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Abstract— Physical layer security is an emerging security area
to tackle wireless security communications issues and complement
conventional encryption-based techniques. Thus, we propose a
novel scheme based on swarm intelligence optimization technique
and a deep neural network (DNN) for maximizing the secrecy
energy efficiency (SEE) in a cooperative relaying underlay
cognitive radio- and non-orthogonal multiple access (NOMA)
system with a non-linear energy harvesting user which is exposed to
multiple eavesdroppers. Satisfactorily, simulation results show that
the proposed particle swarm optimization (PSO)-DNN framework
achieves close performance to that of the optimal solutions, with a
meaningful reduction in computation complexity.

Keywords— physical layer security, non-orthogonal multiple
access (NOMA), deep neural network (DNN), particle swarm
optimization (PSO), secrecy energy efficiency (SEE).

L

Cooperative communications integrated by the promising
non-orthogonal multiple access (NOMA) technique and
cognitive radio (CR) technology have been investigated as
potential solutions for 5G and beyond wireless networks.
Particularly, NOMA provides fairness by exploiting the power
domain to transmit the messages according to the user’s
channel strength. Thus, more transmission power is delivered
to users’ messages that have lower channel strength while
lower transmission power is assigned to users' messages that
have stronger channel conditions. Moreover, NOMA
performs superposition coding (SC) coding at the transmitter
side and successive interference cancelation (SIC) at the
receivers to decode the messages of the weaker users.
Furthermore, CR serves unlicensed users while preventing
interference and congestion with licensed ones to enhance the
use of the radio frequency (RF) spectrum.

Although NOMA and CR provide benefits in terms of
spectrum and energy efficiency. Security still remains a
critical concern in wireless networks due to the signals
transmitted among nodes can be intercepted in the shared and
open wireless environment. Therefore, research on physical
layer security (PLS) has become an alternative approach to
complement traditional cryptographic-based techniques by
affording an additional protection layer. The basic idea of PLS
is to take advantage of the physical properties of the channel
to ensure the information against eavesdroppers. In the
literature, the cooperative communications aided PLS
technique has played a significant role in wireless security
enhancements [1-3]. In this sense, a smart resource allocation
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scheme is an innovative and useful strategy in cooperative
networks to reduce computational complexity while providing
wireless communications security. Different machine
learning-based techniques have been investigated to solve
resource assignment problems in NOMA networks [4-6].
Particularly, several applications rely on supervised
classification learning. For instance, in [7], the authors
proposed to solve the relay selection problem based on feed-
forward neural networks (FFNN). In [8], the authors utilized
the deep neural network (DNN) to solve the power allocation
problems in a cooperative NOMA network where the near
user acts as a relay under the presence of one eavesdropper.

None of the cooperative systems studied above consider
secrecy energy efficiency (SEE) maximization nor CR
technology. In addition, a non-linear energy harvesting (EH)
user entails significant contributions to solving the spectrum
scarcity issue and improving energy efficiency.

Our aim is to provide a low computational complexity
solution that maximizes the SEE in a cooperative CR NOMA
system with a non-linear EH under the presence of multiple
eavesdroppers. Therefore, we propose a DNN aided PSO
scheme that reduces the computational time and optimizes the
SEE.

The main contributions of this paper are summarized as
follows.

e We investigate the SEE maximization in a cooperative
relaying CR-NOMA network with a non-linear EH to
prevent various eavesdroppers’ wiretaps. Therefore, we
formulate the non-convex SEE optimization problem as a
bilevel optimization problem subject to the constraints
that satisfy the quality-of-service (QoS) requirements of
the secondary users, primary users, EH user, and the
maximum transmission power at the secondary base
station (SB) and the relay.

We design an innovative secure scheme based on swarm
intelligence and machine learning techniques. Particularly,
the outer optimization problem is solved by the DNN to
select the optimal relay. The inner problem takes the
outcome of the DNN to solve the power allocation problem
by utilizing the PSO technique.

Simulation results show that the proposed DNN aided PSO
achieves a near-optimal performance with much lower
complexity compared with an exhaustive search (ES)-
PSO-based scheme. Moreover, simulation results validate
the superior performance of NOMA over the conventional
OMA scheme. In addition, we analyze the effect of non-
linearity and linearity on the SE of the proposed scheme.
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Fig. 1. Cooperative CR-NOMA system with a non-linear EH user.

II.

In this paper, we propose a collaborative relaying CR-
NOMA system as shown in Fig. 1, which is integrated by a
SB, a non-linear EH user, two secondary intended users
denoted as K1 and K2, and R relays. The proposed system is
exposed to the presence of multiple eavesdroppers ( E, ),

SYSTEM MODEL

where all nodes are equipped with a single antenna. We
consider that SB-R—K1 link is considerably longer than the
SB-R-K2 link. Thus, SB-K1 link can support a lower QoS
than SB-K2 [9].

Moreover, there is no direct link between the SB and the
secondary user. Therefore, the proposed network is aided by
an intermediate decode and forward (DF) node. The node or
relay is selected from the R relays and is denoted by ». The
transmission is performed in two phases. In Phase 1, the SB
conveys the messages k, and k, belong to the secondary
users K1 and K2, respectively, to the relay. Meanwhile, the
EH user stored the RF energy by receiving the superimposed
RF signals of the secondary users K1 and K2 through an
antenna. Then, the node, », decodes k, by treating k, as

interference and executes SIC to decode k,. In Phase 2, the
node r transmits the superimposed signal composed of k,

and k, to the secondary users K1 and K2.

A. Phase 1. Direct Transmission

During this stage, the SB conveys the signal,
k =kw, +k,w,, where k ,k, € C are the independent and

identically distributed (i.i.d.) information bearing messages
for user 1 and user 2, respectively. The power of the
transmitted symbol is normalized, ie.,

E(|k1|2):E(|k2|2):E(|k3|2):1, and w,, and w, are the

corresponding transmit power variables. Accordingly, the
received signal at relay » can be given by
(1)

y.=h, (\/;]k] + w2k2)+nr,
where /, is the channel coefficient between the SB and relay
r, while n, ~ CN(O, of) is the additive Gaussian noise with

zero mean and o variance.
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The relay r first decodes the message &, by treating the
message k, as noise, and then performs SIC to decode £, .

Consequently, the received signal-to-interference-plus-noise
ratio (SINR) for K1, and the signal-to-noise ratio (SNR) for
K2 at node, r, can be described by (2) and (3), respectively:

nl’w
SINR =—rL L | )
" |hr|2 w, +0°
r |hr|2 WZ
SNR; = e 3)

Based on (2) and (3), the rate of the far-user data and the
near-user data at the node r are formulated by (4) and (5),
respectively.

2
LT U U T @
T 2 % h,2w2+0',42 '
1 hr2W2
71(2:510?%2 I+—5—1. (%)
0}’

Moreover, (6) and (7) are the requirements to satisfy that
the node r can successfully decode the messages &, and k,

[13], as follows:

(6)

where y, and y, are the target data rate for the secondary
users K1 and K2, respectively.
The consider non-linear EH user is modeled according to
[10], and can be formulated as follows:
1y -LO

== , 8
user 2 1 _ Q ( )
here Q d L
where Q=———— and y = s Din
1+exp(ab) v 1+exp(—a(pint —b)) Pin
denotes the input power. In this case, p,, =|h,|" (w +w,),

where /i, is the channel coefficient from the SB to the EH

user. L is a constant that set the maximum harvested power
at EH receiver when the EH circuit is saturated. Parameters

a and b are constants depending on the detailed circuit
specifications, for example capacitance, resistance and diode
turn-on voltage. We consider the values adopted in [10]

which are given by L=3.9mW, a=1500, and b =0.0022.

B. Phase 2. Relay Transmission
In this phase, we consider that node » can decode both
signals, then, users Ki,ie{l,2} receives the following

signal:

2
Vi = fosi [z /wrvkjkj]+nm,i e{1,2}, ©)
Jj=1

where f, ;; is the channel coefficient between relay » and the

secondary user Ki,ie {1,2}.The power allocation assigned

to the secondary users K1 and K2 from the relay are denoted



as W, and W, ., , respectively. n,, ~ CN (0, o-i) denotes
the additive Gaussian noise at K1 and K2.
The SINR at K1 to decodes its message k, considers the

interference caused by the secondary user K2 and can be
described as follows:

2
|fr,1<1| W, ki

KTV T S
|fr,l<1| W, k2 +012<1
Due to NOMA principle, the SNR of secondary user K2

to decode its message can be describe as:

2
_ |fr.1(2| W, k2
- 2

o-KZ

SINR

"

(10)

SINRr,Kl (11)

Consequently, the rate of the far-user data at K1 and K2
can be described as (12) and (13), respectively.

2
1 fr,K1| W, k1

Yk k1 :EIng 1+ 5 (12)
rki| Wek2 TO0g
2
1 Lol W,
Va2 = 5108, 1+|— .13
| rk2| Weka T 0k

Moreover, the rate of the strong-user data at K2 can be
expressed as

2
|fr,kz| W, k2
e e

O-KZ

1
Viyk2 = Elogz 1 (14)

We investigate the challenging scenario where the
eavesdroppers have a powerful detection capability to receive
k, without being jammed by £, , and vice versa. Hence, the

rate of K1 and K2 secondary users’ data at the eavesdropper
can be expressed as

)ie{L2},

2
W, ki |ng|

2
oy

(15)

| .
yo = > oz, (1+SNRY

is the channel

where  SNRX = max

ve{l,2,.V}

> 81k,

coefficient between node r and eavesdropper v, and o-é

represents the variance in the additive Gaussian noise at the
eavesdropper.

The achievable data rate for secondary user K1 should
satisfy the minimum rate at the relay, secondary user K1 and
K2 since the node r performs the DF protocol and K2
employs SIC to decode the message k, , while secondary user

K1 decodes its message by treating &, as noise.

Vi, min zmin(yk],rmsnl,rkzs?/m)~ (16)

Similarly, to the achievable data rate for secondary user
K1, to the achievable data rate for K2 should meet the
minimum rate at the relay, and secondary user K2, as follows:
Yty min :min(7k2,;-Kza7K2)~ a7

Accordingly, the secrecy rates of secondary user K1 and

K2 can be expressed as (18) and (19), respectively:
Vsee k1 :[7k‘,min_7§l:| . (18)

Vsee 2 :[}/kz,min_}/gZir > (19)
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where [x]" = max (0,x).

ITII. PROBLEM FORMULATION

The SEE of the proposed NOMA-enable cooperative CR
system is defined as the ratio of total secrecy rate to power
consumption in both phases. Then, we first propose to solve
the SEE optimization problem by applying the PSO scheme
to generate the dataset with the best values of power
allocation variables to train the DNN algorithm by optimizing
the weights of the network that allows obtaining the
maximum SEE. Meanwhile, the relay selection problem is
performed in an exhaustive search manner which entails high
computational complexity. Therefore, the problem for the
SEE maximization is formulated as a bilevel optimization
problem, as given below:

Vsee,k1 T Veee k2

max h(r)= ‘ {max sl

l e E(Wl TWy Pt W T W +pa2)
(20a)
subject to: Cl: 7 i 20,5 (20b)
C2: Viymin 2 D,, (20¢)
C3: w +w, <Pg™, (20d)
Chiw, g + W, P™, (20e)
CS: EH,,, 2 ¢, (201)

where /(r) represents the inner part of the optimization

problem according to the lower-level variables. The lower-
level variables are the power allocation variables: w,, w,,

w,

. k1> W.x2- Meanwhile, r is the upper-level variable of the

outer part of the optimization problem (20). Moreover, p,,
and p_, are the constant circuit power for or transmitting

signal processing in phase 1 and phase 2, respectively.

Since we applied the underlay CR network, (21) and (22)
are the constraints to prevent the transmission power at the
SB and the relay, respectively, interfere with the primary
network.

max
Intg,

max T
Py” =min > Lsp (s 21
max |h,,

mes,

max

where Intg," is the threshold to limit the interference power
at the PUs from the SB, ¢, is the set of PUs, the maximum
P

s » and the channel

power at the ST is denoted by

coefficient from the SB to the PU,, is denoted as /4, ; and
. Int™
P™ =min — P ¢,
max |k, (22)
meg,,

where Int™

r

is the threshold to limit the interference power

at the PUs from the relay 7, the maximum power at the relay
r is denoted by P, and the channel coefficient from relay

to the PU,, is denoted by #,,.



18l > Relay. £ el PEG e,

D,
L}
3

[

Fig. 2. General overview of the proposed DNN+PSO based scheme.

IV. PROPOSED DNN AIDED PSO BASED-SCHEME

In this paper, we construct a DNN-based scheme to solve
the relay selection problem in (20). In particular, the relay that
achieves the highest SEE is selected by the DNN. Fig. 2
shows the framework of the proposed method which consists
of two main modules: a DNN, and a PSO module to solve
problem (20).

A. DNN module

The proposed DNN module [11] is composed of an input
layer, four hidden layers, and an output layer, as shown in
Fig. 2. The input of the DNN involves the channel from the
SB to the relay, the channels from the relay to the secondary
users, the target data rate values, and the minimum target
value required by the EH user. The number of neurons per
hidden layer is 100,50,100,50, respectively. We used tanh
activation function, stochastic gradient descent as a solver,
the learning rate is set to 0.001 and the batch size is set to 128.

B. PSO module

The second module is the PSO algorithm [12], [13] which
utilizes the relay selected by the DNN to optimize the power
allocation to the secondary users. To this end, PSO searches
for the global solution by iteratively updating its position and
velocities.

In this paper, the best performance is achieved by the
maximum value of the SEE, and the following vector
contains the n-th particle's position composed of 4 elements
as follows:

(23)

xn = {xwl ko xwz,k ’ xw“K, ko xw,ukz,k} >
where n=12,..,N,, N, represents the number of particles

. -
inthe swarm, x,, ,.x, ., ., and x, . arethe particle's

Wy, k2w,

position of the transmission power variables w,,w,,w, ,,,

and w,,,, respectively. Moreover, the maximum and

minimum power levels of each power allocation variable are
stablished to define the limits of the search space for each
particle’s position. Hence, the limits of the search space for
each power allocation variable w,,w,,w, ,,,, and w are

raM2o
(0.5, (0.P5 ], (0.™ ].and (0.2 ].

>° ST = 8T

Furthermore, we utilize a penalty method based on [3] to
deal with the proposed constrained optimization problem
(20). Then, the fitness function is defined as follows:

Vseokt H Ve 2

if z,<0,V,
—(W AWy + Py W, W + D,
F(WwWZﬂW;Khmnawgkznun) = 2( b ! K K2 z)
5
Jrin =6, ZQ max(z, ,0), otherwise,
i
(24)

158

where f, . is the lowest value of the SEE in the population,

0, = Jt is the penalty value at the iteration # of the PSO

algorithm and the penalty parameter of the i-th constraint is
denoted by 0< Q. <1. Moreover, from the constraints of

problem (20) for the r-th selected relay node, we obtain
z,=® P

1 1 7 Vimin Z :q)Z_ykz.min’ Z=wAw, — Ly,

Zy =W+ W, =P and zg =&~ EH, The function

user *

max (z,,0)also lets us consider the values of the constraints

that are not met.

In Table I, the proposed low complexity solution is
described to maximize the SEE for the problem (20). The
input parameters of PSO belong to the maximum iteration
number, the inertia weight for velocity update, the cognitive
and social parameters, denoted as Ite ¢, and c,,

max ?

N

Vo

respectively. In addition, N, and the limits of the search
space (0, PS';‘“J R (O P'"a"], (0, PrmaxJ, and (O,P,‘““’XJ are part

>t ST
of the input parameters. Then, the velocity of each n-th
particle in each ¢ iteration is updated according to the relative
positions of the individual local best position pb, and g, ,as

follows:

Vil =s' u b, — X, )tuc,(gb, —x 25
wln — Sv wl,n lcl p wl,n wl,n 272 g wl wl,n ( )
t+l ot t t

vw2.n - vawZ,n +M1C1 (pbWZ,n _wa,n ) +M2C2 (ngZ - wa,n ) (26)
t+1 tot , t t
i = SV on THE (pbw, P ) Tuycy (gbw,._M, - xw,_,\,,.n)

27
t+1 it t t
Wkl vaw; Yol + ulcl (pbw, K21 - W, k21 ) + MZCZ (gbw’_“ _xwhm,n)

(28)

where u, and u, are random numbers between 0 and 1.

Once the velocity is updated, the n-th particle’s position

update is values, as follows:

1+1 t+1

Xoln = xf«/l,n R (29)
X = X Vs (30)
xi;,rlM N = xiv,._,“ W i:l,\l n2 (3 1)
:;:Alm,n = x:v,_“,n :1;1,(2,71 2 (32)

Note that before applying the machine learning algorithm,
the relay selection is performed in an exhaustive search
manner. Therefore, the best candidate relay node is that one
achieves the maximum SEE among all the possible relays in
the network, according to the outcomes of the g, values.

In addition, the computational complexity of the PSO-based

method depends on Ize,, ,and N, i.e., O(Itemapr) [3].

max ?

V. SIMULATION RESULTS

We used MATLAB and Python software to perform the
simulation results.
In the considered cooperative CR-NOMA network, the

channel coefficients are modeled as /4 :CN (O,d;é”fr),
Fran 1EN(0,,%5,), Jre 1 CN(0,d.%,),

hse : CN (0’ d;BprHuser

),

g CN(o, dr )



TABLE I. DNN+PSO SCHEME TO SOLVE PROBLEM (20).

—_

: Input: Set the network parameters of the system and selected relay »* by
the DNN.

2: Initialize SEE,  =0.
3: Establish the parameters of PSO.
4: Initialize the iteration count ¢ = 1.
5: Initialize the values of the n-th particle's position.
O_) 0 o 0 t
X = xwl,n ’x£v2,n ’xw,,’Kl,n ’xiv)’Kz,n ’vn'
6: Initialize the initial values of the n-th particle's velocities.
S0 [ NORNOINGEEN 0 ]
n,wTin,wyT W K17 Wy K2
7: Compute the maximum objective function SEE (xi,) ,Vn, in (20) for
each n-th particle.
8: Establish the initial best particles’ positions Vm: pb, = x(”/), that
achieved the best yield so far.
9:  From among all the particles, set the initial gb.
(1)
gb = argmax SEE| x5, |.
<n<
1<n<N P
10: Iteration count ¢ =7 +1.
11:  For each particle n do
12: From (25), (26), (27), and (28), update the particles’ velocities.
13: From (29), (30), (31), and (32), update the particles’ positions.
14: Update the best pb, .
if SEE(x’,,] > SEE (pby,) then
pb)l = X(ﬂt)
end if
15: Update gb, vn.
if SEE(xf,) > SEE(gb) then
(1)
gb = X,
end if
16: end for
17: if «(<lte ., then
t=t+1 and goto—> step 11
else
go to —> step 18
end if
18: End PSO: for the relay r' the optimal power allocation values are

{mf,u;,w,’Kl*,wr‘Kz*} =best_gb to acquire the highest value of SEE in
(20).

h,, :CN(0,dgf,, ), and h,, :CN(0,d;

r-PU,,

), where d,_,

denotes the distance between node @ and b, and pa is the

path-loss exponent, pa =4 . In addition, we set the noise

variance as follows: o}, =0, =0, =0, =-80dBm, and
I)Slgax = })rmax = })max = 3OdBm
The coordinates of the nodes are set to be

SB =(0,50),K1=(100,50),K2 = (70,42),R, =(50,54),
R, =(50,50),R, =(50,46),R, = (50,42), PU, = (75,59),
PU, =(25,59),PU, =(50,37), EHuser = (9,46). The
network is 100m x 60m. The results are averaged over

several channel realizations. The simulation parameters of
PSO are set to be N,=30, [lre, =300,s, =07,
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Fig. 3. SEE performance between the proposed DNN+PSO and the
baseline ES+PSO scheme.

¢, =1.494, and ¢, =1.494. Moreover, the total dataset

contains 57600 samples, which is split into 80% for the
training dataset and 20% for testing.

Fig. 3 illustrates the SEE versus the minimum rate at
secondary user K1 when the minimum data rate at secondary
user is equal to @, = 0.5 bps/Hz/s, and the energy required at

the EH user is equal to £ =-15 dBm and ¢ =-18 dBm.

From Fig. 3, we can observe that the proposed DNN-PSO
achieves a near-optimal performance to that of the ES-PSO
scheme. ES+PSO method is an iterative algorithm that
requires solving PSO a total of times equal to the number of
relays available in the network such that select one that
achieves the highest SEE. Therefore, the DNN scheme is
utilized instead of the ES as an efficient strategy to reduce the
computational complexity. It is worth highlighting that the
true label of the DNN is obtained by ES. ES exhaustively
finds all the possible solutions and selects the best one that
reaches the highest SEE. Furthermore, the computation time
required by the standard ES+PSO and DNN+PSO framework
is 4.2s and 1.3s, respectively. Therefore, the proposed DNN-
PSO-based solution provides less computational time and
overcomes the conventional ES+PSO method. Moreover, Fig
3 shows that the SEE decreases as de minimum data rate and
EH requirement increase. This is because more power needs
to be allocated to satisfy the requirements of the secondary
and EH users and the power consumption is inversely
proportional to the SEE. Accordingly, it reduces the SEE.
Fig. 4 shows the effect from linearity of EH on SEE in the
proposed cooperative relaying CR-NOMA system when the
minimum data rate at secondary user is equal to @, = 0.5

bps/Hz/s, and the energy required at the EH user is equal to
£=-15 dBm and & =-18 dBm. Fig. 4 validates that the

cooperative CR-NOMA system with the non-linear EH user
achieves lower SEE than that obtained by the ideal linear EH
user. This is because the ideal case assumes that the user can
harvest all the power of the incoming signal. However, the
non-linear EH considers a more realistic scenario that
includes circuit specifications that reduce the SEE
performance.

Fig. 5 shows the SEE comparative performance between
the proposed CR-NOMA scheme and the conventional CR-
OMA baseline scheme for the target rate of @, = 0.5 and the

EH requirement of &=-18 dBm and & =-20 dBm. We
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Fig. 4. SEE performance between the proposed cooperative CR-
NOMA with non-linear EH user and the cooperative CR-
NOMA with linear EH user scheme.

observe that the NOMA scheme overcomes the OMA method
since. NOMA efficiently uses the spectrum and power
resources. Particularly, NOMA allows to simultaneously
transmit information to both users in the same frequency
band.

VI. CONCLUSION

In the proposed paper, we design a novel artificial
intelligence-based solution composed of the PSO-based
technique and a DNN to enhance the wireless security
communication in collaborative relaying CR-NOMA system
in the challenging presence of several eavesdroppers. In
addition, we consider the practical design of a non-linear EH
user. Accordingly, the proposed DNN+PSO-based solution
maximizes the SEE of the network while satisfying the QoS
requirements of all nodes in the network. Satisfactorily,
numerical results show that the proposed PSO-DNN
framework can achieve a performance close to the optimal
solutions given by the PSO and ES method, with significantly
lower complexity. Furthermore, simulation results verify that
the proposed scheme achieves higher SEE performance than
the OMA benchmark.
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