On Designing Interfaces
to Access Deep Learning Inference Services

Seungwoo Kum, Seungtaek Oh, Jungchul Yeom, Jaewon Moon
Information and Media Research Center
Korea Electronics Technology Institute
Seoul, Republic of Korea
swkum@keti.re.kr, stoh@keti.re.kr, jcyeom@keti.re.kr, jwmoon@keti.re.kr

Abstract— Technologies that are related to the deployment of
distribution of deep learning service onto remotes resources are
getting more focuses these days. Along with the rapid development
of various training technologies, the demands on running deep
learning (mostly the inference) on the on-premises resources such as
edge devices in factory, warehouse or farm becomes high. Though
there are many resources to run an inference as a service, it needs
more consideration to deal with various application scenarios from
different fields. In this paper, the authors present an DL interface
module, which makes it able to access deep-learning based services
regardless of the kind of model and service architecture.

Keywords—deep learning; service interface; deployment of
deep learning service; edge computing; resource monitoring

I. INTRODUCTION

As more deep learning models are developed with various
training technologies, the demands on using the trained model
as a service becomes high. [various models and training
methods]. The inference service can be organized using the
trained method. There are number of tools that can be used to
this model-based service, a.k.a model serving. TensorFlow has
the TensorFlow Serving [1], which provides methods and APIs
to access and predict the model with RESTful or gRPC
connection. PyTorch provides similar tools, named as Torch
Serve [2], and Nvidia the Triton [3]. With these tools, using
trained models for the inference becomes very intuitive.

However, to have an end-to-end service for inference is
another story from having a model serving. The pipeline for the
end-to-end inference service consists of various components in
front of or after the model serving. Suppose that we have a
model that is trained for image classification service. To
provide the data to the input layer of the model, the input data
needs to be resized, changing color order and transformed to an
array. After applying the data to the model for the inference,
the output data needs to be sorted, and matched to the class
table to identify top-1 or top-5 classes. It becomes little bit
more complicated when it comes to the data interfaces of the
end-to-end inference service. The interfaces vary significantly
depending on the use case scenarios of the service. For

This work was supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (2021-0-01578, Smart Farm Platform for high-quality
and traceable yield. A multi-purpose DDS based on proximal and remote
sensing.).

978-1-6654-8550-0/22/$31.00 ©2022 IEEE

89

example, if someone wants to provide a web service for the
image classification, the input data (image) will be transferred
via HTTP protocol from a web browser along with the request
itself, and the result (top-1, top-5 class) are to be returned with
a response packet. If the use case is to classify images from a
video stream of a video camera, the input will be a device
handle to open the stream, and the operation will be rather
autonomous than request-response like the previous example.
The service will generate analysis output for each incoming
frame, and mostly a Pub-Sub protocol such as MQTT seems to
the right choice for this one. This demand on high flexibility on
service configuration make it difficult to realize an end-to-end
service for an inference service. There are a few services and
research on end-to-end service pipeline, for example the
DeepStream [4] from Nvidia. The model serving technology is
using remote procedure call (RPC) technologies such as gRPC
for its implementation. The use of RPC framework and
serialized Protocol Buffer provides better performance than the
request-response service.

In this paper, the authors propose an end-to-end inference
service architecture, along with the interfaces to control and
manage the service itself. The architecture is designed as a
high-level abstraction of various kinds of deep learning-based
applications, and interfaces are defined to support various
protocols to be used in end-to-end services.

II. RELATED WORKS

A. Model Serving Platform

Most of deep learning platforms has been working on the
model service technology. TensorFlow has released
TensorFlow Model Serving a few years ago and is quite
popular on providing access to the trained models on the cloud.
PyTorch has a model serving as well, under the name of
TorchServe. Nvidia has Triton server to provide inference on
the cloud or edge resources. Though the implementations vary
for each service, the concept of model service is similar: to
provide access to the inference (prediction) via network
interfaces. To this end, those implementations provide ways to
register a trained model to the server, and APIs to access the
model served. Usually the HTTP protocol is used, and for
streamed process of data the Protocol Buffer and RPC
protocols are used. Fig.1 depicts the model serving platform.

ICUFN 2022

Model Serving

Client
Request/
Original Data

preprocessing J

gRPC

«
Result

Fig.1 Model Serving Architecture

B. Pipelining DL inference application

Conventionally pipelining refers a lifecycle of developing a
model and applying it —data collection, preliminary analysis of
data, designing and traing of a model, validation, and feedback.
However, the pipeline for DL inference is now gaining focuses
from the field, which describes and end-to-end pipeline from
the viewpoint of inference service. The focus of this work is to
apply trained model to an application. A good example of this
DL inference pipelining can be the DeepStream SDK [4] from
Nvidia. Nvidia utilizes various technologies for video analysis,
and provides SDK to build an end-to-end DL inference
application.

From the research, the pipelining of DL inference is more
focused on how to distribute or allocate deep learning models
[5] so that it can optimize the resource usage [6].

III. ARCHITECTURE AND INTERFACES FOR INTERENCE SERVICE

To design the architecture, the authors have tried to abstract
the process of a deep learning process in high level. Though
there are different kinds of deep learning inference application,
authors were able to abstract the procedure in the following: 1)
input data acquisition. This process refers to the loading of the
original data to be analysed with the trained model, for
example, reading data from file such as csv, mp3, wav, png,
mp4. 2) preprocessing of original data. This process refers to
the preparation of the data to be fed on the training model by
applying various computational methods, for example convert
audio to Mel Spectrogram, resizing image, or leveling the input
data. 3) inferencing. This process applies the preprocessed data
to the trained model. This is basically the same as the model
serving. 4) postprocessing of the output. This process interprets
the output of the trained model so to make it valuable to the
end user. For example, sorting or class matching.

The pseudo state-machine diagram of the abstracted
processed are defined and presented in Fig. 2. It can be
identified from the state-diagram when the interactions are
required for state transition, and the interfaces are defined at
those points. The interfaces defined for the architecture is given
on table 1. On designing the interfaces, semantics for each
argument are designed deliberately to make it able to deal with
various application scenarios. On the use cases that the authors
collected, it is easy to identify that there are various kinds of
protocols and sometimes it needs to deliver the analysis results
to multiple destinations simultaneously. For example, if a client
wants to receive object detection results to an MQTT topic, and
also wants to bounding-boxed video stream on RTSP location,
the interfaces can be configured for both destinations.

90

Model loading

termination

termination

Fig.2 Psuedo-state machine of the proposed architecture

TABLE 1. INTERFACE DESCRIPTION
Description
API

Method Payload Description

PUT URL Configure source location
/input

GET - Returns source location URL

PUT id”url”} | C'onﬁgu're(;iest?gtlo?l "
/output ocation(s), indexed by the i

GET - Returns destination locations
/compute PUT - Request inference

IV. IMPLEMENTATION

The proposed architecture and interfaces are implemented
on selected use cases. For the efficiency and reusability, they
are implemented as docker containers. Also, to see that how the
proposed work can be applied on various resources, the
containers support two different hardware platforms — the ones
with Nvidia GPU(s), and the other ones with Nvidia Tegra
SoC. The interfaces implementation is based on SWAGGER
API and provides GUI to test the interfaces.

Part of the psuedo-UML structure of the implementation is
given on Fig. 3. In the figure, there are two major objects, each
providing interfaces (Interface), and store the configuration
(Config). The Interface provides RESTful API as designed in
the section 3, and implanted with Flask and SWAGGER APIL
The configuration values are stored in the Config object, and
the model implementation can interact with those two object to
inference service.

Among many use cases of deep learning inference
application, two of them that uses Yolo v4 model are selected.
The first one is a service that detects objects from the image
and returns the bounding-boxed image via HTTP request. The
other one is a service that detects objects from a video stream
(image object detection service) and returns an RTSP stream
with bounding box overlayed on the original stream (video
object detection service). Here the request from client is
actually an HTTP GET message. Upon receiving the request
message on the Interface, it requests inference computation to
the model implementation, along with the configured input

data. The result is returned to the Interface object, which
encapsulated in the body of HTTP response message.

interface.py
Package::ai_interface
+ model My_Model

+ config Config
+ flask Flask

«Config»
Package::ai_interface

+ input_source_url: url
+ destination_url: dict
+ model_info: dict

+ init(jsonconfig json): void
+ set_input_source(url String): void
+ get_input_source() : url

+ InputHandler
+ OutputHandler

+ ModelHandler
+ set_destination (urlist dict): void + AutoStartHandler
+ get_destination() : dict + init(): flask
+ set_model_info (url String, name String, version Int): void + compute()

+ get_model_info () : dict + stop_compute()
Provides RESTful interfaces to

both Config and MyModel.

+ set_autostart(value Bool): void
+ get_autostart(): Bool

Stores variables to configure an Al application

Fig. 3 Psuedo-UML presentation of Interface

For the video object detection service, it needs more
consideration since it is not able to return the streamed object
via HTTP request. Actually, there are a few methods to return
video streaming or streaming objects with HTTP such as
MIPEG over HTTP, however the encoding is not very efficient
and effective in resource handling, so it is not suitable for the
production-level service. Thus, the authors applied the RTSP
streaming. On receiving the inference request, the model
implementation spawns the thread that process inference of
each image that is capture from the incoming video stream.
And then instead of returning those messages with HTTP
response, it creates a subprocess that encodes video stream to
an RTSP stream and deliver the result to the subprocess. The
URL of RTSP service is returned as a response of HTTP
request. The client can access the encoded stream with an
RTSP client such as VLC. The encoding and streaming
subprocess is implemented with ffmpeg. The flow is depicted
in Fig. 4.

The main difference between the model serving approach
and the proposed architecture is whether the pre- and post-
processing is done within the same process of the inference. In
the proposed architecture the process is the same while model
serving is not.

V. CONCLUSION

In this paper, the authors have proposed an architecture and
interfaces for accessing inference service implementation. The
service architecture reflects high level abstraction of various
kinds of inference applications, and as an outcome, four
processes were identified. The states and interaction are
identified between those process to define the interfaces that
are essential to configure and control a deep learning inference
application. Also, the interfaces are designed sophisticatedly to
deal with various protocols and data formats. The
implementation is based on Docker container, to guarantee

91

platform independence, and the four implemented containers
shows that uniform interfaces can be applied to control
multiple containers. This providing uniform set of interfaces
for different kinds of implementations can help controlling
large scale deployment and management of Al service with
resource orchestration tools such as Kubernetes. The authors
will investigate how to improve the interfaces for the trained
model management, and also to apply the deployment of target
containers on large scale cluster.

mymodel:My_Model Interface.py

compute_ai(input source, destination)

-«

Spawn Threads

pre-process
input

Post-process
output

peg-subprocess

| Return RTSP URL (desination) »

| RTSP Receive

Fig.4 Flow of RTSP streaming of inference result.

REFERENCES

(1

TensorFlow Serving, https://www.tensorflow.org/tfx/guide/serving

[2] TorchServer, https://pytorch.org/serve/

[3] Triton Server, https://developer.nvidia.com/nvidia-triton-inference-
server

[4] DeepStream, https://developer.nvidia.com/deepstream-sdk

[5] Goel, A. et al. “Efficient Computer Vision on Edge Devices with
Pipeline-Parallel Hierarchical Neural Networks,” 2022 27th Asia South
Pac Des Automation Conf Asp-dac,532-537 (2022).

[6] Jeong, E., Kim, J. & Ha, S. “TensorRT-based Framework and

Optimization Methodology for Deep Learning Inference on Jetson
Boards,” ACM Transactions on Embedded Computing Systmes,
preprints, doi:10.1145/3508391.

