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Abstract— In  time-slotted channel hopping (TSCH)
communications included in IEEE 802.15.4, there are no direct
scheduling guidelines, but communication schedules are determined
by the distribution of slots according to Slotframes and the allocation
of channels. Among them, channel allocation is directly exposed to
effects such as frequency mix caused by the increasing number of
wireless communication equipment. In this paper, we propose a
technique to create a Hopping sequence list based on the Blacklist
according to the channel quality of each slot by directly matching the
Q-table of Q-learning, a technique of reinforcement learning, to
maintain the quality and maximize the efficiency of communication.
To verify the above technique, Contiki-NG's Cooja simulation was
verified, and one of the existing studies was selected as a comparison
group. Simulation results show higher PDR and energy charge
compared to previous studies, showing relatively good efficiency,
reliability, and the potential of this technique.
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The rise of radio equipment used in modern society grows
the frequency density in wireless environments, causing an
increase in "Cross Technology Interference (CTI)"'[1]. The
time-slotted channel hopping (TSCH), the MAC layer
communication of the IEEE 802.15.4 standard [2], is designed
to avoid interference by using the division and distribution of
channels and slots on its own (“TSCH makes use of
pseudorandom channel hopping to combat external interference
and frequency-selective multipath fading.” [3]). Since there is
no consideration of the surrounding environment, it is a method
that is not free from the influence of “CTI” [1]. In this paper,
we propose a channel blacklist method to efficiently minimize
the effect on “CTI” [1] of frequency.

INTRODUCTION

This idea applies Q-table of Q-learning [4] to improve
communication quality degraded by interference. After
matching the Q-table to the TSCH Schedule table consisting of
Slotframe and channel, the channel quality for each slot is
evaluated using the PDR evaluated for each communication as
a metric, and channels that do not have a certain level are
dropped and the best channel is brought. Adaptive Channel
Selection [3], which implemented channel hopping using RSSI
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as a metric, was selected as a verification method for this
technique. Comparing the technology with PAR, PDR, RPL
parent switching counts, and energy charge of the Cooja
simulator in the Contiki-NG OS environment, it was found that
overall, much better reliability and efficiency were achieved.

II. RELATED WORKS

There are many studies conducted on channel hopping to
improve the TSCH technique of IEEE 802.15.4. MABO-
TSCH [5], which learns PDR-based channel selection with
MAB (Multi-Armed Bandit) problem; Adaptive Channel
Selection(ACS)[3], which selects a channel based on the RSSI
value of every communication; ATSCH [6] which selects “ED
(Energy Detection)” [6] using an empty slot and the energy of
each channel during one Slotframe; ETSCH [7], which selects
a channel with “NICE (Non-Intrusive Channel Quality
Estimation)” [7], that is a method in which ED is implanted in
every slot rather than allocating an ED to an empty slot by
improving the ATSCH [7]; ITSCH[1], which learns the
frequency energy level obtained in advance using the NICE
technique taken from ETSCH with DNN (Deep Neural
Network) and applies it to channel selection; Adaptive
Channel Capacity Shaping(ACCS), a per-link solution that
selectively adjusts the number of transmission opportunities
based on physical channel quality[10]; a method of calculating
the time-varying characteristics of external interference using
dynamic MABB(Bernoulli compensation/penalty MAB)
method[11, 12]; etc. In the case of BlaQList to be described in
this paper, the algorithm is changed to Q-learning in MABO-
TSCH using MAB problems and the channel quality
evaluation applied in one Slotframe unit is improved in other
studies to be applied in each slot unit for precise operation.

A. TSCH(Time-Slotted Channel Hopping)

The TSCH technique introduced in IEEE 802.15.4[2] is a
MAC layer communication technique that improves the
reliability of communication and is intended for use in the IoT
domain through a combination of a Slotframe in the time
domain and a channel in the frequency domain. The channel
consists of up to 16 channels, and in the case of Slots, it can be
declared and used as necessary, but as the total Slotframe
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length increases, the communication schedule may have a
longer term. In this paper, we design to use 16 channels and 31
slots. ("Figure 1", allocating 10 ms per slot, the Slotframe is
310 ms.) The default TSCH can be channel (CH) identified by
(1) based on Absolute Sequence Number (ASN) and a
predetermined Channel Offset and can now be slot estimated
based on Slotframe Length. HSL stands for TSCH's Hopping
Sequence List. This list is the best channel list that will be
changed according to the Blacklist reflecting the channel
quality.

Slot = [ (ASN)mod(SlotFrame length) |

CH = HSL[(ASN + CHogs ) mod | HSL| | 0

B. QO-Learning

Q-learning, a type of reinforcement learning, is a method of
reinforcing actions corresponding to actions and states by
identifying the state derived from the action performed by the
agent between the environment and the agent and updating the
Q-table with reward. (“Fig. 2”, in this paper, Environment=slot,
Agent=node, Action=Channel Select.) The basic form of Q-
table is “Fig. 3” and the basic formula is (2).

Qsp, ar) < Qlsy,

ap) +a(resq +y ﬂ{“'?Aﬁ(’ér“)Q(S{ﬂ- ary1) — Qs ar))

a:learning rate,0 < a < 1
y: discount factor,0 <y < 1
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Fig. 1 Time-Slotted Channel Hopping, TSCH Schedule table
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Fig. 3 Basic Q-table

Fig. 4 Flow Chart

III. PROPOSED ALGORITHM

For TSCH Network Quality and Reliability, this paper
proposes a Blacklist based on reinforcement learning. This
algorithm consists of three stages, and HSL is distributed from
coordinator to child node after each Reward calculation, Q-
table update, and Blacklist sharing. "Fig. 4" is Flow Chart for
this algorithm. Briefly explaining the Flow chart, the sensor
data collected from the child node that has completed
synchronization is transmitted. When sensor data is received
from the parent node, compensation r is calculated based on
PDR and RSSI and Q is updated. After that, according to the -
greedy strategy, a channel according to Random or Max Q is
selected, and the updated value of the blacklist is included in
the ACK and then sent. Then, the channel is applied by the
Parent Node itself. In case of failure to receive Sensor Data by
the Parent Node, rescheduling is initiated in case of Time Out,
otherwise, it continuously waits for the reception. When ACK
is received by the child node, the channel is updated with the
newly received blacklist and the sensor communication begins
again. If the child node fails to receive the ACK, rescheduling
is performed if it is Time Out, and if not, it continuously waits
for the reception.

A. Reward Calculation

Reward is an important value for fitting in reinforcement
learning, and a certain and accurate value must be selected. In
the case of this paper, since the communication model is
targeted, it was decided that it is correct to use the
communication success/failure as an indicator of learning. If
the communication success is quantified, the Packet Delivery
Ratio (PDR) is indeed a quantitative representation, so it has
been specified as an indicator value for the reward. By default,



the value of reward starts at 90. This figure is determined

because good communication Dbasically guarantees a
communication success rate of more than 90%. Reward
formula consisting of the above premise (3).

Tey1 = PDR X 1y, o =90 3)

B. Update Q-table

The basic Q value equation (2) has a discount factor, so it
fixes the Q-table after a period and fixes the performance after
learning is finished. It is considered zero and designed to
continuously respond. The learning rate was given 0.2 which is
commonly used. In Equation (4), the Q-table derived from
Slotframe and Channel is the Blacklist “Fig. 5” to be used in
this paper.

Q(st, ar) < Q(se, ar) +a(rerr —Q(st, ar)) @)

C. Blacklist Advertising

Since the communication bandwidth is too large to use the
Blacklist "Fig. 5", created by the Coordinator for Downstream.
So only the channel quality list corresponding to the current
slot is extracted through (1), and the channel corresponding to
the arbitrarily set PDR 95% Threshold is applied to HSL and
advertised. Evaluation to verify the BlaQLisT technique, an
experiment was conducted using the Cooja simulator [8] of
Contiki-NG, the latest version of Contiki OS.

D. Experiment

In this experiment, to exclude performance change through
slot hopping and induce channel contention, the limit was
applied to one slot shared for Sync and one unicast for data
communication. The experiment proceeds to check the
performance of each of the three topology cases. First, Square
Grid Type where each node is connected one-to-one; Second,
Ellipse Type, in which nodes are symmetrically arranged and
composed of multi-hop; Third, Asymmetry Grid Type, which
is asymmetrically arranged, and multi-hop and multi-path are
created. There are four evaluation factors as performance
indicators. The number of RPL switches to check PAR (Packet
Acknowledgment Ratio) and link quality. Charge current for
end-to-end PDR (Packet Delivery Ratio) energy consumption
measurement to verify final communication quality. The
experimental conditions are as follows.
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Fig. 5 Blacklisted Q-table (BlaQLisT)
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Fig. 6 Square Grid Type Topology

Fig. 7 Ellipse Type Topology
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Fig. 8 Asymmetry Grid Type Topology

Simulator: Contiki-NG Cooja

Node (Radio CPU cc2650): 9 EA
Channel: 16 ch

Slotframe: 31 slots

Simulation Time: 1 hour

Routing: RPL [9]

Topology: “Fig. 6”, “Fig. 77, “Fig. 8”

Using slot: 2 slot (1 shared, 1 unicast)

E. PAR(Packet Acknowledgement Ratio)

It is calculated by comparing the Acknowledgment Counts
and Tx Counts used to maintain the communication link (5).
According to the experiment, the performance was improved
by 6.27%, 35.56%, and 36.78%, respectively“Fig. 9”. In terms
of link quality, it can be said that the performance is at least
similar to ACS and the maximum result shows considerable
performance improvement.

PAR = (100 X parent packet Ack) + parent packet tx )
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F. RPL Switch Counts

RPL [9] is a method of constructing a route by forming a
DoDAG as a communication routing technique. In this paper,
we verify how consistent the DoDAG of Standard RPL
Routing is to verify that it is optimized for the communication
environment. That is, the number of RPL Parent ID changes is
measured and the smaller the number, the better the
performance is judged. As a result of the experiment, RPL
Parent fluctuated 8.5 times less, 0.8 more times, and 8 more
times, respectively “Fig. 10”. However, to reflect the overall
result, as shown in “Fig. 97, there is a node with a problem in
the formation of RPL itself, making it difficult to use the ACS
side result as it is. Accordingly, if we consider only the Square
Grid Type, which has no problem in RPL formation, it can be
judged that the performance has been improved.
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G. PDR(Packet Delivery Ratio)

PDR is the most important indicator in this experiment and
refers to the data packet transmission success rate and is
defined as Data Rx Count compared to Data Sequence Number
(6). Numerically, this indicator shows a big difference with an
average improvement of 3.33%, 8.34%, and 22.58%,
respectively. In addition, if you look at the difference in PDR
between the minimum and maximum values in "Fig. 11", it is
judged that the quality retention is excellent, even apart from
the overall average quality.

PDR = (100 X packet Delivered) + Total packet ©
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H. Current Charge

In Cooja Simulator, the estimated current consumption for
the CC2650 is defined. By multiplying and summing the time
per sequence and the estimated current consumption, it is
possible to estimate the total current for each node (7). We
improved energy consumption by 8.7%, 6% and 39.6%
respectively “Fig. 12”.

Current Charge = (T, Time X T, Current)
+(Ry Time X R, Current)
+(CPU,, Time x CPU,, Current)
+(CPUgjeep Time X CPUgeey, Current)

+(CPUgeep Time X CPUgeep Current)
T, Current = 9.1mA4,
R, Current = 5.9 mA,
CPU,, Current = 0.061 mA,
CPUgeep Current = 1.335mA,
CPU gpp Current = 0.01 mA

@)
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IV. CONCLUSION

In this work, we propose a new type of frequency channel
hopping using Q-learning, a form of reinforcement learning.
The Q-table of Q-learning is matched with TSCH's Schedule
table, which consists of Slotframes and channels, so unlike
many existing methods, it is designed to train channels for each
slot to calculate more fitted results. It is simple and effective
because it implements fitting only with the result of
communication (PDR) using the principle of observing the
result, which is the basic characteristic of reinforcement
learning, and training accordingly. Compared to the Adaptive
Channel Selection technique using RSSI metric, the average
performance improvement of PAR 6~36% and PDR 3~22%
were improved, although it is limited to normal cases, the
number of RPL switches was reduced by 6%, and consistent
PDR distribution was verified to prove more stable
communication. In addition, compared to the comparison
system, energy consumption was improved, and the potential



was confirmed in terms of economic feasibility by reducing
close to 40% under a specific topology.

In future research, we plan to add Q-table scale algorithms
to be used in actual testbeds, design them to adapt to changes
such as Slotframes, and apply DQN, an advanced form of
reinforcement learning, to functions.
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