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Abstract—This paper proposes a kind of deep learning (DL) 
based signal detection in dual mode generalized spatial 
modulation (DM-GSM) system, which aims to balance the 
detection performance and the complexity. Specifically, two 
neural networks, deep neural network (DNN) and convolutional 
neural network (CNN), are utilized to gain the mapping 
relationship among the received symbols, the channel matrix, and 
the transmitted bits. After offline training, the trained network is 
deployed for the online signal detection according to the input 
feature vector. Simulation results illustrate that the proposed DL 
detection can obtain the approximate performance of maximum 
likelihood (ML) detection at lower complexity and can provide 
better robustness compared with the conventional detection 
algorithms in the presence of various noise deviating from the 
standard Gaussian distribution.  

Keywords—Dual mode generalized spatial modulation (DM-
GSM), deep neural network (DNN), convolutional neural network 
(CNN), signal detection.  

I. INTRODUCTION  
As an emerging multi-antenna technology, spatial 

modulation (SM) [1] utilizes the transmit antenna indexes and 
the constellation symbols to transmit information bits, which 
effectively solves the antenna synchronization and interference 
problems in multiple-input multiple-output (MMO) system. 
Considering the large transmit antenna number in the SM system, 
the case that there is only one transmit antenna activated in each 
timeslot may result in resource waste. Generalized spatial 
modulation (GSM) scheme overcomes the limitations of SM by 
conveying multiple data streams simultaneously on multiple 
active transmit antennas [2]. Compared with the conventional 
SM technology, the GSM scheme offers significant 
improvement in spectral efficiency and transmission rate. 
Recently, a dual mode GSM (DM-GSM) scheme was presented 
in [3] to optimize the system performance effectively, which 
divides all the transmit antennas into two groups using index bits 
and transmits two distinguishable constellation modulation 
symbols on the corresponding antenna groups simultaneously. 

For GSM and DM-GSM systems, various signal detection 
methods have been presented. The maximum likelihood (ML) 

[4] detection obtains the optimal detection performance in GSM 
and DM-GSM systems, but its complexity grows exponentially 
as the active antennas increase. To reduce the detection 
complexity, sub-optimal linear detection algorithms, such as the 
minimum mean square error (MMSE) detection and the zero-
forcing (ZF) detection, were proposed [5]. Although the 
complexity of linear detectors is decreased compared with the 
ML detection, their performance loss is also significant. With 
the intensive exploration of artificial intelligence, the deep 
learning (DL) technique has displayed enormous potential for 
signal detection in wireless communications [6]. A small deep 
neural network (DNN) structure was introduced in [7] to detect 
the symbols of the GSM system, which reduces the 
learning parameters and attains nearly optimum ML detection 
performance at low complexity. The convolutional neural 
network (CNN) owning the characteristics of partial 
connectivity and shared weights in the convolutional layer has 
been widely deployed in wireless fields. A DL based signal 
detector for dual mode orthogonal frequency division 
multiplexing with index modulation (DM-OFDM-IM) was 
presented in [8] to detect the index bits and the modulation bits 
by utilizing CNN and DNN individually, decreasing the 
complexity while enhancing the detection performance. 

In this paper, we design a signal detection scheme based on  
DNN and CNN respectively in the DM-GSM system, called 
DNN-DM and CNN-DM. The proposed CNN-DM offers a 
superior bit error rate (BER) performance than the DNN-DM. 
Specifically, the mapping relationship among the received 
signal, the channel matrix, and the transmitted bits can be 
simplified by the neural network model. Through simulation, we 
find that the proposed DL detection leverages the powerful 
learning ability of the neural network to offer a better tradeoff 
between complexity and detection ability and outperforms the 
traditional ZF and MMSE detection schemes under the 
condition of perfect and imperfect channel state information 
(CSI). Meanwhile, the proposed CNN-DM achieves a superior 
BER performance over the ML detection in the presence of 
noise that deviates from the standard Gaussian distribution.  

The rest of this paper is introduced in the following. The 
DM-GSM system model and the ML detection are illustrated in 
Section II. In Section III, the DNN-DM and CNN-DM schemes 
in the DM-GSM system are proposed. In Section IV, the system 
BER performance and the detection complexity are analyzed. 
The conclusions are offered in Section V. 
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Fig. 1. DM-GSM system model.

II. SYSTEM MODEL

Fig. 1 depicts the DM-GSM system, which is developed on 
the basis of the GSM system. In each time slot, the input bit 
sequence b is separated into index bits and modulation bits. The 
index bits are input into the index selector to select two transmit 
antenna subsets IA and IB, where the antennas in the 
corresponding subset transmit the signal generated by the 
modulation bits and modulated with constellation mode A and B, 
respectively. The modulated signal set with constellation A is 
represented by MA, the modulated signal set with constellation B
is defined as MB, and mA and mB represent the constellation 
points in MA and MB, respectively.

Suppose that the DM-GSM system has Nt and Nr antennas at 
the transmitter and the receiver, respectively. The antenna subset 
IA contains p1 active antennas and IB has p2 active antennas. The 
active antennas at the transmitter of each time slot is Np= p1+p2. 
The total number of transmitted bits at each time slot is bt=b1+b2, 

where the index bits 1 2
!

log
( )! !

t

t p p

N
b

N N N
and the 

modulation bits b2 = p1log2mA + p2log2mB.

To introduce the DM⁃GSM system in detail, we take (Nt, Np,
mA, mB) = (4, 2, 4, 4) as an example. With the above system 
setting, we have the index bits b1 = 2, the modulation bits b2 = 4, 
and the total transmitted bits per time slot bt = 6. Assuming that 
the transmitted bit sequence is [0 1 1 0 1 1], and the first two bits 
[0 1] are the antenna index bits. It is shown in Table I that the 
system activates the second and fourth antennas. The following 
four bits [1 0 1 1] are the modulation bits, where the bit groups 
[1 0] and [1 1] are mapped by the constellation sets MA and MB,
respectively.

The DM-GSM transmitter generates the signal vector as
1 2 11 1[ 0, ,0, ,0, ,0, ,0, ,0, ,0, ,0, ] tNp p T

A B A Bs s s sx 11 1[ 0, ,0, ,0, ,0, ,0, ,0, ,0, ,0, ]21 1 tNtp p0 01 21 2 T
A B A B,0, ,0, ,0, ,0, ,0, ,0,,0, ,0, ,0, ,0, ,0, ,0,,0, ,0, ,0, ,0, ,0, ,0,,0, ,0, ,0, ,0,,0, ,0, ,0, ,0,[ 0, ,0, ,0, ,0, ,0, ,0, ,0, ,0, ]21 2,0, ,0, ,0, ,0, ,0, ,0,,0, ,0, ,0, ,0, ,0, ,0,11,0, ,0, ,0, ,0, ,0, ,0,,0, ,0, ,0, ,0,,0, ,0, ,0, ,0, with

Np nonzero elements, i
A As M and i

B Bs M represent the 
symbols in constellation set A and B transmitted by the ith 
transmit antenna, respectively. Thus, the received vector 

1rNy 1rNr is represented as

y Hx n

where r tN NH r tN Nr t indicates the channel matrix, whose elements 
obey the complex Gaussian distribution (0,1)(0,1) , and 1rNn 1rNr

represents the complex additive white Gaussian noise.

TABLE I. A MAPPING TABLE FOR =4 AND =2

Index Bits Antenna Set Symbol
00 (1,3) [sA 0 sB 0]
01 (2,4) [0 sA 0 sB]
10 (3,2) [0 sB sA 0]
11 (4,1) [sB 0 0 sA]

The ML detection algorithm makes the optimal detection by 
traversing all the possible active antenna subsets {IA, IB} and 
constellation symbol sets { ,  }i i

A Bs s . Therefore, the estimated 
transmit vector can be calculated with ML detection as

2ˆ arg min
F

x
x y Hx

where χ denotes all the available signal sets in the DM-GSM 
scheme generated by two different constellations MA and MB for 
a given active antenna combination. Due to the exponential 
growth of the complexity of ML detection with Nt, the ML
detector is difficult to be taken in practice.

III. PROPOESD DL BASED SIGNAL DETECTION IN DM-GSM
SYSTEM

To investigate the typical DL based signal detection in the 
DM-GSM system, we design and compare two signal detection 
schemes based on DNN and CNN, DNN-DM and CNN-DM, 
where CNN is more suitable for feature extraction. In the 
following, we respectively present the structure of DNN-DM
and CNN-DM, and provide the training procedure.

A. Structure of DNN-DM
We assume the perfect CSI is known at the receiver side. The 

received complex symbols are transformed into a real-value 
signal for the neural network process. The real and imaginary 
parts of the receiving signal vector y and the channel matrix H
are fed into the DNN respectively.

H

y

H

y FC
 +

 R
eL

U

FC
 +

 R
eL

U

FC
 +

 S
ig

m
oi

dRe(H)

Im(H)

Re(y)

Im(y)

Input layer Output layerHidden layer

Fig. 2. Structure of DNN-DM.
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The DNN framework for the DM-GSM signal detection is 
illustrated in Fig. 2, which mainly involves an input layer, two 
hidden layers, and an output layer. The input layer includes 
2(Nr+NrNt) neurons and the number of neurons in the hidden 
layers is Q1 and Q2, respectively. The rectified linear unit (ReLU) 
activation function fReLU(x) = max(0, x) is applied to the input 
and hidden layers. The output layer maps the variables to the 
values in [0, 1] by taking a sigmoid activation function, denoted
as ( ) 1 (1 )x

Sigmoidf x e . The output of the DNN architecture
is denoted as

ˆ ( , )fb y H ,

where f (.) denotes the DNN mapping function with training 
parameter θ.

B. Structure of CNN-DM
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Fig. 3. Structure of CNN-DM.

Fig. 3 shows the proposed CNN-DM detection framework. 
The CNN contains a two-dimensional convolutional layer, a 
Flatten layer, and two fully connected (FC) layers. The 
convolutional layer owns the characteristics of partial 
connectivity and shared weights, which significantly decreases 
the number of network parameters to be learned. For the CNN-
DM detection scheme, its signal preprocessing is depicted as
follows. 

Firstly, the received signal vector and the channel matrix are 
reshaped into a two-dimensional matrix Z. The channel 
coefficient and the received signal for the kth receive antenna 
are stored in the column vector zk, which can be represented as

,Re( ),0
[2 1]

Re( ), 2
k i t

k
k t

h i N
z i

y i N

,Im( ), 0
[2 2]

Im( ), 2
k i t

k
k t

h i N
z i

y i N

where hk,i represents the element in the kth row and the ith 
column of H, yk is the signal received by the kth antenna. The 
matrix 1 2[ ]

r

T
NZ z z z

g
]

r

T
Nr

with dimension Nr 2(Nt +1) is 
taken as the input of the CNN to fully extract the characteristic 
information among the transmitted symbols.

Secondly, the pre-processed two-dimensional data matrix Z
is used as the input of the convolutional layer. The convolutional 
kernel is 2( 1) 1 2( 1)1 2[ , , , ] ( 1,2, , )t tN N

c c c cv v v c Cv 2( 1) 1 2( 1), ] ( 1,2, , )2( 1) 1 2( 1)1) 1 2(1) 1 2(
c,, ] ( 1,2, , )] ( 1,2, , )2( 1)1) 1 2(1) 1 2(1) 1 2(1) 1 2(, 1) 1 2(1) 11) 1 2(1) 11) 1 2(1) 11) 1 2(1) 1, ] (] ((( ) ( )]]) () ( , 

where C represents the quantity of convolutional kernels and i
cv

indicates the ith element of the cth convolutional kernel. At the 
convolutional layer, the ReLU function is adopted. The output 
of the convolutional layer is presented as rN CD

p
rN Cr , where the 

element of the nth row and the cth column of D is given by
2( 1)

, Re ,
1

( )
tN

i
n c lu n i c c

i
d f z v b ,

where zn,i denotes the element at the nth row and the ith column 
of the input matrix Z of the convolutional layer and bc indicates 
the bias of the cth convolutional kernel.

Then, the flatten layer converts the two-dimensional matrix 
D output by the convolutional layer into a one-dimensional array 

1rN C
Fd

p y
1rN Cr . Followed by the flatten layer, two FC layers are 

adopted in the CNN. The first FC layer utilizes the ReLU
activation function and the output layer adopts the Sigmoid 
activation function for classification. The output of the CNN-
DM detector can be expressed as

2 Re 1 1 2
ˆ ( ( ) )Sigmoid lu Ff fb W WD b b

where W1, b1 and W2, b2 represent the weights  and biases of the 
first and the second FC layers, respectively.

C. Training Procedure
Before using a neural network for signal detection, the 

network needs to be trained offline according to the randomly 
generated data samples. In the training stage, based on the 
generated data samples of the DM-GSM system, the pre-
processed vector is considered as the input feature vector of the 
signal detection network, and the actual transmitted bit sequence 
is the corresponding label vector.

To determine the optimal model, it is necessary to 
continuously adjust the parameters to reduce the losses, which 
means reducing the discrepancies between the transmitted 
symbols and the estimated ones. Therefore, we employ the
binary cross-entropy loss function to optimize the training
parameters, which is calculated as

1

1 ˆ ˆlog( ) (1 ) log(1 )
N

i i i i
i

L y y y y
N

where yi is the transmitted binary bit 0 or 1, ˆiy is the estimated 
bit, and N indicates the total number of transmitted bits. The 
training and test datasets contain 4×105 and 1×105 symbols, 
respectively. We take the Adam optimization algorithm to 
update the network weights with a learning rate η = 0.0005, 
which supports large datasets and high-dimensional parameters.

IV. SIMULATION RESULTS

To verify the effectiveness of the proposed DNN-DM and 
CNN-DM algorithms, we also make comparison with the 
optimum ML detection, the ZF detection, and the MMSE 
detection in BER performance and detection complexity. We 
take (Nt, Np, Nr)=(4, 2, 2) as an example, and the two
constellation modulation modes are both set as BPSK. Flat 
Rayleigh fading channel is deployed in the simulation, and the 
noise obeys independent and identically distributed (i.i.d)
Gaussian distribution. The two hidden layers of DNN comprise 
256 and 128 nodes, respectively, and the hyperparameters of 
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CNN are set as C=128 and Q=128. In the training process, the
training signal-to-noise ratio (SNR) is 20dB.

A. BER Performance
The BER performance of the DM-GSM system with 

different detection schemes under the perfect CSI is given in Fig. 
4. It is shown that the proposed DNN-DM and CNN-DM 
algorithms achieve the suboptimal performance close to the 
optimal ML detection and are much better than the MMSE 
detector and ZF detector by 6 dB and 8.5 dB for BER of 10−2.
Meanwhile, the CNN-DM scheme gets superior BER 
performance to the DNN-DM scheme. In addition, we also 
compare the system BER performance with different detection 
schemes under the imperfect CSI in Fig. 5, where the imperfect 
CSI model in [6] is adopted and the covariance of the CSI 
estimation error 2

e varies with the average SNR with 
2 1(1 )e . Similar to the BER performance trend under 

perfect CSI, the proposed deep learning-based detection has 
better robustness under the imperfect CSI. At the BER of 10-2, 
the proposed DNN-DM and CNN-DM obtain about 6.5 dB and 
9.0 dB gains over the MMSE and ZF detectors.

Fig. 4. BER performance of DM-GSM system with different detection 
schemes under perfect CSI.

Fig. 5. BER performance of DM-GSM system with different detection 
schemes under imperfect CSI.

For the practical communication system, it is hard to ensure 
the independent noise at the receive antennas because of the 
limited antenna space. Therefore, we further consider the case 

of correlated noise with the correlation matrix in [9], where the 

noise correlation matrix Nc is expressed as
1

1cN ,

(0 1) denoting the noise correlation coefficient and the 
correlated noise can be written as nc=Ncn. Fig. 6 depicts the BER 
performance of the DNN-DM and CNN-DM schemes under the 
influence of correlated noise with ρ=0.2. The results indicate 
that the CNN-DM scheme obtains superior BER performance 
than the DNN-DM scheme in dealing with the correlated noise.
In the case of high noise correlation, CNN can fully extract 
signal features to recover transmitted signal.

Fig. 6. BER performance of DM-GSM system with DNN-DM, CNN-DM, 
and ML detection in the presence of correlated noise.

Fig. 7. BER performance of DM-GSM system with DNN-DM, CNN-DM, 
and ML detection under t-distributed noise.

Furthermore, we also contemplate the condition that the 
noise does not obey the Gaussian distribution. We take into 
account the case where the noise obeys a t-distribution [10] with 
the degree of freedom v. The larger v is, the closer the t-
distribution is to the standard Gaussian distribution. Fig. 7 gives
the BER performance of the proposed DNN-DM, CNN-DM, 
and ML detection algorithms, where the noise obeys the t-
distribution with v =2, 4, and 10. It shows that the proposed 
CNN-DM obtains better BER performance versus ML and 
DNN-DM detection schemes at higher SNR. When the 
parameter v becomes smaller, the performance of the ML 
detection decreases due to the larger deviation from the 
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Gaussian distribution. In the case of non-Gaussian noise, the 
CNN-DM provides better BER performance than the DNN-DM 
scheme. This is because the two-dimensional convolutional  
layer is employed to extract the features in the received symbols. 

B. Computational Complexity 
The computational complexity of the proposed DNN-DM, 

CNN-DM, and the conventional detectors is analyzed with the 
required number of floating-point operations (flops) as a metric, 
such as the real number addition and the real number 
multiplication in [11]. Table II provides the complexity of the 
different detection schemes in the DM-GSM system. Different 
with the traditional detection schemes, the complexity of the 
proposed DL detection is affected by the amount of neurons and 
the variation of the transmit antennas has less impact on the 
complexity of the CNN-DM and DNN-DM algorithms. As the 
transmit antenna, active antenna and receive antenna are 16, 4, 
and 8, and 8QAM is employed, the proposed CNN-DM scheme 
requires 3.3×105 flops and the ML detection scheme requires 
1.8×107 flops, which confirms that the CNN-DM can decrease 
the detection complexity effectively. 

TABLE II.  COMPUTATIONAL COMPLEXITY OF THE DETECTOR 

Detector Complexity(flops) 

CNN-DM (2 4 5) 2 3r tN C Q N QP Q P   

DNN-DM 1 2 1(4 4 1) (2 2 1)r t rQ N N N Q Q P P   

ML 1 1 22 (8 4 1)b p p
A B p r pm m N N N   

ZF  1 2 2 32 (12 7 6 4 2 )b
r p p r p p pN N N N N N N   

MMSE 1 2 2 32 (12 7 6 4 )b
r p p r p pN N N N N N   

V. CONCLUSION 
In this paper, two signal detectors based on DNN and CNN 

in the DM-GSM system are proposed to explore the mapping 
relationship among the received symbols, the channel matrix, 
and the transmitted bits, and balance the detection performance 
and the complexity. Simulation results indicate that the proposed 
CNN-DM achieves excellent BER performance close to the ML 

detection at lower complexity, while obtaining better BER 
performance than the DNN-DM, ZF detector and MMSE 
detector. Furthermore, the CNN-DM scheme has better 
robustness compared with the conventional detection algorithms 
under non-standard Gaussian noise distribution. In the future, 
we will continuously optimize the overall structure of the system, 
such as improving the system detection performance through 
antenna selection algorithms. 
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