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Abstract—This paper proposes a kind of deep learning (DL)
based signal detection in dual mode generalized spatial
modulation (DM-GSM) system, which aims to balance the
detection performance and the complexity. Specifically, two
neural networks, deep neural network (DNN) and convolutional
neural network (CNN), are utilized to gain the mapping
relationship among the received symbols, the channel matrix, and
the transmitted bits. After offline training, the trained network is
deployed for the online signal detection according to the input
feature vector. Simulation results illustrate that the proposed DL
detection can obtain the approximate performance of maximum
likelihood (ML) detection at lower complexity and can provide
better robustness compared with the conventional detection
algorithms in the presence of various noise deviating from the
standard Gaussian distribution.

Keywords—Dual mode generalized spatial modulation (DM-
GSM), deep neural network (DNN), convolutional neural network
(CNN), signal detection.

1. INTRODUCTION

As an emerging multi-antenna technology, spatial
modulation (SM) [1] utilizes the transmit antenna indexes and
the constellation symbols to transmit information bits, which
effectively solves the antenna synchronization and interference
problems in multiple-input multiple-output (MMO) system.
Considering the large transmit antenna number in the SM system,
the case that there is only one transmit antenna activated in each
timeslot may result in resource waste. Generalized spatial
modulation (GSM) scheme overcomes the limitations of SM by
conveying multiple data streams simultaneously on multiple
active transmit antennas [2]. Compared with the conventional
SM technology, the GSM scheme offers significant
improvement in spectral efficiency and transmission rate.
Recently, a dual mode GSM (DM-GSM) scheme was presented
in [3] to optimize the system performance effectively, which
divides all the transmit antennas into two groups using index bits
and transmits two distinguishable constellation modulation
symbols on the corresponding antenna groups simultaneously.

For GSM and DM-GSM systems, various signal detection
methods have been presented. The maximum likelihood (ML)
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[4] detection obtains the optimal detection performance in GSM
and DM-GSM systems, but its complexity grows exponentially
as the active antennas increase. To reduce the detection
complexity, sub-optimal linear detection algorithms, such as the
minimum mean square error (MMSE) detection and the zero-
forcing (ZF) detection, were proposed [5]. Although the
complexity of linear detectors is decreased compared with the
ML detection, their performance loss is also significant. With
the intensive exploration of artificial intelligence, the deep
learning (DL) technique has displayed enormous potential for
signal detection in wireless communications [6]. A small deep
neural network (DNN) structure was introduced in [7] to detect
the transmitted symbols of the GSM system, which reduces the
learning parameters and attains nearly optimum ML detection
performance at low complexity. The convolutional neural
network (CNN) owning the characteristics of partial
connectivity and shared weights in the convolutional layer has
been widely deployed in wireless fields. A DL based signal
detector for dual mode orthogonal frequency division
multiplexing with index modulation (DM-OFDM-IM) was
presented in [8] to detect the index bits and the modulation bits
by utilizing CNN and DNN individually, decreasing the
complexity while enhancing the detection performance.

In this paper, we design a signal detection scheme based on
DNN and CNN respectively in the DM-GSM system, called
DNN-DM and CNN-DM. The proposed CNN-DM offers a
superior bit error rate (BER) performance than the DNN-DM.
Specifically, the mapping relationship among the received
signal, the channel matrix, and the transmitted bits can be
simplified by the neural network model. Through simulation, we
find that the proposed DL detection leverages the powerful
learning ability of the neural network to offer a better tradeoff
between complexity and detection ability and outperforms the
traditional ZF and MMSE detection schemes under the
condition of perfect and imperfect channel state information
(CSI). Meanwhile, the proposed CNN-DM achieves a superior
BER performance over the ML detection in the presence of
noise that deviates from the standard Gaussian distribution.

The rest of this paper is introduced in the following. The
DM-GSM system model and the ML detection are illustrated in
Section II. In Section III, the DNN-DM and CNN-DM schemes
in the DM-GSM system are proposed. In Section IV, the system
BER performance and the detection complexity are analyzed.
The conclusions are offered in Section V.
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Fig. 1. DM-GSM system model.

II. SYSTEM MODEL

Fig. 1 depicts the DM-GSM system, which is developed on
the basis of the GSM system. In each time slot, the input bit
sequence b is separated into index bits and modulation bits. The
index bits are input into the index selector to select two transmit
antenna subsets /Iy and [z, where the antennas in the
corresponding subset transmit the signal generated by the
modulation bits and modulated with constellation mode 4 and B,
respectively. The modulated signal set with constellation A4 is
represented by M, the modulated signal set with constellation B
is defined as Mjp, and m4 and mp represent the constellation
points in M, and M3, respectively.

Suppose that the DM-GSM system has N, and N, antennas at
the transmitter and the receiver, respectively. The antenna subset
1,4 contains p; active antennas and /5 has p» active antennas. The
active antennas at the transmitter of each time slot is N,= pi+po.
The total number of transmitted bits at each time slot is b=b+b>,

N,!
where the index bits b, =|log,| ————— || and the
(N,—N,)IN, !

modulation bits b, = pilogom, + palogmp.

To introduce the DM-GSM system in detail, we take (V;, N,,
my, mp) = (4, 2, 4, 4) as an example. With the above system
setting, we have the index bits b; = 2, the modulation bits b, = 4,
and the total transmitted bits per time slot b; = 6. Assuming that
the transmitted bit sequence is [0 1 1 0 1 1], and the first two bits
[0 1] are the antenna index bits. It is shown in Table I that the
system activates the second and fourth antennas. The following
four bits [1 0 1 1] are the modulation bits, where the bit groups
[1 0] and [1 1] are mapped by the constellation sets M, and M3,
respectively.

The DM-GSM transmitter generates the signal vector as

1 1 p y T N,xl .
x=[---0,5,,0,--+,0,55,0,---,0,5,0,---,0,552,0,--] e C*" with
N, nonzero elements, s, € M, and s}, € M, represent the

symbols in constellation set 4 and B transmitted by the ith
transmit antenna, respectively. Thus, the received vector
y € C"' is represented as

y=Hx+n, (1)

where H € CV" indicates the channel matrix, whose elements
obey the complex Gaussian distribution CA(0,1), andne C*™
represents the complex additive white Gaussian noise.
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TABLE L A MAPPING TABLE FOR N;=4 AND Np=2
Index Bits Antenna Set Symbol

00 (1,3) [54 055 0]
01 (2.4) [0.5, 0 5]
10 3.,2) [0.55540]
11 4.1 [s500s,]

The ML detection algorithm makes the optimal detection by
traversing all the possible active antenna subsets {/4, /z} and

constellation symbol sets {s',, s;} . Therefore, the estimated
transmit vector can be calculated with ML detection as

X =arg mjnHy—HxHi s 2)
Xey

where y denotes all the available signal sets in the DM-GSM

scheme generated by two different constellations M, and M3 for

a given active antenna combination. Due to the exponential

growth of the complexity of ML detection with N, the ML

detector is difficult to be taken in practice.

III. PROPOESD DL BASED SIGNAL DETECTION IN DM-GSM
SYSTEM

To investigate the typical DL based signal detection in the
DM-GSM system, we design and compare two signal detection
schemes based on DNN and CNN, DNN-DM and CNN-DM,
where CNN is more suitable for feature extraction. In the
following, we respectively present the structure of DNN-DM
and CNN-DM, and provide the training procedure.

A. Structure of DNN-DM

We assume the perfect CSI is known at the receiver side. The
received complex symbols are transformed into a real-value
signal for the neural network process. The real and imaginary
parts of the receiving signal vector y and the channel matrix H
are fed into the DNN respectively.
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Fig. 2. Structure of DNN-DM.
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The DNN framework for the DM-GSM signal detection is
illustrated in Fig. 2, which mainly involves an input layer, two
hidden layers, and an output layer. The input layer includes
2(N,+N,N;) neurons and the number of neurons in the hidden
layers is Q1 and O, respectively. The rectified linear unit (ReLU)
activation function freLu(x) = max(0, x) is applied to the input
and hidden layers. The output layer maps the variables to the
values in [0, 1] by taking a sigmoid activation function, denoted

a8 fiomoia (X) = 1/(1+e™). The output of the DNN architecture
is denoted as

b= £,(y,H), 3)

where f+(.) denotes the DNN mapping function with training
parameter 0.

B. Structure of CNN-DM
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Fig. 3. Structure of CNN-DM.

Fig. 3 shows the proposed CNN-DM detection framework.
The CNN contains a two-dimensional convolutional layer, a
Flatten layer, and two fully connected (FC) layers. The
convolutional layer owns the characteristics of partial
connectivity and shared weights, which significantly decreases
the number of network parameters to be learned. For the CNN-
DM detection scheme, its signal preprocessing is depicted as
follows.

Firstly, the received signal vector and the channel matrix are
reshaped into a two-dimensional matrix Z. The channel
coefficient and the received signal for the kth receive antenna
are stored in the column vector z;, which can be represented as

Re(h,,),0<i<N,

z,[2i+]1] = ’ 4)
Re(y,), i=2N,
Im(h, ,),0<i< N,

z,[2i+2]= ’ , ®)
Im(y,), i=2N,

where /y; represents the element in the kth row and the ith
column of H, yiis the signal received by the kth antenna. The

matrix Z=[z,, Z, Z, 1" with dimension N, X 2(N, +1) is

taken as the input of the CNN to fully extract the characteristic
information among the transmitted symbols.

Secondly, the pre-processed two-dimensional data matrix Z
is used as the input of the convolutional layer. The convolutional

vg(\;+1)] e R¥2NHD (c=1,2,---,C)

¢ i

. 12
kernel is v, =[v,,Vv.,--,

where C represents the quantity of convolutional kernels and v
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indicates the ith element of the cth convolutional kernel. At the
convolutional layer, the ReLU function is adopted. The output
of the convolutional layer is presented as D € R, where the
element of the nth row and the cth column of D is given by

2(N,+1)

dn.c = -fRelu( z Zn,[ XV£ +b(_) H (6)
i=1

where z,; denotes the element at the nth row and the ith column
of the input matrix Z of the convolutional layer and b. indicates
the bias of the cth convolutional kernel.

Then, the flatten layer converts the two-dimensional matrix
D output by the convolutional layer into a one-dimensional array

d, e RV Followed by the flatten layer, two FC layers are

adopted in the CNN. The first FC layer utilizes the ReLU
activation function and the output layer adopts the Sigmoid
activation function for classification. The output of the CNN-
DM detector can be expressed as

b :/:S‘igmoid(WZfRelu (WD, +b,)+b,), @)
where Wi, b; and W, b, represent the weights and biases of the
first and the second FC layers, respectively.

C. Training Procedure

Before using a neural network for signal detection, the
network needs to be trained offline according to the randomly
generated data samples. In the training stage, based on the
generated data samples of the DM-GSM system, the pre-
processed vector is considered as the input feature vector of the
signal detection network, and the actual transmitted bit sequence
is the corresponding label vector.

To determine the optimal model, it is necessary to
continuously adjust the parameters to reduce the losses, which
means reducing the discrepancies between the transmitted
symbols and the estimated ones. Therefore, we employ the
binary cross-entropy loss function to optimize the training
parameters, which is calculated as

L :‘%Z[y[ log(#)+ (1= ) log(1- )] ®)

where y; is the transmitted binary bit 0 or 1, J, is the estimated

bit, and »V indicates the total number of transmitted bits. The
training and test datasets contain 4x10° and 1x103 symbols,
respectively. We take the Adam optimization algorithm to
update the network weights with a learning rate 7 = 0.0005,
which supports large datasets and high-dimensional parameters.

IV. SIMULATION RESULTS

To verify the effectiveness of the proposed DNN-DM and
CNN-DM algorithms, we also make comparison with the
optimum ML detection, the ZF detection, and the MMSE
detection in BER performance and detection complexity. We
take (N, N,, No=(4, 2, 2) as an example, and the two
constellation modulation modes are both set as BPSK. Flat
Rayleigh fading channel is deployed in the simulation, and the
noise obeys independent and identically distributed (i.i.d)
Gaussian distribution. The two hidden layers of DNN comprise
256 and 128 nodes, respectively, and the hyperparameters of



CNN are set as C=128 and 0=128. In the training process, the
training signal-to-noise ratio (SNR) is 20dB.

A. BER Performance

The BER performance of the DM-GSM system with
different detection schemes under the perfect CSI is given in Fig.
4. It is shown that the proposed DNN-DM and CNN-DM
algorithms achieve the suboptimal performance close to the
optimal ML detection and are much better than the MMSE
detector and ZF detector by 6 dB and 8.5 dB for BER of 1072,
Meanwhile, the CNN-DM scheme gets superior BER
performance to the DNN-DM scheme. In addition, we also
compare the system BER performance with different detection
schemes under the imperfect CSI in Fig. 5, where the imperfect
CSI model in [6] is adopted and the covariance of the CSI

estimation error o varies with the average SNR 7 with

o’ =(1+7)". Similar to the BER performance trend under

perfect CSI, the proposed deep learning-based detection has
better robustness under the imperfect CSI. At the BER of 1072,
the proposed DNN-DM and CNN-DM obtain about 6.5 dB and
9.0 dB gains over the MMSE and ZF detectors.
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Fig. 4. BER performance of DM-GSM system with different detection
schemes under perfect CSL
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Fig. 5. BER performance of DM-GSM system with different detection
schemes under imperfect CSL

For the practical communication system, it is hard to ensure
the independent noise at the receive antennas because of the
limited antenna space. Therefore, we further consider the case
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of correlated noise with the correlation matrix in [9], where the
. . . . 1

noise correlation matrix N, is expressed as N_ :{ f} ,
P

(0 < p <1) denoting the noise correlation coefficient and the

correlated noise can be written as n.=N.n. Fig. 6 depicts the BER
performance of the DNN-DM and CNN-DM schemes under the
influence of correlated noise with p=0.2. The results indicate
that the CNN-DM scheme obtains superior BER performance
than the DNN-DM scheme in dealing with the correlated noise.
In the case of high noise correlation, CNN can fully extract
signal features to recover transmitted signal.

—©— CNN-DM,Corr.noise,p=0.2
—©— DNN-DM,Corr.noise,p=0.2
—6— ML Corr.noise,p=0.2

12 16 20
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Fig. 6. BER performance of DM-GSM system with DNN-DM, CNN-DM,
and ML detection in the presence of correlated noise.
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Fig. 7. BER performance of DM-GSM system with DNN-DM, CNN-DM,
and ML detection under t-distributed noise.

Furthermore, we also contemplate the condition that the
noise does not obey the Gaussian distribution. We take into
account the case where the noise obeys a z-distribution [10] with
the degree of freedom v. The larger v is, the closer the ¢-
distribution is to the standard Gaussian distribution. Fig. 7 gives
the BER performance of the proposed DNN-DM, CNN-DM,
and ML detection algorithms, where the noise obeys the ¢-
distribution with v =2, 4, and 10. It shows that the proposed
CNN-DM obtains better BER performance versus ML and
DNN-DM detection schemes at higher SNR. When the
parameter v becomes smaller, the performance of the ML
detection decreases due to the larger deviation from the



Gaussian distribution. In the case of non-Gaussian noise, the
CNN-DM provides better BER performance than the DNN-DM
scheme. This is because the two-dimensional convolutional
layer is employed to extract the features in the received symbols.

B. Computational Complexity

The computational complexity of the proposed DNN-DM,
CNN-DM, and the conventional detectors is analyzed with the
required number of floating-point operations (flops) as a metric,
such as the real number addition and the real number
multiplication in [11]. Table II provides the complexity of the
different detection schemes in the DM-GSM system. Different
with the traditional detection schemes, the complexity of the
proposed DL detection is affected by the amount of neurons and
the variation of the transmit antennas has less impact on the
complexity of the CNN-DM and DNN-DM algorithms. As the
transmit antenna, active antenna and receive antenna are 16, 4,
and 8, and 8QAM is employed, the proposed CNN-DM scheme
requires 3.3x10° flops and the ML detection scheme requires
1.8x107 flops, which confirms that the CNN-DM can decrease
the detection complexity effectively.

TABLE II. COMPUTATIONAL COMPLEXITY OF THE DETECTOR
Detector Complexity(flops)
CNN-DM N,C(20+4N, +5)+20P+0Q+3P
DNN-DM O(@AN N, +4N +1)+0,(20, +2P+1)+P
ML 2" m}my 8N N, +4N, -1)
ZF 2'(I2N,N; +7N; +6N,N, +4N> =2N,)
MMSE 2"(12N,N} +7N: +6N,N, +4N")

V. CONCLUSION

In this paper, two signal detectors based on DNN and CNN
in the DM-GSM system are proposed to explore the mapping
relationship among the received symbols, the channel matrix,
and the transmitted bits, and balance the detection performance
and the complexity. Simulation results indicate that the proposed
CNN-DM achieves excellent BER performance close to the ML
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detection at lower complexity, while obtaining better BER
performance than the DNN-DM, ZF detector and MMSE
detector. Furthermore, the CNN-DM scheme has better
robustness compared with the conventional detection algorithms
under non-standard Gaussian noise distribution. In the future,
we will continuously optimize the overall structure of the system,
such as improving the system detection performance through
antenna selection algorithms.
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