Intent-based 5SG UPF configuration via Kubernetes
Operators in the Edge

Akos Leiter, Istvan Kispdl, Attila Hegyi, Péter Fazekas, Nandor Galambosi, Péter Hegyi, Péter Kulics, J6zsef Bir6
email: {akos.leiter, istvan.kispal, attila.hegyi, peter.fazekas, nandor.galambosi, peter.hegyi, peter.kulics, jozsef.biro } @nokia-bell-labs.com
Nokia Bell Labs, Bokay Janos utca 36-42, 1083 Budapest, Hungary,

Abstract—The expected growing number of edge clouds in
the telecommunication industry requires new types of
configuration management approaches in order to deal with
the increased complexity. The Kubernetes Operator pattern
widely used for lifecycle management of cloud native
applications could be also applied to network management and
configuration. In this paper we present our approach on using
Kubernetes Operators to automatically adapt the
configuration of the edge-located User Plane Functions (UPFs)
to intents coming from an Edge Application. The owner of the
Edge Application does not need to deal with network-related
configuration as the chain of Kubernetes Operators manage it.
Furthermore, we also provide numerical results about the
speed of automatic configuration.

Keywords—intent, Kubernetes, 5G, ULCL, local-breakout

L

Intent-based networking (IBN) with its declarative
description of requirements where only the desired state is
requested has depicted new approaches for the networking
industry. This is different from the existing approaches
where detailed steps of execution are used for tasks. One of
the benefits of IBN comes with its layered abstraction levels
which provides interfaces to business and low-level technical
solutions as well. This is important for application
developers too who require specific network settings for their
services: they do not have to deal with network configuration
at all. Application developers only need to request a specific
network service (via intent) and the rest is taken care by the
network operator.

INTRODUCTION

In this paper, we advocate breaking down the end-to-end
automation problem into ever smaller and smaller
automation problems, that are solved by small control loops,
called Controllers. This approach is depicted in Figure 1.
Each controller receives intents via its Northbound Interface
(NBI), and compares the desired state specified in the intent
with the actual state of the world in a closed loop. If the two
differ, then the controller tries to push the actual state toward
the desired state. In our vision most of the controllers only
break down their NB intent to lower-level intents, that are
handled/realized by their own lower-level control loops. At
the end, typically only the lowest-level controllers act on
real-world objects (i.e. Physical Network Functions — PNFs,
Containerized Network Functions - CNFs, switch/application
configurations, cloud resources). Arbitrary numbers of intent
processing layers can be introduced based on the location,
execution targets etc. of services. The layered approach also
implies that every orchestration problem is handled at the
lowest possible layer, in other words, only those problems
are delegated upwards that cannot be solved at the current
layer. Kubernetes’ architecture also follows similar

978-1-6654-8550-0/22/$31.00 ©2022 IEEE

186

principles. It is based on multiple cooperating control loops
(i.e., various resource controllers, the Kubernetes scheduler,
kubelets, kubeproxies, custom Kubernetes Operators) that
are driven by intents called Kubernetes Resources.

Interestingly the concept of independently cooperating
control loops is also analogous to how telco network
operations used to work in most Communication Service
Providers (CSP). The only catch is that the control loops
were implemented by human operators (as opposed to
Kubernetes Operators). Different groups of
operators/engineers were specialized on continuously
configuring different parts of the infrastructure, and if they
couldn’t solve an issue, they delegated it to the upper layer of
engineers.

. |
Arbitrary }
number nT’J
layersof

|
|
cantrallers }
!

&
-
|
-_
PINFs, CNFs, iP networks, doud-niative apuiications, coud resources

Figure 1 — Intent-based distributed orchestration vision

In this paper, we present how an Edge Application can
request local-breakout (as a service) in the Edge without the
need of understanding the networking in that particular site.
Note that, in our case we use the phrase “local-breakout” as
utilizing 3GPP Uplink Classifier (ULCL) [1] functionality
for directing traffic locally at the edge, not in the context of
roaming. Furthermore, we present numerical results to have
an insight on the speed of such a (Day-2) configuration of
edge UPF after a particular Kubernetes Service requests
local-breakout.

The remaining sections are organized as follows: Section
II presents related works. Our edge architecture is shown in
Section III. Measurement results are elaborated in Section
IV. Conclusion and Future work are placed in Sections V
and VI respectively.

II. RELATED WORKS

The detailed description of Kubernetes Operators [2] and
Operator SDK [3] what we used for our implementation can
be found in the mentioned references. But scientific papers
also investigate their usage. Ruxiao Duan et al. [4] present a
maturity-level proposal for Kubernetes Operators. This rather
pertains for application of lifecycle-management operators.
In our case, we have a broader scope of usage for Kubernetes

ICUFN 2022

Operators. It is worth mentioning, that Kubernetes Operators
can be used for machine learning applications, Ali Kanso et
al. [5] presents their KubeRay, a Kubernetes Operator to
create Ray clusters. Kubernetes may be needed to be
redesigned to fit for Edge Application. Andrew Jeffery et
al.[6] investigate the bottleneck of Kubernetes, especially
etcd in Edge use cases. The usage of Kubernetes Operators
has been spreading not just in IT, but in telecommunication
industry too; e.g.: Osama Arouk et al. [7] show a demo about
RAN element deployment by Kubernetes Operators.

III. ARCHITECTURE

A. Edge Architecture

Edge clouds should have a well-defined architecture from
both software and networking point of view. Figure 2 depicts
our vision about a replicable edge stack. According to this
vision every workload (platform service, application or
network function) running in an edge cloud is hosted in a
Kubernetes cluster. The diagram depicts dedicated
orchestration functions for the hardware layer (bare metal
provisioning) and for the lifecycle management of the
Kubernetes clusters (K8s LCM), but these are less interesting
for the topic of this paper. For the purposes of this paper the
orchestration of workloads atop the Kubernetes clusters were
split into low-level and high-level orchestration parts. The
primary goal of low-level orchestration in this sense is to
disseminate ~ Kubernetes resources across multiple
Kubernetes clusters in multiple edge sites. Examples for low-
level orchestration toolsets include ArgoCD [8], FluxCD [9],
Redhat ACM [10], etc. High-level orchestration includes
end-to-end orchestration of telco networks, slice
management functions, automatic placement of software
components, e.g2. ONAP [11] or vendor-specific products.

There are two basic approaches for cloud resources
ownership depicted in the Figure 2 (although practical
buildouts and offers may have other options): 1) local, self-
managed/self-owned compute, network and storage

resources 2) Hyperscalers’ edge stack offerings [12] [13]
[14]. Platform services provide various APIs for the
workload running in the edge cloud, e.g.: service mesh and
HW acceleration (GPU, SRIOV etc.). The layered edge stack
must contain the basic networking, development and
telecommunication services.

——
Bare-meta
Provisioning
i =

Figure 2 — Our vision on services in edge context
From telecommunication point of view, the presence of UPF
is likely but here is the place also for O-RAN services like
near-Real Time RAN Intelligent Controller (RIC). On the
top of all the above-mentioned items, the real tenant
workloads can be placed, but not necessarily using all of
platform services. They can be third-party applications (e.g.:

187

remote gaming servers, CDN caches) or additional
telecommunication functions (e.g.: VRAN or analytics
network elements).

B. 3GPP System view

Figure 3 - Uplink Classifier architectural view with Edge

Computing
Figure 3 presents how the Uplink Classifier-based approach
of edge local-breakout works according to 3GPP[1]. A new
edge-UPF is injected between the UE and the central UPF
(where the main PDU Session Anchor (PSA1) resides). This
edge UPF contains the so-called Uplink Classifier (UL CL).
According to configured policies, the UL CL detects which
packets of the traffic flowing in the PDU session should be
terminated in a secondary PSA2 in the edge UPF and which
packets should be forwarded to PSAl. PSA2 has the
connection to a local data network (DN2) through the edge
UPF’s N6 interface. Edge Applications are available via
DN2.

C. Kubernetes view

Overall, as mentioned above, that orchestration architecture
is based on a hierarchy of reconciliation loops (typically
Kubernetes Operators) built on top of each other. The
reconciliation loops together form a dynamic system that is
continuously pushing the state of the actual world toward a
desired state defined in the highest-level intents.

1) Lifecycle operator

For the UPF lifecycle management we have implemented a
Kubernetes controller, that handles the UPF Custom
Resources [15]; we use this custom resource definition to
describe a UPF instance. The controller is a Helm operator,
generated by the Operator SDK [3] and is responsible for
basic lifecycle management tasks of the UPF, like install
and uninstall. The Lifecyle Operator wuses the
quay.io/operator-framework/helm-operator Docker image.
The Lifecyle Operator continuously watches the UPF
Custom Resource’s state to validate whether the CR is in the
desired state or not.

=

Ml

Pi

stk

—
| pE/SVE |
- .
gy Tecyce |
[TaRE controller

-

f@z

I
I
I
I
I
I
I
I =
T
L

Ui

8

AN

Figure 4 - Lifecycle operator architectural view for
installing UPF

Our approach follows GitOps principles. The UPF
custom resources are primarily stored in a Git repository, as
YAML manifest files. Any changes in those files are
automatically detected by a GitOps CD tool (in our case
ArgoCD) and the manifests are automatically synched to the
target Kubernetes clusters, and that in turn triggers the
Lifecycle Operator described above to install/delete the UPF
instance. This whole procedure is depicted in Figure 4, while
a fraction of a UPF Custom Resource manifest can be found
in Code 1. This model allows not just the setting of
Kubernetes-related parameters e.g.: NodePort, etc., but it
ensures UPF-level configuration too (DNN, PLNM etc.).

SMF pushes the configuration update to UPF via N4
interface for particular PDU sessions

Code 2: Example of LBO Claim

apiVersion: mco.bl.nokia.com/vlbetal
kind: LboClaim
metadata:
name: lboclaim-1
spec:
dstIpRange: 10.0.0.1/32

Code 1: Example of UPF CR

apiVersion: mco.bl.nokia.com/vlalphal
kind: UPF
metadata:
name: upf-psal-operated
spec:
image:
repository: registry-test.net/5g
name: upf
tag: A-1.0
service:
oam:
telnet:
nodePort: 30023
port: 2323
targetPort: 2323
[..]
plmn:
- mcc: "999"
- mnc: "99"

2) Edge Local Breakout Controller

Edge Local Breakout Controller (LBO Controller) is an
operator too, depicted in Figure 5. LBO controller has two
CRs: LBO Claim and LBO Config. LBO claim is the high-
level intent for doing (Day 2) configuration. LBO Claims
(Code 2) are responsible for defining the IP address ranges
for local-breakout (IP packets with destination address in
this range should be sent to the local N6 interface of UPF).
If something is changed in the LBO Claims, then it will
trigger automatic update to the system via the LBO
Controller. LBO Config is just a practical configuration
specific CRD containing information such as the SMF
connection credentials, or the policies which has to be
updated. LBO controller is the main entity which is
responsible for hiding vendor specific configuration
methods. Meanwhile, the LBO Claim is abstract enough to
contain the only needed local-breakout parameters.

<rtistam rascireas
1 hotonfiz

Ela—
E———
[
| | — ——
| ——
e
—
E—

i

|

i
P—
E—
|

Figure 5 - Edge Local Breakout Controller with its CRs

Of course, these are implementation specific,
standardization may be needed with LBO Claims-like
objects on the long run. Even though the UL CL sits in the
UPF, the configuration is done via SMF configuration and

3) External Edge Service Controller

We also consider edge applications on Kubernetes bases.
Figure 6 shows how edge applications fit into the existing
picture. So far, the IP address range was static in the LBO
Claim, in this section we present how it can be dynamic.:
This is needed, because in practical cases the edge
application’s IP address will only be assigned after it’s
deployment and is not known in advance. They should only
annotate their service — in this case a Load-balancer Service
— with “external-edge-service=yes” annotation. This is
watched by a new operator called External Edge Service
Controller. (Edge) Applications usually need IP address for
external reachability.

- 1
| UpE |
custom resource>
warch | LboClzim
|—pod—pod—| name: global |
| 7l spec |
| ——] i dstipRange- ? 7 2 0/24 |
[pod pod | { —
| o—— —— —
I - I o | —
— cworiigure |
I - —
1 = A [
] — ISR I
- |
| ' |
PIVEE—— I I i
EAR— — | |
| |
s | <custom resource> | I | g |
PO po | LboConfig | I i
spec dstipRange 7 7 3 3/37
E— - | ez |
|—pos—pod—] | poiicyLanfig: | A a -
I | | // /
— t
i I R V4
[P
—_— 7 aeate, /
- uadate, /
- delote/
- /
—— /
—
[ExXtenalEdce | S owner
——m—— /
R /
[comroter o | /
———— /
I — 7/
i /
I /7
I watch /
v /

B service
B nane: gaming
|

Figure 6 - Exposing Kubernetes Services via the Edge
UPF

This IP address - which is an externally reachable IP address
- is different from the default Cluster [P and can be
configured by external Service types like the LoadBalancer.
Thus, there should be another Kubernetes entity for external
IP address assignment, in our case, it is MetalLB[16]. The
external service controller then gets the assigned external IP
and creates an LBO Claim from it. The claim is then being
processed by the previous controller.

IV. MEASUREMENT

We have designed a measurement scenario to conclude
how much time it takes for an application’s external IP
address to be configured for local-breakout in the edge-
located UPF (depicted in Figure 7). The measurement starts
with creating a Kubernetes Service for the particular fraction

of Pods. Later, external IP address is assigned by MetalLLB.
Then, the External Edge Service Controller recognizes that
particular Kubernetes Service annotation which tells that, the
Service needs external reachability. At the end of the
configuration loop through the chain of the previously
mentioned Kubernetes Operators, the UPF is configured with
the actual local-breakout configuration for that particular
Kubernetes Service.

| Create [.oadBalancer SVC in K&S }§
S

m
| O VL 5 STAUUS OV aSSISIINE UIC EXTCTIA [

e S
| EXternal SVC CONolIer TECONCIles |

. <]
L_L B0 Claum g reconciled by the |

O Contalleresulnna the e |

1D conog o confiourad g tho DL

Figure 7 - Process of LBO creation

Meanwhile, the measurement framework watches
continuously if the configuration change is applied in the
UPF. If yes, then it concludes the measurements. Figure 8
presents the box plot of 1000 times of measurements while
Table 1 shows the results numerically too. Note that, there
are some uncertainties in the measurement conclusion: new
configuration assignment can be even lower but the test
framework needs time to download the UPF configuration
and process it. Furthermore, IP address assignment by
MetalLLB also adds uncertainty to the system. The underlying
hardware is Nokia OpenEdge platform.

B W s B & N |

[95]

N

[y

(o]

Figure 8 - Box plot of configuration time measurements

MIN AVG MED MAX STDEV
2 3.283 3 6 0.51
Table 1. — Numerical results of measurements in sec
V. CONCLUSION
In this paper, we presented how application developers
can request network services without knowing the
underlying telecommunication infrastructure. We have

shown how a chain of Kubernetes Operators can hide and
automate the whole process. The measurement results show
that it takes only a few seconds to configure the local UPF
instance according to the needs of the operations engineers.
It is very hard to compare this approach to other similar ones,
but according to GSMAJ[17], the installation and
configuration of a new PNF takes time in the range of days.

189

In this paper we showed that, the reconfiguration is within
seconds which we believe clearly shows the power of
network automation and Kubernetes Operators. Also, the
usage of CRDs and Kubernetes controllers for configuration
fits pretty well into the GitOps and Configuration-as-Code
principles, which is essential for next generation network
automation. Overall, we argue for the benefits of using
Kubernetes APIs for configuring NFs. GitOps also adds an
additional layer of security to the system which — we believe
— is a big advantage. A user who has rights to change codes
in Git, does not need to have direct access for a particular
network function (e.g. no direct ssh). Furthermore, this is the
place where revalidation can also be taken place: policies,
hooks etc. can validate the config changes before they are
actually pushed to the system. Based on our measurements it
is also clear, that if a real-time control loop is required to
solve a problem (e.g. various SDN or SON use cases), then
those real-time control loops must be in the lowest-layer,
since delegating intents to lower layers takes time.

VI. FUTURE WORK

It is worth investigating how a complete 5G network can
be deployed and maintained by Kubernetes Operators. It
should pertain for lifecycle and configuration management as
well. Prevalidation hooks for security are also on the table in
this research area.

REFERENCES
‘3GPP TS 23.501: System architecture for the 5G System (5GS)’.
‘Kubernetes Operators’. https://kubernetes.io/docs/concepts/extend-
kubernetes/operator/ (accessed Jan. 15, 2022).
‘Operator SDK’. https://sdk.operatorframework.io/docs/building-
operators/helm/tutorial/ (accessed Apr. 15, 2022).
R. Duan, F. Zhang, and S. U. Khan, ‘A Case Study on Five Maturity
Levels of A Kubernetes Operator’, in 2021 IEEE Cloud Summit
(Cloud Summit), 2021, . 1-6. doi:
10.1109/IEEECloudSummit52029.2021.00008.
A. Kanso et al., ‘Designing a Kubernetes Operator for Machine
Learning Applications’, in Proceedings of the Seventh International
Workshop on Container Technologies and Container Clouds, New
York, NY, USA, 2021, pp. 7-12. doi: 10.1145/3493649.3493654.
A. Jeffery, H. Howard, and R. Mortier, ‘Rearchitecting Kubernetes
for the Edge’, in Proceedings of the 4th International Workshop on
Edge Systems, Analytics and Networking, New York, NY, USA,
2021, pp. 7-12. doi: 10.1145/3434770.3459730.
O. Arouk and N. Nikaein, ‘5G Cloud-Native: Network Management
& Automation’, in NOMS 2020 - 2020 IEEE/IFIP Network

[1]
[2]

[3]

[4]

[5]

[6]

[71

Operations and Management Symposium, 2020, pp. 1-2. doi:
10.1109/NOMS47738.2020.9110392.
[8] ‘Open Network Automation Platform (ONAP)’.

https://www.onap.org/ (accessed Jan. 10, 2022).

‘ArgoCD’. https://argoproj.github.io/cd/

‘FluxCD’. https://fluxcd.io/

Red Hat Advanced Cluster Management. Accessed: Apr. 15, 2022.
[Online]. Available:
https://www.redhat.com/en/technologies/management/advanced-
cluster-management
‘Amazon Wavelenght’.
(accessed Apr. 15, 2022).
‘Google Distributed Cloud’.
cloud (accessed Apr. 15, 2022).
‘Azure Edge Stack’. https://azure.microsoft.com/en-
us/products/azure-stack/edge/#overview (accessed Apr. 15, 2022).
‘Kubernetes - Custom Resource Definitions’.
https://kubernetes.io/docs/concepts/extend-kubernetes/api-
extension/custom-resources/ (accessed Apr. 15, 2022).

‘MetalLB Kubernetes load-balancer’. https://metallb.universe.tf/
(accessed Apr. 15, 2022).

GSMA, ‘Migration from Physical to Virtual Network Functions: Best
Practices and Lessons Learned’.
https://www.gsma.com/futurenetworks/5g/migration-from-physical-
to-virtual-network-functions-best-practices-and-lessons-learned/
(accessed Jan. 15, 2022).

[9]
[10]
[11]

[12] https://aws.amazon.com/de/wavelength/
[13] https://cloud.google.com/distributed-

[14]

[15]

[16]

[17]

