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Abstract—Dependability is critical for industrial wireless com-
munication systems because of the high requirements of in-
dustrial applications. As an important phase, dependability
prediction can foresee future states of a wireless communication
system and can support control and improve the state of the
wireless communication system. Recent dependability prediction
methods predict the states only based on time series which ignores
the logical link correlation. Therefore, this paper proposes a
sequence to sequence model based on long short-term memory
and an attention mechanism to leverage the logical link correla-
tion to improve prediction accuracy. We conducted comparative
experiments on realistic measurement data sets with three cases,
where the proposed model always outperforms the benchmark,
which proves the novelty.

Index Terms—Dependability assessment, dependability predic-
tion, wireless communication systems, attention mechanism

I. INTRODUCTION

Wireless communication systems (WCSs) are increasingly
critical for future networks. However, its applications in
scenarios such as industrial automation [1] still have huge
challenges. Organizations such as the German Electro and
Digital Industry Association (ZVEI) [2], [3], 5G Alliance for
Connected Industries and Automation (5G ACIA) [4], and 3rd
Generation Partnership Project (3GPP) [5] issued documents
to guide and recommend users to manage WCS indicators for
different types of industrial applications.

Automation factories are commonly full of machines and
stuff which will block the wireless channels, and the protocols
such as Wifi, Bluetooth, and Zigbee will also interfere with
each other if they communicate at the same time, position, and
spectrum [6], [7]. Therefore, dependability is one of the most
important indicators for supporting industrial applications.
Dependability is a comprehensive indicator that has many
parameters and is summarized and generalized by the project
report [8]. In general, we can assess or/and control these
parameters to improve WCSs, which leads to two phases:
dependability assessment [9]–[13] and control [14]–[18]. The
two phases can work independently or together. Dependability
assessment can have multiple tasks, such as dependability
scoring and dependability prediction. These tasks can be
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Fig. 1: (a) An example of a sample wireless communication
system with three wireless devices where every device ac-
cesses one logical link. (b) Interference can come from the
environment or/and other logical links.

addressed by one multi-task learning model [13] or several
corresponding models [11], [19]. This paper focuses on the
dependability prediction task. In 2019, Sobhgol et al. [19]
proposed a Long Short-term Memory (LSTM) model to pre-
dict the dependability parameters but cannot address multiple
tasks. To address this issue, sun et al. [13] proposed a multi-
task learning model which has a better performance than the
LSTM model, because it additionally leverages the relation-
ships between different tasks. However, these models still
ignore the relationship between logical links which is a useful
knowledge to improve the prediction accuracy. Therefore,
this paper proposed a model of dependability prediction with
logical link correlation for industrial wireless communication
systems, where a sequence to sequence model based on the
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Fig. 2: The proposed model structure where the attention mechanism parts can learn the relationships between logical links to
improve the prediction performance with the designed loss.

LSTM and attention mechanism is designed. The sequence to
sequence part is responsible for flexible dimension reduction
and prediction, and the attention mechanism is used to learn
the relationships between logical links.

II. DEPENDABILITY PREDICTION

A. Problem Statement

Fig. 1 shows the WCSs with and without interference pro-
duced from the environment or other wireless communication
channels. We consider the logical link as the base, and the
wireless devices are communicated with each other via logical
links. The logical link has dependability parameters that can
be different in terms of requirements [8]. The dependability
parameters adopted in this paper are transmission time, update
time, lost message state, consecutive message loss, and lost
message ratio. Their definitions and collecting methods are
detailed in References [8] and [13], respectively. We assume
values of these parameters at time t as a vector of xt ∈ R1×5

and use its secondary subscript to distinguish different param-
eters and its superscript to represent the logical link number
such as x1

t,1 is the transmission time value of logical link 1
at time t. Considering the state continuity of WCSs, a time
series of dependability parameters denoted as X ∈ Rn×5 can
be used for prediction, and n is the length of the time series
which is also called time steps. X is a matrix that contains n
time steps:

X = [x1;x2; ...;xi; ...;xt], (1)

where [·; ·; ·] denotes the operation that connects vectors in
one column. Thus, the dependability prediction task is to find

a model when we input X it will predict the next dependability
state xt+1.

B. The model

To address the problem, we proposed a model of depend-
ability prediction with logical link correlation. Fig. 2 shows
the model structure where the attention mechanism parts can
learn the relationships between logical links to improve the
prediction performance, and the main structure of the model
is a sequence to sequence model which is based on LSTM
cells [20], [21]. We denote an LSTM cell executing as Eq. 2,
where ct and ht are the hidden state and output of the LSTM
cell; δ(·) and ε(·) are Sigmoid and tanh activation functions.
Note that all W and b in this paper are weight matrices and
bias vectors and a subscript letter is used to distinguish them.
δ(·) and ε(·) are calculated as:

δ(z) =
1

1 + e−z
, (2)

ε(z) =
1− e−2z

1 + e−2z
, (3)

To simplify the following description, we take logical link
1 as an example since logical links 2-3 have the same neural
network structure, and we omit the superscript for the logical
link number. In addition, we use first-level superscript e and
d to distinguish LSTM cells in the encoder and decoder
parts. Here, the logical link number becomes a second-level
superscript. For instance, cd,1t denotes the hidden state of the
LSTM cell in the decoder parts for logical link 1.

151



{
ct = δ(W fxt +W ′

fht−1 + bf )� ct−1 + δ(W ixt +W ′
iht−1 + bi)� ε(W gxt +W ′

ght−1 + bg)
ht = δ(W oxt +W ′

oht−1 + bo)� ε(ct)
(4)

The mathematical derivation of the proposed model is
detailed as follows.

Dependability state xt is fed into the proposed model, and
cet and he

t are obtained by Eq. 2. Then, we input the he
t into

the attention mechanism and get the vt, kt, and qt as follows.



vt = W vh
e
t + bv,

kt = W kh
e
t + bk,

qt = W qh
e
t + bq.

(5)

Note that vt, kt, and qt are one row of matrices of V , K,
and Q, and their dimension is decided by the output of the
encoder.

Then the calculation of the attention matrix A as follows:

A = Softmax(KTQ), (6)

where (·)T is transpose operation. Here, Softmax(·) is cal-
culated as:

Softmax(zi) =
ezi∑J
j=1 e

zj
, (7)

where J is the number of z.
We can obtain the tuned h̃

e

t learning from logical link
correlation as follows:

h̃
e

t = vtA. (8)

The h̃
e

t is input into the decoder part which outputs the
prediction result hd

t . We adopt mean squared error as the loss
function to minimize the distance between input and output as
follows.

Loss =
∑

‖hd
t − xt‖2. (9)

Note that in practice, we can insert fully connected layers
(FCLs) before and after the encoder and decoder parts. The
number of FCLs mainly depends on the dimension of the input
to get the best prediction results. Regarding the encoder part,
it also depends on depress rate from the encoder input to the
attention input. In this paper, we set one layer after the encoder
to reduce the dimension by three. In addition, the example
adopted in this paper has three logical links but the proposed
model is applicable for cases of any number of logical links
if we increase or decrease the number of sub-neural networks
of the green parts in Fig. 2.

III. EXPERIMENT

Fig. 3 is the setup for measuring data sets. To prove the
novelty of our model, we collected three data sets as the way
described in Reference [22] by ifak’s Multifiace [23]. The
difference between the three data sets is the distance between
wireless devices, where the setting distances are 10 m, 100 m,
and 150 m, respectively. The number of every data set is 10
000, and 90% of it is used for training. For every case, it has

Multiface 1
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generator

Channel emulator 2ClientPROFINET IO 
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Fig. 3: Multifaces [13].

TABLE I: Case 1 with device distances of 10 m.

Parameters TT UT LMS MLR CML

L1
MTL 0.04275 0.00064 0.06003 0.000009 0.00005

DPLC 0.03855 0.00068 0.05701 0.00087 0.00005

L2
MTL 0.02714 0.00024 0.0 0.00001 0.00006

DPLC 0.02412 0.00021 0.00008 0.00005 0.00005

L3
MTL 0.02603 0.00198 0.00216 0.00018 0.00006

DPLC 0.01716 0.00147 0.00219 0.00038 0.00006

Mean
MTL 0.03197 0.00095 0.02073 0.00039 0.00006

DPLC 0.02661 0.00078 0.01976 0.00038 0.00005

three logical links, named L1, L2, and L3. Note that all data
should be normalized as the method in Reference [13].

We make comparative experiments between the Multi-
learning (MTL) model [13] and the proposed model. In both
models, we set 12-time steps for input data. The batch size
is 200, the epoch is 200, and the optimizer is Adam with a
learning rate 0.005.

We conducted experiments on the three data sets, respec-
tively. Fig. 4 shows the dependability prediction results of
logical link 1 from data set 1 that has been divided into TT, UT,
LMS, LMR, and CML, respectively, and it illustrates that the
proposed model has a better mean squared error than the MTL
model. Note that the DPLC abbreviated from dependability
prediction with logical link correlation is the proposed model.

Tables I-III list all parameter comparisons of prediction
MSE between the proposed and MTL models, where we also

152



0 200 400 600 800 1,000

0

0.5

1

1.5
T

T
Origin MTL DPLC

0 200 400 600 800 1,000

0.8

1

1.2

U
T

Origin MTL DPLC

0 200 400 600 800 1,000

0

0.5

1

1.5

L
M

S

Origin MTL DPLC

0 200 400 600 800 1,000
0.95

1

1.05

1.1

L
M

R

Origin MTL DPLC

0 200 400 600 800 1,000

0.8

1

1.2

Sample number

C
M

L

Origin MTL DPLC

Fig. 4: Dependability prediction result of logical link 1 from
data set 1.

calculate the mean of the results of the three logical links.
In general, the proposed model always outperforms the MTL
model. Particularly in Case 1, the proposed model has bigger
superiority than Cases 2 and 3, where the improvement of the
TT prediction mean is up to 17%. The reason is that the data
in Case 2 and 3 have bigger fluctuation than in Case 1 which
means a larger solution space, and the fluctuation is caused

TABLE II: Case 2 with device distances of 100 m.

Parameters TT UT LMS MLR CML

L1
MTL 0.05716 0.00275 0.08443 0.00254 0.00066

DPLC 0.05653 0.00271 0.08463 0.00243 0.00006

L2
MTL 0.05466 0.00208 0.05724 0.00147 0.00006

DPLC 0.05111 0.00209 0.05728 0.00149 0.00006

L3
MTL 0.04911 0.00068 0.03445 0.00039 0.00005

DPLC 0.04838 0.00054 0.03475 0.00038 0.00005

Mean
MTL 0.05364 0.00184 0.05871 0.00147 0.00006

DPLC 0.05198 0.00178 0.05889 0.00142 0.00005

TABLE III: Case 3 with device distances of 150 m.

Parameters TT UT LMS MLR CML

L1
MTL 0.10844 0.00078 0.22141 0.00089 0.00006

DPLC 0.10844 0.00076 0.21381 0.00075 0.00005

L2
MTL 0.08891 0.00038 0.23317 0.00048 0.00005

DPLC 0.08603 0.00037 0.23374 0.00047 0.00005

L3
MTL 0.08892 0.00037 0.23302 0.00045 0.00006

DPLC 0.08607 0.00039 0.23349 0.00048 0.00006

Mean
MTL 0.09542 0.00051 0.22921 0.00061 0.00006

DPLC 0.09351 0.00051 0.22701 0.00056 0.00005

by the longer distance between wireless devices. However, in
these two harsh cases, the DPLC still has a better prediction
effect than the MTL model.

IV. CONCLUSION

This paper proposed an sequence to sequence model based
on the LSTM and attention mechanism, which leverages the
correlation between logical links to improve the prediction
performance. The sequence to sequence part is used mainly for
dimension reduction and prediction while the attention mech-
anism is set for learning the correlation between logical links.
We measured three realistic data sets considering different
device distances of 10 m, 100 m, and 150 m, respectively.
Then, we conducted comparative experiments on these data
sets which prove the effectiveness of the proposed model.

In future work, we attend to replace all LSTM cells as
attention mechanisms and test more data sets to prove the
robustness of the proposed model. Further, we will design
these attention mechanisms in a low-complexity way to meet
the resource-constrained condition of the wireless devices.
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