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Abstract—Unmanned aerial vehicles or drones are ubiquitous
among people, which can lead to technological, security, and
community safety issues that must be addressed, monitored,
and avoided. Intelligence services are always on the search for
potential technology and intelligent systems that can identify
drones. A potential drone surveillance system must be capable
of detecting, localizing, identifying, recognizing the modes, and
combating unauthorized drones. In this paper, we introduce a
Multi-Task Learning (MTL) neural network for drone detection,
identification, and drone mode detection using Radio Frequency
(RF) signals. Due to the semantic abstraction of the drone RF
signals, a single-task learning method can not fully meet the
demands of the current anti-drone system. Moreover, executing
each of the tasks, such as drone detection, type identification, and
activity recognition, individually takes longer time, which is not
applicable in a real-time drone surveillance system. Therefore,
this paper proposes an MTL approach leveraging convolution
layers to perform three tasks in parallel. A cross-entropy loss
function used as the objective function optimization to improve
the accuracy of the multiple tasks. The empirical results shows
that the proposed MTL model achieve a better recognition
accuracy compared to the existing solutions.

Index Terms—Convolution neural network, drone detection
and classification, multi-task learning neural network, radio
frequency signal.

I. INTRODUCTION

In the drone industry, there has been significant technolog-
ical advancement [1]. Drones are increasingly being outfitted
with cutting-edge technologies and sensors like GPS, LIDAR,
radar, and vision sensors. Nowadays, drones are being used for
a variety of purposes, including cinematography, agriculture,
surveillance, and leisure activities, thanks to the advancements
in drone technology. Aside from these advantageous functions,
drones are also being utilized for illicit purposes, posing a
threat to public safety [2]. Violations of civil security, drug
trafficking, firearm smuggling, carrying explosives materials
and breaching security-sensitive locations such as airports and
nuclear power facilities are among the criminal actions.

A number of counter-unmanned aircraft systems have been
developed. It has been proposed to disable drone attacks,
which are hard and soft interception, the two main types of
interception (a solution that is either kinetic or non-kinetic).
Surveillance a drone with a trained bird of prey, a web
gun [3], a laser beam, and a weapon are among the kinetic

options. On the other hand, the non-kinetic options comprise
GPS spoofing and RF jamming to confuse a drone’s tracking
system. The presence of a drone should be identified and
categorised ahead of time, regardless of the method chosen for
any situation. Automatically detecting and identifying a drone
is a difficult operation. Radar detection [4], vision detection,
acoustic detection, and RF fingerprint-based detection [5] are
some of the most commonly used technologies for detecting
and classifying drones. Different studies also proposed hybrid
technologies for drone detection and classification.

The back-scattered RF signal is used in aerial radar surveil-
lance to detect and classify drones. Due to the narrow radar
cross-section area, the traditional radar system fails to detect
mini-drones. To solve this challenge, researchers used a mul-
tistatic radar [6] or a Frequency Modulated Continuous Wave
(FMCW) radar to identify and categorize a quadcopter or
multi-rotor UAV’s micro-Doppler signature. Vision-based de-
tection covers both visual and thermal detection. Researchers
presented numerous drone detection methods utilizing this
technology in [7], [8]. The detection of the vision-based
method is comparatively accurate, but it requires a direct
line of sight (LOS) between the drone and the camera, and
its performance is heavily reliant on sunshine and weather
conditions such as dust, rain, fog, and clouds. In addition,
the likeness of a bird to a drone makes it more difficult for a
video detector to detect. The acoustic-based drone surveillance
system uses microphones to detect the presence of flying
drones by monitoring their sound [9]. A Hidden Markov
Model is proposed to analyze drone sounds and identify the
flying drones [10]. Acoustic detection works well in quiet or
low-noise environments. However, in noisy environments, such
as urban or industrial areas, or near seashores, performance
suffers.

RF sensing [11] is one of the most viable technologies for
detecting the presence of a drone [12]. Commercial drones
communicate with their ground control station using RF sig-
nals for flight control and navigation, live video transmission,
and telemetry data transfer. An RF fingerprint drone detec-
tion system can potentially detect a drone by analyzing the
transmission frequency spectrum. In the literature, a few RF-
based drone detection algorithms have been proposed. The
detection was carried out in [13], by determining the data
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Fig. 1. Training window of the proposed Multi-task neural network.

packet duration of a drone’s communication channel. These
detection approaches are ineffective because an application
communicating with an access point at the same packet
transfer rate or packet length as a drone can readily spoof
the detector. However, most of the drone surveillance papers
discussed drone detection and classification by separately
learning the model [14]. Moreover, the existing literature did
not detect the drone’s flying mode or activities, which is a
crucial part of the drone surveillance system. Motivated by
these aforementioned issues, in this literature, we intend to
create a drone surveillance framework combining both drone
detection, type classification and activity recognition.

II. PROPOSED MULTI-TASKING NEURAL NETWORK

Representation learning is a critical subject in the area of
machine learning [15]. In recent years, there has been a grow-
ing interest in nonlinear feature transformation from different
tasks utilizing several layers of deep networks [16]. Multi-task
learning is a learning technique that requires the utilization of
other related tasks to boost the generalization performance of
the learning tasks. It is extensively used in transfer learning,
particularly in the field of natural language processing. A
multi-task recurrent neural network model-based collaborative
joint training technique was discussed in [17]. This study
illustrated that the multi-task technique could enhance the
efficiency of both instant voice and speaker identification ac-
tivities when compared to single-task systems. More multi-task
learning models have been discussed in [18], [19]. However,
nowadays, multi-task learning is the new research trend in
the field of deep learning, which is widely acknowledged and
offers more benefits in terms of accuracy and computational
complexity compared to the single task learning. Therefore,
these study adopts multi-task neural network to detect, classify,
and recognize activities of the drone in parallel using a single
network model which targets to solve the problem of the
existing drone detection models.

Fig. 1. illustrates the architecture of the multitask learning
network, which consists of six convolution layers. Each of
the convolution layers is followed by a Rectified Linear Unit
(ReLU) and a maxpool layer to extract the unique features
and capture long-time dependencies from the input signals.
For multi-tasking processing, three fully connected (fc) layers
are employed in parallel, where the corresponding hidden

layers share the extracted features to perform the specific task.
This study uses the droneRF dataset, which is composed of
three categories of datasets, such as drone RF and interference
signals, three types of drone signals, and drone mode signals.
To train the network, we configured these different categories
dataset in the same dimension as 2048×1×1. This input signal
is processed through (3× 3) convolution layer with a 32 chan-
nel. In general, the convolution layer processes the activation
signals of the previous layers as F l−1ϵRx×yl−1

h ×yl−1
w ×yl−1

C .
Here, F , and x presents the feature map and total signal data
at l − 1 index layer. The kernels of the convolution layer are
presented as K [l]ϵRk[l]×k[l]×yl−1

C ×yl
C , where k[l] × k[l] × yl−1

C

is the dimension of the kernels and ylC is the total number of
kernel. The convolution layer conducts convolution operations
between the input signals and each filter, adds bias, and applies
ReLU as the non-linearity. The functions of the ReLU layer
can be shown as:

y (F ) =

{
F if F ≥ 0

0 if F < 0
, (1)

The ReLU layer conducts a threshold operation to scale the
output of the convolution layer. Moreover, it also helps the
network to prevent the vanishing gradient problem and offer
better learning convergence during training. The output of the
ReLU layer is received by a maxpool layer. The maxpool
layer is organised as 5× 1 pool size with the stride of (2, 1).
This configuration of the maxpool layer reduces the input
dimension by half and offers reduced computational expense
to the successive layers. Following the same design structure,
we have applied six convolutions, ReLU, and the maxpool
layers. Then we added a dropout layer with a 20% dropout
rate to address the issue of overfitting.

As the proposed networks perform three tasks instead of
training a separate network for each task; hence it has three
output layers and share the processed features of the preceding
blocks. Therefore, the output feature maps from the dropout
layer is fed to the three fully-connected layers. Each of the
fully-connected layers has a softmax layer to generate the
class probabilities of each task. In our network, the first fully-
connected layer is to classify the drone signal and the back-
ground signal. The second and third output layers work for the
drone’s signal identification and mode detection, respectively.
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Fig. 2. Training window of the proposed Multi-task neural network.

The output of the fully-connected layers can be shown as:
y1 = f (F1.W1 + b1) , (2)
y2 = f (F2.W2 + b2) , (3)

y3 = f (F3.W3 + b3) . (4)

here, y1, y2, and y3 is the output of the first task, second task,
and third task fully-connected layers, respectively.

III. EXPERIMENTAL RESULTS

A. Dataset Description

The dataset used in this study is an open source dataset
generated by [20]. The dataset was collected from three types
of drones, Bebop, AR, and Phantom. During data gathering,
all drones use WiFi, operated at 2.4 GHz frequency band.
They employed two RF receivers to collect the entire 2.4 GHz
bandwidth. The parameter settings to record data is given in
Table I. The RFdataset consists of raw RF signals, which were
collected in four functioning modes, such as on and connected,
hovering, flying without video recording, and flying with video
recording. There are a total of 227 segments, each of which is
made up of two equal-sized portions, each of which contains
one million samples, for a total of 454 record files. Table
II shows the total number of segments and samples for the
recordings in the created drone RF database.

B. Result Analysis

In this section, we analyze the efficiency of the proposed
multi-task CNN model that was presented in Section II.
The proposed network performs three tasks, such as drone
detection (two classes), type identification (four classes), and
activity recognition (ten classes) in a single training considera-
tion. In this case, we create our own custom training window as

TABLE I. System specification and parameter description of
RFdataset generation.

Parameter Description System1 System2
USRP-2943 RIO0 RIO0
Active channel RX2 RX2
Radio frequency band Low High
Carrier frequency (MHz) 2422 2462

IQ rate (MHz) 40 40

Number of samples per segment 107 107

Gain 30 30

TABLE II. Detail description of the developed drone RF
database including the number of raw RF samples and seg-
ments for each class.

Level Class Segments Samples

1
Drone 186 3720× 106

No Drone 41 820× 106

2

Bebop 84 1680× 106

AR 81 1620× 106

Phantom 21 420× 106

No Drone 41 820× 106

3

Bebop mode 1 21 420× 106

Bebop mode 2 21 420× 106

Bebop mode 3 21 420× 106

Bebop mode 4 21 420× 106

AR mode 1 21 420× 106

AR mode 2 21 420× 106

AR mode 3 21 420× 106

AR mode 4 18 420× 106

Phantom mode 1 21 420× 106

No drone 41 420× 106

shown in Fig. 2. To calculate the difference between the prob-
ability distributions, the training option configured the cross-
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Fig. 3. Confusion matrix of drone detection.

entropy loss function. The network training is carried out using
1500 epochs. Fig. 2. shows the loss and the accuracy of the
multiple tasks, where blue, light green, and red colors indicate
drone detection, type identification, and activity recognition,
respectively. To clearly demonstrate the results, the confusion
matrix of each task is shown in Fig. 3, Fig. 4, and Fig. 5. In
the case of separating the drone signal from the interfering
signals, the proposed model achieved a 100% classification
accuracy. For drone type identification, the multi-task model
achieved 96.70% accuracy rate. As shown in Fig. 4, the model
gets a little confused to uniquely identify the AR drone and
the bepop drone.

Lastly, Fig. 5. shows the confusion matrix of the drone
mode detection of the three types of drones. Notably, the
experiment considered four types of modes, such as "on and
connected", "hovering", ”flying with video recording", and
”flying without video recording". Due to the large number
of classes and similar features, the proposed model achieved
74.72% recognition accuracy, which is less compared to the
other tasks. However, to evaluate the efficiency of the proposed
model, we also compared the performance with three other
deep learning models, named as, Existing-CNN [14], Incep-
tionNet [21], and ResNet [22]. As shown in Fig. 6., almost
all models performed well for drone detection (approximately
100% accuracy except for Existing-CNN (98.80%) ). The
accuracy of the InceptionNet, Existing-CNN, ResNet and
the proposed model for drone type identification and mode
recognition is 91.47%, 93.87%, 94.8%, 96.7%, and 62.38%,
68.12%, 68.13%, and 74.72%, respectively. From this analysis,
it is revealed that the proposed multi-task model outperformed
the existing CNN models.

IV. CONCLUSION

Given the rising number of instances of drone misuse,
new technology is needed to assist in the enforcement of
laws and regulations. In this research, we implement a MTL
neural network for the detection, identification, and activity
recognition of drones sensing RF signals. The proposed ap-
proach was trained and evaluated using a benchmark dataset,
with the experimental findings indicating that employing RF
signals in conjunction with CNN for drone detection and
identification is successful and feasible. The proposed MTL
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Fig. 6. Performance comparison between the multi-task and
the existing CNN models.

model is composed of six convolution layers mounted sequen-
tially with an increasing number of filters to extract the most
disentangled features that contribute to the improvement of the
model accuracy. Furthermore, the results of the studies demon-
strated that CNN outperformed other existing CNN techniques
reported in the literature. In future work, we will include
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the computation complexity analysis and other performance
metrics measurement, which will act as the evidence of the
potential anti-drone system in the real-time environment.
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