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Abstract—In recent years, traffic classification (TC) represents
an important issue in managing and optimizing the wireless net-
work capacity. With the growth of numerous wireless technolo-
gies, it has become more challenging to develop an efficient TC
system. Deep learning (DL) based architecture provides feasible
solution in today’s complex and modern scenarios where even
traffic is encrypted. Traditional TC using DL based architecture
exploits the byte/protocol representation of the packet at the link
layer (L2) or above on the same radio network domain. It limits
the efficacy of the TC systems in wireless networks using shared
spectrum. Therefore, designing TC based on spectrum band
generated physical layer (L.1) packet using DL based architecture
has received significant research attention more recently. In this
article, we propose a deep hybrid neural network that incorpo-
rates a deep convolutional network with a recurrent network to
classify traffic at layer 7 (L7) (e.g., application characterization
and application identification) of the radio network stack using
L1 packets. The proposed network can capture spatio-temporal
feature correlation and use multiscale feature map to avoid
vanishing gradient problem. From the simulation, it is seen
that the proposed classifier can achieve 98.25% accuracy and
86.28 % accuracy for the task of application characterization and
application detection, respectively. Simulation results unveil that
our proposed network is very promising for classifying traffic at
L7 using the L1 packet.

Index Terms—Network traffic, radio spectrum, hybrid deep
neural network, CNN, RNN.

I. INTRODUCTION

With the rapid evolution of network traffic diversity, auto-
matic traffic recognition and classification has become one of
the indispensable task of network monitoring service (NMS).
Automatic traffic analysis can provide insight to network
operators specific security and quality of services (QoS) for
enforcing on the analyzed traffic [1]. At present, tremendous
growth of complementary wireless technologies is playing a
leading role to produce huge amount of traffic offering access
to millions of users and machines and hence understanding
the network traffic pattern has turned into more burdensome.
In addition, encryption of the traffic adds more difficulty in
achieving high quality traffic classification (TC) along with
securing high QoS to the users [2].

Traditional approaches for traffic detection mainly includes
Port Number Based method and the Data Packet Inspection
(DPI) Based method collecting information from the NMS
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which shows very poor performance in complex and mod-
ern traffic environment [3]. Deep learning (DL) architectures
including convolutional neural network (CNN) and recurrent
neural network (RNN) has provided feasible solution with
outstanding achievements in wide-ranging fields from natural
language processing and computer vision to communication
and bio informatics. More recently, DL architecture is poten-
tially studied and applied for various purpose in the network
optimization and management area that includes, network
state prediction, anomaly detection, cyber-attack detection, and
TC. These DL architectures can significantly outperform the
traditional methods for traffic analysis task.

Focusing on TC, several approaches based on DL have been
designed and studied using Link Layer (L2) or above layers’
packet flows. An end-to-end TC algorithm based on CNNs
that converts raw traffic into images is proposed in [4] and
[5]. The authors of [4] have used the several packets of the
traffic flows to extract time series features and exploits them to
identify the application or protocol type generated by them. A
comparison of performance of the proposed Seq2Img model
against four popular classifiers such as Supported Vector
Machine (SVM), Multi-Layer Perceptron (MLP), Naive Bayes
(NB), and Decision Tree (DT) are shown in [4]. Experimental
results show that their proposed Seq2Img is almost 12% more
accurate than other models when classifying applications.
However, training such DL based network requires a large
labeled dataset. A semi-supervised approach that pre-trains a
1DCNN model on an unlabeled dataset to infer traffic patterns
is proposed in [6] to overcome the problem of data labeling. In
their experiment, the used dataset contains time-series features
of a fixed number of sampled packets from traffic flows. In
[7], a comparative analysis among DI based classifiers, e.g. a
Stacked Denoising Auto Encoder (SDAE), a CNN, and a Long
Short Term Memory (LSTM) and machine learning based
classifier, e.g. Random Forest (RF) is presented. This study
shows that DI model can learn more insightful features and
perform over 20% better than RF in terms of accuracy. A
combination of two CNN layers followed by one LSTM layer
with two fully connected layers at the end was proposed in
[8]. Time series features are extracted from the headers of the
first 20 packets exchanged during the flow lifetime and used
to train the proposed network. To ensure data confidentiality
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Fig. 1. architecture of the Proposed classifier.

users identity (MAC/IP addresses) was removed from the data
packet. However, results suggest that the combination obtained
the best results in terms of accuracy and F1-score. Performance
of a semi-supervised model based on a Variational Auto
Encoder (VAE) is studied to traffic detection in [9]. The
authors exploits transformed image of data from the HTTP
sessions (requests and responses) to train the network. The
proposed VAE includes an MLP encoder and decoder as
feature extractor from that images in an unsupervised manner.

However, all these aforementioned studies have consid-
ered the traffic from same network domain and the traffic
data packet was taken from the L2 (or above). But, when
users shared the same radio spectrum, users’ traffic from
one wireless network domain can be negatively impacted
by users’ traffic transmissions from other wireless networks
which results in poor classification performances. Recently,
some researchers have started working on physical layer (L1
) packets to perform TC as a solution. The authors in [10]
investigated the performance of RNN network in classifying
the spectrum data. But, their achieved result is not satisfactory
compared to byte-based TC systems. In [11], the authors have
presented a traffic recognition approach directly from time-
frequency image of the radio spectrum. Their approach can
achieve an accuracy of > 96% on their generated data and
outperform state-of-the-art methods based on IP-packets with
DL. A novel framework to achieve TC at any layer on the radio
network stack has been developed in [12]. They compared the
performances of two spectrum-based DL-based classifiers, e.g.
a novel Convolutional Neural Network (CNN) and a Recurrent
Neural Networks (RNN) for traffic classification. But, both
of the classifiers are not suitable in terms of time cost and
computational memory.

In this paper, we proposed a cost-efficient hybrid deep
neural network combining recurrent neural network with CNN
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to perform TC at layer 7 (L7) (e.g., application identification
and application characterization) spectrum band generated L1
packet. Compared to the similar work in [12], the proposed
network is capable of extracting spatio-temporal features from
the in-phase and Quadrature (IQ) samples of L1 packet
data and exploit them to achieve high accuracy with less
parameters, less memory, faster execution of the training.
Besides, we have introduced skip connection in the network
to preserve residual information and prevent the vanishing
gradient problem. To the end of this paper, simulation results
have been demonstrated to unveils the efficacy of our proposed
network.

II. SPECTRUM BASED TRAFFIC CLASSIFICATION
METHODOLOGY

The problem of traffic recognition at L7 using spectrum
data from the L1 packet can be formulated as: given a
representation of the spectrum x e¢ X where X is set of
raw IQ samples, the goal of a traffic classifier is to predict
the class label of traffic at L7 taking = as input and inform
NMS for proceeding to analysis of the traffic flowing in
the physical medium. However, performing TC exploiting L1
packets is very arduous because of the heterogeneity (e.g.,
various modulation scheme or various packet length for the
the same payload). The overall procedures of TC comprises
several steps.

When traffic generators, i.e. use any software or any
applications on their wireless devices, they generate traffic
and transmits it to the gateway [12]. These generated traffic
includes a distinctive pattern at any radio stack level. Our
proposed DL based classifiers learn recognition of the traffic
of L7 capturing that pattern. After obtaining the raw spectrum
samples, the samples are normalized and grouped before being
fed to the DL model. The raw spectrum consists of IQ samples
which can be corrupted by noise and interference. Therefore,



filtering techniques are adopted to remove the effects of noise
and interference. Afterwards, the samples are zero padded for
short sequences and truncated for long sequence to normalize
the length of all L1 packets to a given fix value. To train
our proposed classifier, this task is very important. finally this
fixed length data sequences are used to train and optimize
the proposed architecture. Once, the proposed classifier are
optimized, then this classifier become ready to perform TC
at layer 7. At L7, the same classifier can perform two
types of classification with high accuracy. The first type of
classification task is coarse-grained task where the classifier
determine the type of application inside the transmitted packet
(e.g., audio or video). In contrast, the second type classification
task is fine-grained task where the goal of the classifier is to
discriminate between the actual applications generating the L7
traffic.

A. Network Architecture

The architecture of the proposed classifier is illustrated in
Fig. 1. The classifier comprises seven "Conv Block”, each
blocks is composed of 2D convolutional layers (conv) where
the convolution layers are all composed of 64 filters, with a
kernel size of 32 x 1 and the rectified linear unit (ReLu) acti-
vation function, a 2 x 2 maxpooling layer, which partly helps
to prevent overfitting and reduce the amount of parameters
and computation in the network. A dropout layer with drop
rate of 0.1 and also a batch normalization layer is inserted
after convolutional and maxpooling layers. A dropout layer
can prevent vanishing gradient problem in some scale and the
batch normalization helps to enhance the classifier training
speed through normalization of the layers inputs.

Followed by the CNN block, a RNN layer is inserted to
detect temporal changes within a given IQ sequence and to
reduce the spectral variance.The RNN can remember previ-
ous inputs using a cell mechanism. It allows our model to
create and recall a complex history of traffic pattern. More
specifically, we employed a GRU network (i.e., a special RNN
architecture), which has the ability to learn long-term depen-
dencies [13]. The GRU layer is constructed using 20 units. The
features extracted from sixth and seventh are concatenated to
generate input of the GRU layer.

The final part of the classifier is made up of a dense layer,
dropout layer, batch normalization layer, softmax layer, and
final dense layer. Theses layers are adept at mapping features
into a separable space, and are used in most CNN models
for classification tasks. The dense layer is made up of 1024
units with a ReLu activation function. The drop out rates of
the dropout layer is also 0.1. A final dense layer with -classes
number of neurons followed by a softmax layer to produce a
higher-order feature representation into the n classes of traffic
IQ samples.

However, the total parameter of the proposed classifier is
8.3 x 10° where the no. of trainable parameters are 8.27 x 10°.
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TABLE I
SAMPLE DISTRIBUTION PER CLASSIFICATION TASK.
Classification No. of | Classification No. of Total

type 1 samples type 2 samples | samples
Spotify 13822
Audio 39053 Tunein 10229
Gpodcast 15002

Youtube 16671 140665
Video 56253 Netflix 18268
Twitch 21314
No-app Type 45359 No-app 45359

B. Datasets Description

In this letter, we use a publicly available an open source
dataset that contains 802.11 standard-compliant L1 waveforms
[12]. The waveforms are generated by different 802.11 tech-
nologies (b, g, n), which results in different transmission
schemes such as Direct-Sequence Spread Spectrum (DSSS)
in 802.11b and Orthogonal Frequency Division Multiplexing
(OFDM) in 802.11g/n, different types of L2 frames (manage-
ment, control and data), and multiple MCS (modulations such
as Binary Phase Shift Keying (BPSK) and Complementary
Code Keying (CCK) for 802.11b and BPSK and Quadrature
Phase Shift Keying (QPSK), 16-Quadrature Amplitude Mod-
ulation (QAM), 64-QAM for 802.11g/n with coding rates of
172, 3/4, and 5/6 according to the standard and modulation
selected). Moreover, the payload carried by this L1 packets
(information at L2 and above) were generated using real traces
of L7 application running on a mobile device and connected
to a secured 802.11 Access Point (AP) with Wi-Fi Protected
Access (WPA)-2. Table I depicts the sample distribution for
each classification task. The dataset contains a total of 140665
L1 packets.

C. Implementation Details

To evaluate the performance of the proposed classifier, we
have splitted the whole datasets into training (80%), validation
or testing (20%) sets. All the training and testing programs
have been implemented in anaconda python 3.7 on a system
equipped with 3.80 GHz CPU, 256 GB RAM, and a single
NVIDIA Quadro RTX 6000 GPU. The proposed network
learning rate is set to be .0001 and the mini-batch size is set
as 64 during training. 100 iterations, i.e. epochs are used to
optimize the proposed classifier. Moreover, ”Adam” optimizer
is used to perform optimization of the network. In addition,
we have also scaled the data to the range of [—1,1] for
training the network. In order to evaluate performance of our
proposed classifier, we have taken four performance metrics,
(e.g., accuracy, precision, recall, and F1 score) are measured.
For a binary class problem, theses metrics of the classifier are
defined as,

Accuracy = (TP +TN)
Y = TP+ TN + FP + FN)
Precision — TP
recision = 7(TP T FP)
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Fig. 2. The training and validation accuracy plot of proposed classifier for
the TC task (a) application characterization (b) application identification.

TP

Recall = m

precision.recall

F1=2x

precision + recall

where, true positive, true negative, false positive, false negative
are abbreviated as TP, TN, FP, FN, respectively. In the multi-
class cases, several averaging techniques are used to extend
these binary metrics to multi-class. In our experiment, bi-
nary classification metrics are measured employing one-vs-rest
strategy for each class. Afterwards, we compute the weighted
average of individual binary metric since class imbalance
exists in our experiment.

D. Results AND Discussions

In this section, the overall performance of the proposed
classifier are investigated for both of the task, (e.g., application
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Fig. 3. Confusion matrix of proposed classifier for the TC task (a) application
characterization (b) application identification.

characterization and application identification) in terms of
accuracy, precision, recall, and F1 score. Fig. 2 depicts training
and validation accuracy against the no. of epoch for both of
the task. For the task application characterization, the training
accuracy plot have increased with the increasing of epoch.
After 100 iterations, the achieved accuracy is 98.25%. From
validation accuracy plot, we can see that the classifier tends
to suffer from vanishing gradient problem at the beginning
of the training. But, the network significantly recover from
that problem and get stable with higher number of epochs.
On the other hand, the achieved accuracy is 86.28% for the
task application identification. In this case, there is no sign
of getting suffered from vanishing gradient problem during
training.



Fig. 3 depicts the confusion matrix for both of the clas-
sification task. For the first type of classification task, i.e.
application characterization, the no. of detected true positive
class for “Audio”, “Video”, and “No-type” are 7829, 7746,
and 7446, respectively, which indicates that the performance
of classification audio and No-type app traffic recognition is
good compared to the video traffic recognition. Besides, the
value of weighted average precision, recall, and F1 score is
0.985, 0.984, and 0.986, respectively in this case which is very
promising. For the second classification task, i.e. application
identification, the highest detected true positive class is for
“Youtube” class after the detection rate of “No-app” class
and the lowest identification is found for the “Twitch” class.
The weighted average precision, recall, and F1 score is 0.866,
0.863, and 0.864, respectively.

III. CONCLUSION

In this paper, we have proposed a hybrid deep neural
network combining CNN with RNN in order to investigate
the its performance on classifying traffic at L7 layer using
L1 packets. The proposed network can extract both spatial
and temporal features from IQ samples of the L1 packet data
and can significantly increase the learning accuracy exploiting
those extracted features. Besides, the proposed network is
very efficient efficient in terms of time cost and computa-
tional memory. The detail of network architecture and training
method for the proposed classifier have been presented. The
simulation results have also been discussed to evaluate the
performance. The overall results validate the proposed network
is very promising in traffic classification at L7 using the L1
packet. Future work will focus on enhancing the accuracy
significantly for the classification task of L7 layer as well as
investigate the performance for the classification task of other
layer as well.
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