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Abstract—Spatial Reuse (SR) is one of the spectrum effi-
ciency mechanisms in 802.11ax, which has the goal to maximize
the parallel transmission in wireless networks. Currently, SR
adopts static Overlapping Basic Service Set with Packet Detect
(OBSS/PD) threshold with BSS Color to adjust the sensitivity
threshold. However, adjusting the proper threshold is challenging
since an improper adjustment can cause a hidden/exposed node
problem, thereby decreasing the throughput. This problem is
worsened in a dynamic wireless environment where nodes move
in unpredictable ways. This makes it more difficult for a static
approach to determine its optimal configuration. To address this
problem, we proposed a dynamic OBSS/PD threshold adjustment
algorithm based on Multi-Armed Bandits. Furthermore, we
introduce critical movement detection to identify when a node
moves into or out of an interference zone. This detection is
required to assist the MAB algorithm in generating a new distri-
bution suitable for the new environment. Our simulation results
show that a dynamic adaptive agent with critical movement
detection can increase simultaneous transmission and achieve
higher throughput in a dynamic STA mobility scenario.

Index Terms—critical detection, IEEE 802.11ax, interference,
multi armed bandits, OBSS/PD, spatial reuse

I. INTRODUCTION

The rapid development in Wireless Local Area Networks
(WLANs) has given a lot of impacts and significant im-
provement, especially for the dense network environments.
One of the features introduced in 802.11ax is to enhance
spatial and resource sharing. There are Orthogonal Frequency-
Division Multiple-Access (OFDMA), Multi-User Multiple-
Input-Multiple-Output (MU-MIMO), Spatial Reuse (SR), Tar-
get Wake Time (TWT), and Channel Bonding. In this paper,
we only focused to improve the Spatial Reuse mechanism
that has a goal to maximize parallel transmission in wire-
less networks. Currently, in the 802.11ax amendment, Spatial
Reuse adopts two mechanisms, Overlapping Basic Service Set
using Packet Detect (OBSS/PD) threshold with BSS Color and
Spatial Reuse Parameter (SRP) [1]. The OBSS/PD threshold is
used to ignore inter-BSS transmission, therefore it can increase
the simultaneous transmission among OBSSs.

However, we cannot achieve the advantages of the
OBSS/PD threshold if the threshold is not properly adjusted.
The first concern is that of hidden and exposed node problems,
which will typically occur if we only use static OBSS/PD
threshold adjustment. To prevent this problem, we need an
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agent algorithm that dynamically adjusts the OBSS/PD thresh-
old based on the environment. The second problem is the
mobility of station (STA). This will happen in real-world
scenarios, such as when we watch YouTube, make video calls,
or stream while walking, which indicates that we have mobility
as a STA that the Access Point (AP) cannot avoid. As a
result, the AP has to be cognitive in order to adapt to its
environments. If the AP can obtain information regarding the
STA’s mobility, the AP can provide appropriate treatment in
dynamic scenarios in which the STA is continuously moving.

Currently, Reinforcement Learning (RL) is a subset of
Machine Learning (ML) that is widely used to solve problems
related to wireless networks environment, as RL’s function is
to adapt to the environment through defined actions. The first
contribution in this paper is that we rely on Multi-Armed Ban-
dits (MAB) that explicitly define the action based on arms in
the agent and learn from the scenario. The output from MAB is
a distribution that indicates the value that is closest to the true
optimal reward in a given environment. As a consequence,
if the environment changes, the current distribution may no
longer be compatible with the new environment.

Therefore, our second contribution is to introduce a critical
movement detection mechanism that can trigger the agent to
reset the previous distribution value and re-learn based on
the changed scenario. However, when we accommodate the
movement detection, we have to disable the agent’s ability
to learn, as threshold learning has the potential to affect the
width of the interference area. Hence, our third contribution is
a mode switching algorithm based on MAB convergence that
determines when the agent has sufficient information about the
current situation. As a result, our agent is completely adaptable
to its changing environment.

II. RELATED WORKS

Several approaches have been performed to adjust OBSS/PD
threshold. Y. Kim [2] use random value to increase or de-
crease the threshold based on previous information from the
successful flag. However, there is no margin or standard for
the minimal or maximal random value. Selinis [3] implement
Control OBSS/PD Threshold (COST) for adjusting OBSS/PD
threshold based on the interference level and Received Signal
Strength Indicator (RSSI) from the associated recipient. Ropi-
tault [4] with a different approach claimed that his work, RSSI
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to OBSS/PD Threshold (RTOT), is the first algorithm to adjust
OBSS/PD threshold. They use the beacon RSSI to dynamically
compute the Carrier Sense Threshold (CST). It achieves 80%
throughput higher than legacy but also 30% lower than legacy
in several cases.

As mentioned in [2], [3], and [4], the authors introduce
optimization based on heuristic algorithm. However, the op-
timization approach requires a lot of information which is
hard to implement in the real environment such as location
and the interference level of other APs. The optimization
approach also needs to know the model well that means we
should get the perfect knowledge about the model. If the
model is inappropriate, then the optimization approach will
be inaccurate as well. Unlike the optimization or heuristic
approach, RL is a data-driven approach. It can learn from its
environment and give a better solution for a problem where
the model is unknown. Hence, RL will automatically adjust
its solution, while the optimization approach may not adapt to
environmental change because of its linear solution. Elif [10]
also did the AI-Driven approach for CST adjustment using the
number of collisions as one of their metrics evaluation. How-
ever, according to our best knowledge, it will be challenging
to implement the solution in the real environment.

MAB in SR already perform in [5], [6], [7] to adjust
Transmission Power Control (TPC) and CST. They use a static
scenario to do the simulation. However, in the real environ-
ment, the location of the STAs might change continuously
due to mobility. The STA mobility itself can be a problem
if the STA moves towards high interference area or critical
zone. Since it will decrease simultaneous transmission, we
propose an algorithm to sequentially check whether the STA is
moving into a critical zone or moving out from a critical zone.
In addition, in paper [4] and [6], the author states that they
haven’t tried their approach in a dynamic environment because
they know that the MAB algorithm will require additional
information to adapt and provide a new distribution when the
environment changes.

III. PROPOSED METHOD

A. OBSS/PD Adjustment based MAB

We select MAB as our OBSS/PD adjustment algorithm
since the WLAN environment is stateless. MAB is a Rein-
forcement Learning algorithm that learns based on predefined
actions called arms and receives rewards directly from the
environment without knowledge of input or output state.
There are three types of algorithm of MAB that most used
by researchers [7], [8], [9]. Those types of algorithms are
described as below:

1) Epsilon-Greedy (ε-Greedy): choose an action based on
the probability of epsilon. If the random probability is greater
than epsilon, then it will exploit the action. If the random
probability is lower than epsilon, it will explore the action.
Since it is simple to implement, ε-Greedy become mostly used
MAB algorithm to solve many problems.

2) Upper Confidence Bound (UCB): choose an action
based on the confidence level of each arm. This algorithm
was developed to address the drawbacks of ε-Greedy, which
is entirely based on random probability and epsilon values.
The UCB maintains a confidence level for each arm in order
to determine the frequency with which the arms are visited.
The more frequently the arm is visited, the more assured it is.
The arm that is less frequently visited will attempt to return at
a later time. It is to ensure that the most exploited arm remains
the proper arm over time. Or, during exploration, we discover
that there is a more suitable arm than the one that has been
most exploited over time.

3) Thompson Sampling (TS): choose an action based on
the posterior sampling. This algorithm uses sampling from
the posterior value and standard deviation. The results of the
values taken from the sampling will be compared with each
other. The highest sampling value determines the arms that will
be selected in the next time step. This algorithm is also con-
sidered quite successful in terms of speed with UCB regarding
the results to get the best arm to be exploited. Despite this,
numerous researchers who used these two algorithms found
that, depending on their issue scenarios, TS or UCB showed
good results.

Later we will compare the results of each MAB algorithm,
then we will use one of the algorithms that are considered the
best to be combined with the next method.

B. Critical Movement Detection

Figure 1. Type of movement

In a WLAN environment, there are two types of areas:
critical zones and safe zones. A critical zone is an area of
overlapping BSS that can cause a collision to the node that
is located inside of that location. The safe zone is an area of
WLAN scenario that which the node is out of the overlapping
BSS or interference area depending on the transmission range
from each BSS. The idea is come from the drawbacks of paper
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[2] - [7] that does not consider the mobility of STAs. Since
WLAN environments typically contain STAs that move from
point to point, depending only on the MAB will result in poor
performance as the STA’s location changes. Because MAB
will generate a distribution for scenarios that do not change.

As a result, changes to the scenario should also affect
the MAB distribution. The proper action chosen prior to
movement may not be suitable for the scenario presented
after the STA has moved. However, not all movements have
been considered critical movements. There are four conditions
based on the STA’s movement. In Fig. 1, condition 1 and 2
means that STA moving in the same area (remain safe zone
or remain critical zone), while condition 3 and 4 means that
STA moving in or out of the different areas (safe to critical
or vice-versa).

Mobility becomes an issue when the STA moves to an area
where data transmission is challenging or when it goes into
a critical zone. Because when we are looking for the optimal
OBSS/PD threshold in condition 1 and 2 in Fig. 1, the agent
can easily learn to obtain the true optimal reward. However,
in condition 3 and 4, each agent’s learning will be dependent
on the learning of the other agent, which means that learning
will be tricky. Additionally, for condition 3 and 4, resetting the
agent could be the optimal strategy because we will ignore the
previous scenario and re-learn the new scenario, which will
converge faster than learning with the previous value. As a
result, we developed a critical movement detection algorithm
that detects when a STA enters or exits a critical zone.

C. Mode Switching based on MAB Convergence

Figure 2. Mode Switching based on MAB Convergence

Mode switching based on MAB Convergence is a technique
for stopping the Agent from learning when the result was
considered as a convergence enough. This is performed not
only for efficiency but also to avoid the detector from picking
up the improper movement detection. As far as we know, MAB
will always learn how to get the best OBSS/PD threshold,
however, if this is performed continuously, the OBSS interfer-
ence area or critical zone will change as well. As an outcome,
critical movement detection will only be performed if the
agent’s state has sufficiently converged. This mechanism has

Figure 3. Algorithm Flowchart

two advantages: first, the agent does not have to learn again if
it is considered convergence, and it minimizes detection errors.

The flow of the mode switching algorithm is shown in
Fig. 2. The MAB algorithm is run on AP while the critical
detection algorithm is run on STA. The change from the MAB
algorithm to the critical detection algorithm occurs after the
convergence of the MAB algorithm. While the change from
the critical detection algorithm to the MAB algorithm occurs
after a critical location change in the STA.

Table I
TABLE OF OPTIMAL REWARD IN 100 TIME STEPS (CONVERGENCE

THRESHOLD 0.4)

Scenario-1 Scenario-2
Arm Percentage of Arm AVG throughput Percentage of Arm AVG throughput

(dBm) chosen (%) per arms (Mbps) chosen (%) per arms (Mbps)
BSS1 BSS2 BSS1 BSS2 BSS1 BSS2 BSS1 BSS2

-62 0.06 0.06 2.52 1.84 0.03 0.06 3.12 1.84
-67 0.02 0.06 0.84 2.08 0.03 0.04 0 0
-72 0.36 0.78 3.67 3.97 0.29 0.08 3.28 2.16
-77 0.44 0.06 3.92 3.8 0.07 0.12 3.26 2.88
-82 0.12 0.04 3.72 3.00 0.59 0.70 3.29 3.11

Here, a threshold value is required to determine whether
the agent is considered to be convergent or not. We make an
observation about the total probability that the arm with the
highest reward is chosen in a short time step. We discover
that when the threshold is set to 0.4, the best arm can be
selected immediately, as illustrated in Table I for two scenarios
illustrated in Fig. 4. However, we will use a value close to
ideal in the experiment, specifically 0.8, because the maximum
probability we get for time step 50th is 0.78. We want to
rapidly determine the optimal threshold so that the agent does
not require a long period of time to be considered convergent.

D. Algorithm Design

Fig. 3 depicts the set of algorithms we proposed. We begin
with Simulink and Convergence Checking by initializing the
WLAN environment scenario, followed by running the agent
in MATLAB. The WLAN simulation will generate a reward
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and determine whether the agent’s reward value and arm
information have converged using OBSS/PD adjustment. If
not, the agent will automatically update the reward and move
on to the next time step to run the agent and receive action
from the OBSS/PD Adjustment process. When convergence is
reached, the agent turns off the OBSS/PD threshold adjustment
algorithm and activates critical movement detection. This
means that the agent no longer needs to adjust the threshold
to ensure that the critical zone remains constant at the next
time step.

In the Critical Movement Detection process, the STA will
receive and process the signal from the inter-BSS transmission.
Using a decision tree algorithm, STA will determine whether
it is significantly moved or not. It starts when the STA detects
an inter-BSS signal. Then it determines whether the previous
inter-BSS signal was greater than the OBSS/PD threshold or
not. If yes, it means that the STA was in the critical zone in
the previous state. Otherwise, the STA is in a safe zone. After
that, it will determine whether the current inter-BSS signal
received by STA is greater than the OBSS/PD threshold. If
yes, it will compare the current state to the previous state.

There are four primary evaluations based on comparing
previous and current inter-BSS receiving signal. These include
entry into a critical zone, exit from a critical zone, remaining
safe, and remaining critical. As mentioned in the previous
chapter, the critical condition in this section is the detection
of critical zone entry and exit. And whenever the STA detects
either of those two conditions, the STA will issue a ”reset”
command to the agent. The agent in AP will reset the
distribution and restart the MAB algorithm if it receives a
”reset” command from the STA on the same BSS.

The process will be repeated until the STA achieves con-
vergence and detects significant movement. Convergence time
will be short, as the agent will always have data to send to
the STA in the case of streaming, video calls, and real-time
high data transmission. A 0.1-second timestep that contains
sufficient information from the bulk data transmission accel-
erates the algorithm’s convergence. This will be demonstrated
through experimental results in the following section.

Figure 4. Mobility scenario (a) Scenario-1; (b) Scenario-2

IV. EXPERIMENTS AND RESULTS

To run WLAN scenario simulations, we use MATLAB
R2021b and Python 3.9, which are compatible with the
MATLAB Simulink version. The scenario that we created
is scenario-1, as illustrated in Fig. 4(a), and the STA1 will
enter the critical zone, as illustrated in Fig. 4(b). The AP
may have a different OBSS/PD threshold for each STA,
as the SR mechanism operates only when AP has data to
transmit to the STA. Therefore, in this paper, we consider
only the scenario in which each BSS has a single STA. The
distance between each AP-STA is 72 m, which is sufficient
to cover the STA of its BSS. The OBSS/PD threshold is
highly correlated with Transmission Power (TxP) and Receiver
Signal Sensitivity Range (RSSI). According to the paper [4],
we can calculate the TxP based on OBSS/PD threshold that we
choose. This algorithm is to minimize the interference range
for another BSS. The algorithm (1) demonstrates a correlation
between TxP and OBSS/PD threshold. Additionally, in these
experiments, we employ the Free Space Path Loss model.

TxP = OBSS PDmin + TxPref −OBSS PD (1)

Table II
TABLE OF OPTIMAL REWARD

OBSS/PD Scenario-1 Scenario-2
threshold Throughput Mean Throughput Mean

(dBm) (Mbps) (Mbps) (Mbps) (Mbps)
BSS1 BSS2 BSS1 BSS2 BSS1 BSS2
-62 -62 5.64 5.52 5.58 0 5.52 2.76
-62 -67 2.40 6.24 4.32 0 6.24 3.12
-62 -72 0 6.24 3.12 0 6.24 3.12
-62 -77 0 6.24 3.12 0 6.24 3.12
-62 -82 0 6.24 3.12 0 6.24 3.12
-67 -62 6.24 0 3.12 3.6 0 1.80
-67 -67 6.20 5.40 5.80 0 5.76 2.88
-67 -72 1.32 6.24 3.78 0 6.24 3.12
-67 -77 0 6.24 3.12 0 6.24 3.12
-67 -82 0 6.24 3.12 0 6.24 3.12
-72 -62 6.24 0 3.12 3.72 0 1.86
-72 -67 6.24 0 3.12 3.96 0.12 2.04
-72 -72 5.88 5.76 5.82 0 5.28 2.64
-72 -77 3.60 5.40 4.50 0 5.40 2.70
-72 -82 3.12 2.88 3.00 3.12 3.12 3.12
-77 -62 6.24 0 3.12 3.72 0 1.86
-77 -67 6.24 0 3.12 3.72 0 1.86
-77 -72 5.64 3.36 4.50 3.24 3.36 3.30
-77 -77 3.36 2.88 3.12 3.12 3.12 3.12
-77 -82 3.36 2.88 3.12 3.12 3.12 3.12
-82 -62 6.24 0 3.12 3.72 0 1.86
-82 -67 6.24 0 3.12 3.72 0 1.86
-82 -72 3.84 2.16 3.00 3.84 2.16 3.00
-82 -77 3.36 2.88 3.12 3.36 2.88 3.12
-82 -82 3.36 2.88 3.12 3.12 3.12 3.12

A. The Agent with Optimal Reward

To find out whether the results of our experiment have
reached the optimal reward, we have done collecting distri-
bution data for each selected OBSS/PD threshold. The results
of the combined OBSS/PD threshold for the two BSS are
attached in Table II. For example, if BSS1 selects -62 dBm
and BSS2 selects -82 dBm for Scenario-1 in Fig. 4, BSS1’s
throughput will be 0 Mbps and BSS’s will be 6.24 Mbps. As
shown, BSS2’s transmission range covers the whole of the
BSS1 node. In that case, BSS1 will experience an exposed
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Figure 5. Performance Evaluation Single-Agent using MAB algorithm

node problem in AP1 and a hidden node problem in STA1, as
STA1 will simultaneously receive both transmissions.

As a result, it is shown that the optimal OBSS/PD threshold
for obtaining the true optimal reward should be both BSS
with -72 dBm in Scenario-1 and BSS1 and BSS2 with -77
dBm and -72 dBm in Scenario-2, respectively. In this section,
before doing dynamic multi-agent, we tested how dynamic
single-agent works (on BSS1 only) to ensure that the agent
with the specified MAB can select the OBSS/PD threshold
properly. Later, we will compare the results to determine which
algorithm converges to the optimal threshold the fastest. With
Scenario-1, we set a static OBSS/PD threshold of -72 dBm on
BSS2 and observe how BSS1 chooses the proper OBSS/PD
threshold for it.

The results in Fig. 5 a) indicate that all algorithms are capa-
ble of achieving convergence, with BSS1 selecting OBSS/PD
-72 dBm as the best case for this scenario. However, because
ε-Greedy’s performance is inferior to that of UCB and Thomp-
son, we will compare the throughput in each time step only
to those two algorithms. Then in Fig. 5 b), we discovered that
Thompson Sampling converges faster than UCB. As a result,
we choose Thompson Sampling as the algorithm for adjusting
the OBSS/PD thresholds in Agent. This also demonstrates that
a single agent is capable of finding the optimal reward when
converged in less than 100-time steps.

Figure 6. Performance Evaluation Multi-Agent without and with Distribution
Reset

To demonstrate that the Agent’s Reset has an effect on
threshold selection, we create a random scenario in which
STA moves from a random point in the safe zone to a random
point in the critical zone at time step 500. Furthermore, we

will manually reset the agent to identify the impact of a correct
reset in threshold learning. This is to illustrate that Agents with
MAB do require a new distribution upon a significant change
in location. And the results are shown in Fig. 6, where the
agent with distribution reset during critical mobility achieves
higher throughput and convergence than the agent without
distribution reset.

B. The Agent with Auto-Reset Detection

Figure 7. Combining agent and auto-reset detection results in a new
convergence problem.

This section outlines the result of the Scenario in Fig. 4
when multi-agent learning and critical movement detection
are used to reset the learning process. This is quite intriguing
to observe because, as explained previously, the critical zone
will always vary depending on the transmission range of
each BSS. As a result, when the two proposed methods
are combined, they will be highly sensitive. And the third
experiment illustrated in Fig. 7 illustrates that this is truly
the case, as the throughput at each time step becomes highly
unstable and can never converge. This is because the MAB
agent learns every time it detects movement into or out of
the critical zone by adjusting the OBSS/PD threshold. As a
result, the critical zone will vary with the OBSS/PD threshold
selected at each time step.

As a result, we proposed a mode switching algorithm
to address the issue that has occurred in the process of
combining agent and critical movement detection. The goal of
this algorithm is to switch the agent and detection processes
so that they do not run simultaneously. This fourth experiment
is designed to ensure that the OBSS/PD threshold adjustment
and critical movement detection run as efficiently as possible.
Where OBSS/PD threshold adjustment occurs when the agent
does not have sufficient information about the environment and
terminates when the agent converges on the best appropriate
threshold. Additionally, critical movement detection will occur
only after the agent has converged and notified STA of their
purpose to detect their own mobility actively.

We run the scenario with 500-time steps and the results are
given in Fig. 8 which compares the effect of a 40% and an
80% convergence threshold on the agent’s convergence value.
The result shows that both BSS chose an OBSS/PD threshold
of -72 dBm as their convergence value in Scenario-1, with a
throughput of 5.88 Mbps for BSS1 and 5.76 Mbps for BSS2.
It is coherent with Scenario-1’s optimal reward, as specified
in Table II, in that the proving agent can achieve a mean
throughput of 5.82 Mbps.
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Figure 8. Performance Evaluation (Throughput) of mode switching algorithm
based on MAB convergence with (a) convergence threshold = 40%, (b)
convergence threshold = 80%

Figure 9. Performance Evaluation (Average Cumulative Throughput) of mode
switching algorithm based on MAB convergence with convergence threshold
40% and 80%

However, in Scenario-2, where the agent should choose -77
and -72 dBm for BSS1 and BSS2 based on Table II, the agent
fails to provide it, as illustrated in Fig. 8. Each agent choose
-82 dBm OBSS/PD threshold with a throughput of 3.12 Mbps.
Since this scenario contains a critical zone in which STA1 is
located between AP1 and AP2, within the transmission range
of 1 dBm, it can not do parallel transmission. Here, we want
to emphasize that the MAB algorithm itself still has flaws
as a result of each agent’s selfish selection. However, when
the MAB results are combined with our proposed algorithm,
the result is still superior to the static OBSS/PD threshold
in a static scenario. As we can see, the agent is successfully
maximizing throughput, as the difference between the mean
throughput of Scenario-2 and the optimal reward of 3.30 Mbps
is only 0.17 Mbps.

However, as illustrated in Fig. 9, the throughput of the two
agents with the convergence threshold is 80% greater than the

throughput of the two agents with a convergence threshold is
40%. This is because, as illustrated in Fig. 8, the agent made an
error in the 50th time step by selecting the incorrect arm after
determining that it had already reached the 40% threshold.
Right after the agent chooses the arm, the more confident
the agent’s arms distribution is, the more it recognizes that
choosing that arm was a mistake. Thus, the agent will explore
again in the next time step until it reaches the 40% threshold.
As a result, the optimal value for indicating that the agent has
already converged is 80% of the convergence threshold.

V. CONCLUSION

In this paper, we evaluate that using a dynamic adaptive
agent with critical movement detection will solve the problem
where we can maximize the OBSS/PD threshold adjustment
for dynamic scenarios or environments. Furthermore, the re-
sults show that this algorithm is capable of generating optimal
rewards that maximize the benefits of spatial reuse in a
WLAN environment. Because even in challenging situations
where parallel transmission is not possible, this algorithm can
maximize throughput.

In order to test this algorithm in various combinations of
scenarios, we leave it to future work. For example, changing
the density of each BSS and the location of the multiple
critical STAs. Furthermore, we can determine the possibility
of optimizing the mode switching algorithm. In addition, an-
other fascinating approach could be used in combination with
this algorithm, such as optimizing resource allocation using
information gathered from the STA’s movement detection.
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