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Abstract— Physical layer security is an emerging security area 
to tackle wireless security communications issues and complement 
conventional encryption-based techniques. Thus, we propose a 
novel scheme based on swarm intelligence optimization technique 
and a deep neural network (DNN) for maximizing the secrecy 
energy efficiency (SEE) in a cooperative relaying underlay 
cognitive radio- and non-orthogonal multiple access (NOMA) 
system with a non-linear energy harvesting user which is exposed to 
multiple eavesdroppers. Satisfactorily, simulation results show that 
the proposed particle swarm optimization (PSO)-DNN framework 
achieves close performance to that of the optimal solutions, with a 
meaningful reduction in computation complexity. 

Keywords— physical layer security, non-orthogonal multiple 
access (NOMA), deep neural network (DNN), particle swarm 
optimization (PSO), secrecy energy efficiency (SEE). 

I. INTRODUCTION 
Cooperative communications integrated by the promising 

non-orthogonal multiple access (NOMA) technique and 
cognitive radio (CR) technology have been investigated as 
potential solutions for 5G and beyond wireless networks. 
Particularly, NOMA provides fairness by exploiting the power 
domain to transmit the messages according to the user’s 
channel strength. Thus, more transmission power is delivered 
to users’ messages that have lower channel strength while 
lower transmission power is assigned to users' messages that 
have stronger channel conditions. Moreover, NOMA 
performs superposition coding (SC) coding at the transmitter 
side and successive interference cancelation (SIC) at the 
receivers to decode the messages of the weaker users. 
Furthermore, CR serves unlicensed users while preventing 
interference and congestion with licensed ones to enhance the 
use of the radio frequency (RF) spectrum. 

Although NOMA and CR provide benefits in terms of 
spectrum and energy efficiency. Security still remains a 
critical concern in wireless networks due to the signals 
transmitted among nodes can be intercepted in the shared and 
open wireless environment. Therefore, research on physical 
layer security (PLS) has become an alternative approach to 
complement traditional cryptographic-based techniques by 
affording an additional protection layer. The basic idea of PLS 
is to take advantage of the physical properties of the channel 
to ensure the information against eavesdroppers. In the 
literature, the cooperative communications aided PLS 
technique has played a significant role in wireless security 
enhancements [1-3]. In this sense, a smart resource allocation 

scheme is an innovative and useful strategy in cooperative 
networks to reduce computational complexity while providing 
wireless communications security. Different machine 
learning-based techniques have been investigated to solve 
resource assignment problems in NOMA networks [4-6]. 
Particularly, several applications rely on supervised 
classification learning. For instance, in [7], the authors 
proposed to solve the relay selection problem based on feed-
forward neural networks (FFNN). In [8], the authors utilized 
the deep neural network (DNN) to solve the power allocation 
problems in a cooperative NOMA network where the near 
user acts as a relay under the presence of one eavesdropper. 

None of the cooperative systems studied above consider 
secrecy energy efficiency (SEE) maximization nor CR 
technology. In addition, a non-linear energy harvesting (EH) 
user entails significant contributions to solving the spectrum 
scarcity issue and improving energy efficiency. 

Our aim is to provide a low computational complexity 
solution that maximizes the SEE in a cooperative CR NOMA 
system with a non-linear EH under the presence of multiple 
eavesdroppers. Therefore, we propose a DNN aided PSO 
scheme that reduces the computational time and optimizes the 
SEE.  

The main contributions of this paper are summarized as 
follows. 
 We investigate the SEE maximization in a cooperative 

relaying CR-NOMA network with a non-linear EH to 
prevent various eavesdroppers’ wiretaps. Therefore, we 
formulate the non-convex SEE optimization problem as a 
bilevel optimization problem subject to the constraints 
that satisfy the quality-of-service (QoS) requirements of 
the secondary users, primary users, EH user, and the 
maximum transmission power at the secondary base 
station (SB) and the relay. 

 We design an innovative secure scheme based on swarm 
intelligence and machine learning techniques. Particularly, 
the outer optimization problem is solved by the DNN to 
select the optimal relay. The inner problem takes the 
outcome of the DNN to solve the power allocation problem 
by utilizing the PSO technique.   

 Simulation results show that the proposed DNN aided PSO 
achieves a near-optimal performance with much lower 
complexity compared with an exhaustive search (ES)-
PSO-based scheme. Moreover, simulation results validate 
the superior performance of NOMA over the conventional 
OMA scheme. In addition, we analyze the effect of non-
linearity and linearity on the SE of the proposed scheme.  This work was supported in part by the National Research Foundation 

of Korea through the Korean Government Ministry of Science and ICT 
(MSIT) under Grant NRF-2021R1A2B5B01001721. 
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II. SYSTEM MODEL  
In this paper, we propose a collaborative relaying CR-

NOMA system as shown in Fig. 1, which is integrated by a 
SB, a non-linear EH user, two secondary intended users 
denoted as K1 and K2, and R relays. The proposed system is 
exposed to the presence of multiple eavesdroppers ( vE ), 
where all nodes are equipped with a single antenna. We 
consider that SB–R–K1 link is considerably longer than the 
SB–R–K2 link. Thus, SB–K1 link can support a lower QoS 
than SB–K2 [9].  

Moreover, there is no direct link between the SB and the 
secondary user. Therefore, the proposed network is aided by 
an intermediate decode and forward (DF) node. The node or 
relay is selected from the R relays and is denoted by r.  The 
transmission is performed in two phases. In Phase 1, the SB 
conveys the messages 1k  and 2k  belong to the secondary 
users K1 and K2, respectively, to the relay. Meanwhile, the 
EH user stored the RF energy by receiving the superimposed 
RF signals of the secondary users K1 and K2 through an 
antenna. Then, the node, ,r  decodes 1k  by treating 2k  as 
interference and executes SIC to decode 2k .  In Phase 2, the 
node r  transmits the superimposed signal composed of 1k
and 2k  to the secondary users K1 and K2.  

A. Phase 1. Direct Transmission 
During this stage, the SB conveys the signal, 

1 2 2 2 ,k k w k w   where 1 2,k k  are the independent and 
identically distributed (i.i.d.) information bearing messages 
for user 1 and user 2, respectively. The power of the 
transmitted symbol is normalized, i.e., 

     2 2 2
1 2 3 1,E k E k E k    and 1,w and 2w are the 

corresponding transmit power variables. Accordingly, the 
received signal at relay r  can be given by 
                   1 1 2 2 ,r r ry h w k w k n                         1   

where rh  is the channel coefficient between the SB and relay 

,r  while  20,r rn CN   is the additive Gaussian noise with 

zero mean and 2
r  variance. 

The relay r first decodes the message 1k  by treating the 
message 2k  as noise, and then performs SIC to decode 2k . 
Consequently, the received signal-to-interference-plus-noise 
ratio (SINR) for K1, and the signal-to-noise ratio (SNR) for 
K2 at node, r, can be described by (2) and (3), respectively: 
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Based on (2) and (3), the rate of the far-user data and the 
near-user data at the node r  are formulated by (4) and (5), 
respectively. 
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Moreover, (6) and (7) are the requirements to satisfy that 
the node r can successfully decode the messages 1k  and 2k  
[13], as follows: 
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where 1  and 2 are the target data rate for the secondary 
users K1 and K2, respectively.   

The consider non-linear EH user is modeled according to 
[10], and can be formulated as follows: 

                       
1
2 1user

LEH   



,                         (8) 

where 
 

1
1 exp ab

 


 and 
  int1 exp

L
a p b

 
  

, intp  

denotes the input power. In this case,   2
int 1 2 ,sep h w w 

where seh is the channel coefficient from the SB to the EH 
user. L  is a constant that set the maximum harvested power 
at EH receiver when the EH circuit is saturated. Parameters 
a   and b  are constants depending on the detailed circuit 
specifications, for example capacitance, resistance and diode 
turn-on voltage. We consider the values adopted in [10] 
which are given by 3.9 ,L mW  1500,a   and 0.0022.b   

B. Phase 2. Relay Transmission 
In this phase, we consider that node r can decode both 

signals, then, users  , 1,2Ki i  receives the following 
signal: 

       
2

, , ,
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, 1, 2 ,r Ki r Ki r Kj j Ki
j

y f w k n i


 
   

 
            (9) 

where ,r Kif  is the channel coefficient between relay r and the 

secondary user  , 1,2 .Ki i The power allocation assigned 
to the secondary users K1 and K2 from the relay are denoted 

 
Fig. 1. Cooperative CR-NOMA system with a non-linear EH user. 
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as , 1r Kw  and , 2r Kw , respectively.  20,
KiKin CN   denotes 

the additive Gaussian noise at K1 and K2. 
The SINR at K1 to decodes its message 1k considers the 

interference caused by the secondary user K2 and can be 
described as follows: 

                  
2

, 1 , 1
, 1 2 2

, 1 , 2 1

SINR r K r K
r K

r K r K K

f w

f w 



.                 (10) 

Due to NOMA principle, the SNR of secondary user K2 
to decode its message can be describe as: 

2
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Consequently, the rate of the far-user data at K1 and K2 
can be described as (12) and (13), respectively.  
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Moreover, the rate of the strong-user data at K2 can be 
expressed as 
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We investigate the challenging scenario where the 
eavesdroppers have a powerful detection capability to receive 

1k  without being jammed by 2k , and vice versa.  Hence, the 
rate of K1 and K2 secondary users’ data at the eavesdropper 
can be expressed as 

               2
1 log 1 SNR , 1,2 ,
2

Ki Ki
E ev i                      (15) 

where 
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, ,
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SNR max ,  v

v
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r Ki r EKi
ev r Ev V

E

w g
g


 is the channel 

coefficient between node r and eavesdropper v, and 2
vE

represents the variance in the additive Gaussian noise at the 
eavesdropper. 

The achievable data rate for secondary user K1 should 
satisfy the minimum rate at the relay, secondary user K1 and 
K2 since the node r performs the DF protocol and K2 
employs SIC to decode the message 1k , while secondary user 
K1 decodes its message by treating 2k  as noise.  

               1 1 1,min , 1 , 2 1min , ,k k rK k rK K    .                   (16) 
Similarly, to the achievable data rate for secondary user 

K1, to the achievable data rate for K2 should meet the 
minimum rate at the relay, and secondary user K2, as follows: 

                    2 2,min , 2 2min ,k k rK K   .                          (17) 
Accordingly, the secrecy rates of secondary user K1 and 

K2 can be expressed as (18) and (19), respectively: 
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where    max 0, .x x    

III. PROBLEM FORMULATION  
The SEE of the proposed NOMA-enable cooperative CR 

system is defined as the ratio of total secrecy rate to power 
consumption in both phases. Then, we first propose to solve 
the SEE optimization problem by applying the PSO scheme 
to generate the dataset with the best values of power 
allocation variables to train the DNN algorithm by optimizing 
the weights of the network that allows obtaining the 
maximum SEE. Meanwhile, the relay selection problem is 
performed in an exhaustive search manner which entails high 
computational complexity. Therefore, the problem for the 
SEE maximization is formulated as a bilevel optimization 
problem, as given below: 
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(20a) 
subject to:                  C1: 

1 ,min 1,k                           (20b) 

                                   C2: 
2 ,min 2 ,k                           (20c) 

                                  C3: max
1 2 ,STw w P                    (20d) 

                                   C4: max
, 1 , 2 ,r K r K rw w P              (20e) 

     C5: ,userEH                           (20f) 
where  h r  represents the inner part of the optimization 
problem according to the lower-level variables. The lower-
level variables are the power allocation variables: 1w , 2w , 

, 1r Kw , , 2r Kw . Meanwhile, r is the upper-level variable of the 
outer part of the optimization problem (20). Moreover, 1cp
and 2cp are the constant circuit power for or transmitting 
signal processing in phase 1 and phase 2, respectively.  

Since we applied the underlay CR network, (21) and (22) 
are the constraints to prevent the transmission power at the 
SB and the relay, respectively, interfere with the primary 
network.  
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where  max
SBInt  is the threshold to limit the interference power 

at the PUs from the SB,  m   is the set of PUs,  the maximum 
power at the ST is denoted by SBP , and the channel 
coefficient from the SB to the mPU  is denoted as skh ; and 

 
 
 

   (22) 
 
 

where  max
rInt   is the threshold to limit the interference power 

at the PUs from the relay r, the maximum power at the relay 
r is denoted by rP , and the channel coefficient from relay r 
to the mPU  is denoted by .rmh  
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IV. PROPOSED DNN AIDED PSO BASED-SCHEME 
In this paper, we construct a DNN-based scheme to solve 

the relay selection problem in (20). In particular, the relay that 
achieves the highest SEE is selected by the DNN. Fig. 2 
shows the framework of the proposed method which consists 
of two main modules: a DNN, and a PSO module to solve 
problem (20). 

A. DNN module 
The proposed DNN module [11] is composed of an input 

layer, four hidden layers, and an output layer, as shown in 
Fig. 2. The input of the DNN involves the channel from the 
SB to the relay, the channels from the relay to the secondary 
users, the target data rate values, and the minimum target 
value required by the EH user.  The number of neurons per 
hidden layer is 100,50,100,50, respectively. We used tanh 
activation function, stochastic gradient descent as a solver, 
the learning rate is set to 0.001 and the batch size is set to 128.  

B. PSO module 
The second module is the PSO algorithm [12], [13] which 

utilizes the relay selected by the DNN to optimize the power 
allocation to the secondary users. To this end, PSO searches 
for the global solution by iteratively updating its position and 
velocities. 

In this paper, the best performance is achieved by the 
maximum value of the SEE, and the following vector 
contains the n-th particle's position composed of 4 elements 
as follows: 

            1 2 , 1 , 2, , , ,, , , ,
r K r Kn w k w k w k w kx x x xx                   (23) 

where 1,2,..., ,Pn N  pN  represents the number of particles 
in the swarm,  

1 2 , 1, , ,, ,
r Kw k w k w kx x x  and 

, 2 ,r Kw kx  are the particle's 
position of the transmission power variables 1 2 , 1, , ,r Kw w w  
and , 2 ,r Kw  respectively. Moreover, the maximum and 
minimum power levels of each power allocation variable are 
stablished to define the limits of the search space for each 
particle’s position. Hence, the limits of the search space for 
each power allocation variable 1 2 , 1, , ,r Mw w w  and , 2 ,r Mw are 

 max0, STP  ,  max0, ,STP   max0, ,rP  and  max0, .rP   
Furthermore, we utilize a penalty method based on [3] to 

deal with the proposed constrained optimization problem 
(20). Then, the fitness function is defined as follows: 

   

 

sec, 1 sec, 2

1 2 1 , 1 , 2 2
1 2 , 1min , 2min

5

min
1

      if  0,1
, , , 2

max ,0 ,                         otherwise,

K K
i i

c r K r K c
r K r K

r i i
i

z
w w p w w p

F w w w w

f Q z

 




 

     
 







  

(24) 

where minf  is the lowest value of the SEE in the population, 

r t  is the penalty value at the iteration t, of the PSO 
algorithm and the penalty parameter of the i-th constraint is 
denoted by 0 1iQ  . Moreover,  from the constraints of 
problem (20) for the r-th selected relay node, we obtain 

11 1 ,minkz    , 
22 2 ,min ,kz    max

3 1 2 ,STz w w P  
max

4 , 1 , 2 ,r K r K rz w w P   and 5 userz EH  . The function  

 max ,0iz also lets us consider the values of the constraints 
that are not met. 

In Table I, the proposed low complexity solution is 
described to maximize the SEE for the problem (20). The 
input parameters of PSO belong to the maximum iteration 
number, the inertia weight for velocity update, the cognitive 
and social parameters, denoted as  max ,Ite  ,vs 1 ,c  and 2 ,c  
respectively. In addition, pN and the limits of the search 

space  max0, STP  ,  max0, ,STP   max0, ,rP  and  max0, rP  are part 
of the input parameters. Then, the velocity of each n-th 
particle in each t iteration is updated according to the relative 
positions of the individual local best position npb  and bg , as 
follows: 

   1
1, 1, 1 1 1, 1, 2 2 1 1,

t t t t t
w n v w n w n w n w w nv s v u c pb x u c gb x          (25) 

   1
2, 2, 1 1 2, 2, 2 2 2 2,

t t t t t
w n v w n w n w n w w nv s v u c pb x u c gb x       (26) 

   , 1 , 1 , 1 , 1 , 1 , 1

1
, 1 1 , , 2 2 ,r K r K r K r K r M r K

t t t t t
w n v w n w n w n w w nv s v u c pb x u c gb x       

(27) 

   , 2 , 2 , 2 , 2 , 2 , 2

1
, 1 1 , , 2 2 ,r K r K r K r K r K r K

t t t t t
w n v w n w n w n w w nv s v u c pb x u c gb x       

(28) 
where 1u  and 2u are random numbers between 0 and 1. 

Once the velocity is updated, the n-th particle’s position 
update is values, as follows: 

           1 1
1, 1, 1, ,t t t

w n w n w nx x v                                  (29) 

        1 1
2, 2, 2, ,t t t

w n w n w nx x v                                   (30) 

        
, 1 , 1 , 1

1 1
, , , ,

r K r K r K

t t t
w n w n w nx x v                            (31) 

       
, 2 , 2 , 2

1 1
, , , ,

r K r K r K

t t t
w n w n w nx x v                            (32) 

Note that before applying the machine learning algorithm, 
the relay selection is performed in an exhaustive search 
manner. Therefore, the best candidate relay node is that one 
achieves the maximum SEE among all the possible relays in 
the network, according to the outcomes of the bg  values. 
In addition, the computational complexity of the PSO-based 
method depends on max ,Ite and pN , i.e.,  max pIte N  [3].                      

V. SIMULATION RESULTS 
We used MATLAB and Python software to perform the 

simulation results.  
In the considered cooperative CR-NOMA network, the 

channel coefficients are modeled as    : 0, ,pa
r SB rh CN d 



 , 1 1: 0, ,pa
r M r Kf CN d 

  , 2 2: 0, ,pa
r K r Kf CN d 



 : 0, ,pa
se SB EHuserh CN d 

   , : 0, ,
v v

pa
r E r Eg CN d 

  

Fig. 2. General overview of the proposed DNN+PSO based scheme.
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 : 0, ,
m

pa
sm SB PUh CN d 

 and   : 0, ,
m

pa
rm r PUh CN d 

 where a bd    

denotes the distance between node a  and b ,  and  pa  is the 
path-loss exponent, 4pa  . In addition, we set the noise 

variance as follows: 2 2 2 2
1 2 80

vK K r E        dBm, and 
max max

max 30dBm.SB rP P P     
The coordinates of the nodes are set to be 
       10,50 , 1 100,50 , 2 70, 42 , 50,54 ,SB K K R      

       2 3 4 150,50 , 50, 46 , 50, 42 , 75,59 ,R R R PU   

     2 325,59 , 50,37 , 9, 46 .PU PU EHuser   The 
network is 100m 60m.  The results are averaged over 
several channel realizations. The simulation parameters of 
PSO are set to be 30,pN   max 300,Ite  0.7,vs   

1 1.494,c   and 2 1.494.c    Moreover, the total dataset 
contains 57600 samples, which is split into 80% for the 
training dataset and 20% for testing. 

Fig. 3 illustrates the SEE versus the minimum rate at 
secondary user 1K  when the minimum data rate at secondary 
user is equal to 2 0.5  bps/Hz/s, and the energy required at 
the EH user is equal to 15    dBm and  18    dBm. 
From Fig. 3, we can observe that the proposed DNN-PSO 
achieves a near-optimal performance to that of the ES-PSO 
scheme. ES+PSO method is an iterative algorithm that 
requires solving PSO a total of times equal to the number of 
relays available in the network such that select one that 
achieves the highest SEE. Therefore, the DNN scheme is 
utilized instead of the ES as an efficient strategy to reduce the 
computational complexity. It is worth highlighting that the 
true label of the DNN is obtained by ES. ES exhaustively 
finds all the possible solutions and selects the best one that 
reaches the highest SEE. Furthermore, the computation time 
required by the standard ES+PSO and DNN+PSO framework 
is 4.2s and 1.3s, respectively. Therefore, the proposed DNN-
PSO-based solution provides less computational time and 
overcomes the conventional ES+PSO method. Moreover, Fig 
3 shows that the SEE decreases as de minimum data rate and 
EH requirement increase. This is because more power needs 
to be allocated to satisfy the requirements of the secondary 
and EH users and the power consumption is inversely 
proportional to the SEE. Accordingly, it reduces the SEE.   

Fig. 4 shows the effect from linearity of EH on SEE in the 
proposed cooperative relaying CR-NOMA system when the 
minimum data rate at secondary user is equal to 2 0.5   
bps/Hz/s, and the energy required at the EH user is equal to 

15    dBm and  18    dBm. Fig. 4 validates that the 
cooperative CR-NOMA system with the non-linear EH user 
achieves lower SEE than that obtained by the ideal linear EH 
user. This is because the ideal case assumes that the user can 
harvest all the power of the incoming signal. However, the 
non-linear EH considers a more realistic scenario that 
includes circuit specifications that reduce the SEE 
performance.   

Fig. 5 shows the SEE comparative performance between 
the proposed CR-NOMA scheme and the conventional CR-
OMA baseline scheme for the target rate of 2 0.5   and the 
EH requirement of   18    dBm and  20    dBm. We 

TABLE I.  DNN+PSO SCHEME TO SOLVE PROBLEM (20). 

1: Input: Set the network parameters of the system and selected relay r* by 
the DNN. 

2:  Initialize max 0.SEE    
3:  Establish the parameters of PSO. 
4:  Initialize the iteration count 1.t   
5:  Initialize the values of the n-th particle's position.                        

                , , , , .1, 2, , ,, 1 , 2
t t t t tx x x xw n w n nw n w nr K r K

   
   
   

x  

6: Initialize the initial values of the n-th particle's velocities.                       
           , , ,, , , ,1 2 , 1 , 2

t t t t t
n w n w n w n wr K r K

 
  
 

v v v v v  

7: Compute the maximum objective function   , ,tSEE nn x  in (20) for 

each n-th particle. 
8: Establish the initial best particles’ positions :m   ,t

n npb x that 
achieved the best yield so far. 

9: From among all the particles, set the initial .gb

 argmax .
1

tSEE n
n N p

 
  

  
gb x  

10:    Iteration count 1.t t   
11:    For each particle n do 
12:        From (25), (26), (27), and (28), update the particles’ velocities. 
13:         From (29), (30), (31), and (32), update the particles’ positions. 
14:        Update the best npb . 

if     tSEE SEEn nx pb  then 

          t
n npb x  

   end if 
15:        Update ,gb  .n  

   if     tSEE SEEn x gb    then 

                      
 t
ngb x  

  end if 
16:    end for 
17:     if    max ,t Ite   then 

             1t t    and go to   step 11 
          else 
              go to  step 18 
          end if 
18:  End PSO: for the relay *r  the optimal power allocation values are 

 * * * *, , ,1 2 , 1 , 2w w w wr K r K  best_gb to acquire the highest value of SEE in 

(20). 

 
Fig. 3. SEE performance between the proposed DNN+PSO and the 

baseline ES+PSO scheme. 
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observe that the NOMA scheme overcomes the OMA method 
since NOMA efficiently uses the spectrum and power 
resources. Particularly, NOMA allows to simultaneously 
transmit information to both users in the same frequency 
band.  

VI. CONCLUSION 
In the proposed paper, we design a novel artificial 
intelligence-based solution composed of the PSO-based 
technique and a DNN to enhance the wireless security 
communication in collaborative relaying CR-NOMA system 
in the challenging presence of several eavesdroppers. In 
addition, we consider the practical design of a non-linear EH 
user. Accordingly, the proposed DNN+PSO-based solution 
maximizes the SEE of the network while satisfying the QoS 
requirements of all nodes in the network. Satisfactorily, 
numerical results show that the proposed PSO-DNN 
framework can achieve a performance close to the optimal 
solutions given by the PSO and ES method, with significantly 
lower complexity. Furthermore, simulation results verify that 
the proposed scheme achieves higher SEE performance than 
the OMA benchmark.  
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Fig. 4. SEE performance between the proposed cooperative CR-
NOMA with non-linear EH user and the cooperative CR-
NOMA with linear EH user scheme. 

 
Fig. 5. SEE performance between the proposed cooperative CR-

NOMA with non-linear EH user and the conventional 
cooperative CR-OMA with non-linear EH user scheme. 
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