration for that particular 
Kubernetes Service. 

 

Figure 7 - Process of LBO creation 
 Meanwhile, the measurement framework watches 

continuously if the configuration change is applied in the 
UPF. If yes, then it concludes the measurements. Figure 8 
presents the box plot of 1000 times of measurements while 
Table 1 shows the results numerically too. Note that, there 
are some uncertainties in the measurement conclusion: new 
configuration assignment can be even lower but the test 
framework needs time to download the UPF configuration 
and process it. Furthermore, IP address assignment by 
MetalLB also adds uncertainty to the system. The underlying 
hardware is Nokia OpenEdge platform. 

 

Figure 8 - Box plot of configuration time measurements 

MIN AVG MED MAX STDEV 

2 3.283 3 6 0.51 
Table 1. – Numerical results of measurements in sec 

V. CONCLUSION 

In this paper, we presented how application developers 
can request network services without knowing the 
underlying telecommunication infrastructure. We have 
shown how a chain of Kubernetes Operators can hide and 
automate the whole process. The measurement results show 
that it takes only a few seconds to configure the local UPF 
instance according to the needs of the operations engineers. 
It is very hard to compare this approach to other similar ones, 
but according to GSMA[17], the installation and 
configuration of a new PNF takes time in the range of days. 

In this paper we showed that, the reconfiguration is within 
seconds which we believe clearly shows the power of 
network automation and Kubernetes Operators. Also, the 
usage of CRDs and Kubernetes controllers for configuration 
fits pretty well into the GitOps and Configuration-as-Code 
principles, which is essential for next generation network 
automation. Overall, we argue for the benefits of using 
Kubernetes APIs for configuring NFs. GitOps also adds an 
additional layer of security to the system which – we believe 
– is a big advantage. A user who has rights to change codes 
in Git, does not need to have direct access for a particular 
network function (e.g. no direct ssh). Furthermore, this is the 
place where revalidation can also be taken place: policies, 
hooks etc. can validate the config changes before they are 
actually pushed to the system. Based on our measurements it 
is also clear, that if a real-time control loop is required to 
solve a problem (e.g. various SDN or SON use cases), then 
those real-time control loops must be in the lowest-layer, 
since delegating intents to lower layers takes time. 

VI. FUTURE WORK 

It is worth investigating how a complete 5G network can 
be deployed and maintained by Kubernetes Operators. It 
should pertain for lifecycle and configuration management as 
well. Prevalidation hooks for security are also on the table in 
this research area. 

REFERENCES 
[1] ‘3GPP TS 23.501: System architecture for the 5G System (5GS)’.  
[2] ‘Kubernetes Operators’. https://kubernetes.io/docs/concepts/extend-

kubernetes/operator/ (accessed Jan. 15, 2022). 
[3] ‘Operator SDK’. https://sdk.operatorframework.io/docs/building-

operators/helm/tutorial/ (accessed Apr. 15, 2022). 
[4] R. Duan, F. Zhang, and S. U. Khan, ‘A Case Study on Five Maturity 

Levels of A Kubernetes Operator’, in 2021 IEEE Cloud Summit 

(Cloud Summit), 2021, pp. 1–6. doi: 
10.1109/IEEECloudSummit52029.2021.00008. 

[5] A. Kanso et al., ‘Designing a Kubernetes Operator for Machine 
Learning Applications’, in Proceedings of the Seventh International 

Workshop on Container Technologies and Container Clouds, New 
York, NY, USA, 2021, pp. 7–12. doi: 10.1145/3493649.3493654. 

[6] A. Jeffery, H. Howard, and R. Mortier, ‘Rearchitecting Kubernetes 
for the Edge’, in Proceedings of the 4th International Workshop on 

Edge Systems, Analytics and Networking, New York, NY, USA, 
2021, pp. 7–12. doi: 10.1145/3434770.3459730. 

[7] O. Arouk and N. Nikaein, ‘5G Cloud-Native: Network Management 
& Automation’, in NOMS 2020 - 2020 IEEE/IFIP Network 

Operations and Management Symposium, 2020, pp. 1–2. doi: 
10.1109/NOMS47738.2020.9110392. 

[8] ‘Open Network Automation Platform (ONAP)’. 
https://www.onap.org/ (accessed Jan. 10, 2022). 

[9] ‘ArgoCD’. https://argoproj.github.io/cd/ 
[10] ‘FluxCD’. https://fluxcd.io/ 
[11] Red Hat Advanced Cluster Management. Accessed: Apr. 15, 2022. 

[Online]. Available: 
https://www.redhat.com/en/technologies/management/advanced-
cluster-management 

[12] ‘Amazon Wavelenght’. https://aws.amazon.com/de/wavelength/ 
(accessed Apr. 15, 2022). 

[13] ‘Google Distributed Cloud’. https://cloud.google.com/distributed-
cloud (accessed Apr. 15, 2022). 

[14] ‘Azure Edge Stack’. https://azure.microsoft.com/en-
us/products/azure-stack/edge/#overview (accessed Apr. 15, 2022). 

[15] ‘Kubernetes - Custom Resource Definitions’. 
https://kubernetes.io/docs/concepts/extend-kubernetes/api-
extension/custom-resources/ (accessed Apr. 15, 2022). 

[16] ‘MetalLB Kubernetes load-balancer’. https://metallb.universe.tf/ 
(accessed Apr. 15, 2022). 

[17] GSMA, ‘Migration from Physical to Virtual Network Functions: Best 
Practices and Lessons Learned’. 
https://www.gsma.com/futurenetworks/5g/migration-from-physical-
to-virtual-network-functions-best-practices-and-lessons-learned/ 
(accessed Jan. 15, 2022). 

189


