Deep-sea Biota Classification from Remote Operated Vehicle Images
Through Efficient Deep Learning Models

Kazi Shaila Meraz”", Nuzhat Tahsin®, R. M. Alvi Amin, Rashedur M. Rahman
Department of Electrical and Computer Engineering
North South University
Dhaka, Bangladesh
kazi.meraz @northsouth.edu, nuzhat.tahsin@northsouth.edu, alvi.amin@northsouth.edu, rashedur.rahman @northsouth.edu

Abstract—The deep sea has always been a mystery to mankind.
High water pressure and poor lighting make exploration difficult.
Advancements in robotics and remotely operated vehicle technol-
ogy have enabled further research on the deep sea and its diverse
biota. However, a lack of light restricts the collection of high-
quality labeled images. A lightweight image classification model
could help by automatically labeling new images directly on the
Remotely Operated Vehicles (ROV) using low-powered hardware.
In this paper, we train different models on the DeepDive dataset,
which consists of deep-sea ROV biota images from the Great
Barrier Reef. We found the best balance between performance
and model size with EfficientNetB0, achieving an F1 score of
86.06% and 90.66% accuracy with 5.3 million parameters and
a size of 21.4 megabytes.

Index Terms—Deep Learning, Deep-sea biota, Multiclass Clas-
sification, Image Classification, EfficientNetB0, Lightweight Mod-
els

I. INTRODUCTION

Earth’s most vast, enigmatic, and biologically rich ecosys-
tems are found in the deep sea. Ninety percent of the ocean is
considered deep, with depths surpassing 656 feet (200 meters).
Mankind has explored space more than the ocean. Only a
quarter of the ocean has been mapped at high resolution. Just a
fraction has been surveyed and explored [1]. Life forms in the
deep sea are diverse. There are about 250,000 known species,
and many more remain to be discovered.

At least two-thirds of the world’s marine species are still
unidentified [2]. Autonomous underwater vehicles (AUVs)
are a major breakthrough in deep-sea exploration. ROVs
and AUVs generate high-quality image and video data from
diverse ocean ecosystems. These state-of-the-art vehicles are
expensive, but technical obstacles remain. The underwater
environment is the largest challenge in collecting quality data.
As a result, a range of models and systems is increasingly
used. These models focus on Underwater Image Enhancement
(UIE), restoration, classification, or object detection. There
is still a need to develop and optimize systems. Challenges
such as imbalanced datasets, low-quality images, degradation,
and small dataset sizes remain under-addressed. Our work is
based on trial-and-error with a small dataset to determine the
best data preprocessing. This ensures quality training data and
supports a system with optimized classification models while
maintaining generalization.

“These authors contributed equally to this work.

Deep-sea images are severely distorted due to the under-
water environment. Li et al.(2025) developed a highly ef-
fective underwater image enhancement(UIE) model to prevail
over such challenges. They aimed for color accuracy, visual
clarity, and structural details. DeepSeaNet, their proposed
framework, enhanced the UDnet framework in integrating
Vision Transformer (ViT) as the feature extractor. To produce
more realistic images and to ensure structural consistency, they
added the MCOLE score module in the multi-component loss
function. The model was evaluated using multiple datasets,
where it achieved avant garde results. It presented a 20%-40%
improvement over baseline models with an average SSIM of
0.901 and a maximum PSNR of 28.96 dB [3].

Following the same principle, Lopez-Vazquez et al. (2023)
improved the automated classification of deep-sea species.
They also accepted that pre-processing is a crucial step
when working with underwater images. They designed a two-
stage pipeline. The residual convolutional neural network was
trained to improve image quality overall from crawler footage.
The improved dataset was then used to train classifiers. With
an accuracy of 79.44% on the enhanced dataset, their best
performing model was a Deep Neural Network [4].

The detecting architecture or classifiers need to be robust to
handle such complexities. Long et al. (2025) focused on this
issue. They aimed to create an object detection architecture
for ecological monitoring in polymetallic nodule fields. Their
novel architecture, the BM-YOLO architecture, improves the
existing YOLOVS by incorporating a deformable convolutional
backbone, a transfer module, and a varifocal loss function
to address the class imbalance prevalent in most deep-sea
datasets. Their new POBM dataset was used to train this
specialized model. It outperformed existing models with an
mAP50 of 85.9% [5].

Feng and Jin (2024) proposed CEH-YOLO with a High-
Order Deformable Attention module integrated, an enforced
Spatial Pyramid Pooling-Fast module, and to refine predic-
tions, a Composite Detection module. The DUO and UT-
DAC2020 datasets were used to evaluate the model. The model
achieved state-of-the-art mAP scores for both lightweight
designs (88.4%) and real-time speed (87.7%) [6].

Saravanan Vadivazhagan (2025) also aimed for robustness
as well as classification accuracy. They used bio-inspired
optimization to refine their model. Improved the existing En-
hanced YOLOVS (EY5) architecture with bio-inspired Bearded

Dragon Optimization (BDO) algorithm and developed Beard Y-
OLO. Evaluated using the LSUI dataset, it achieved a classi-
fication accuracy of 79.87% and an Fl1-score of 79.81% [7].

The quality of data is vital for the success of any architec-
ture. This was understood by Iyer et al. (2025). They worked
to develop a coherent and accurate system for automating
the detection and quantification of deep-sea benthic life. They
created the DeepSea dataset. It is a collection of 2,825 curated
images with 20,076 annotated instances across 15 morphos-
pecies classes from North Atlantic deep-sea environments.
They combined AdamW and SGD optimizers as well as data
transformations to increase robustness. Their model achieved
a mAP50 of 0.84 [8].

Reddy et al. (2025) used many of these elements and pre-
sented a comprehensive framework for fish species detection
and classification. Among the evaluated YOLO models(v8-
v12), YOLOVY performed the best with an average precision
of 0.9236 and Fl-score of 0.9120 on raw images [9].

This paper has been divided into different sections. The
“Proposed System” section presents a detailed representation
of the proposed system including the dataset, augmentations,
the synthesis done on it, and the models that were trained on
it. The ”Result and Analysis” section covers the performance
metrics and sizes of different models with the rationale behind
deciding on a superior model. The "Conclusion” covers some
of our limitations and how this work can be extended in the
future.

II. PROPOSED SYSTEM

We propose a deep learning multi-classification system
using the Deepdive dataset, captured by ROVs in deep-sea
environments. This system classifies marine organisms and
substrates, including corals, sponges, and algae, to assist in
ecological surveillance and habitat mapping. We use various
data augmentation techniques during training and increase the
size of the training set by augmenting it.

A. Dataset

The Deepdive dataset was used for our study. It was cap-
tured by Remotely Operated Vehicles (ROVs) and is publicly
available. It contains 3,994 images of deep-sea biota, split
into 60:20:20 for training, validation, and testing. Each folder
contains 33 subfolders, each representing a different benthic
class. The training set contains 2,667 images, the validation set
667, and the test set 660. Folder organization under sub-folders
makes it easier to select specific classes for model training. All
sub-folders have uniform names for management.

To create a uniform, structured set of images for clas-
sification, the data were preprocessed by excluding classes
with fewer than 15 samples to reduce extreme imbalance,
leaving 33 individual classes. Even after censoring, the data
remains imbalanced, with a largest-to-smallest class ratio of
approximately 33:1. To balance representation, images were
partitioned randomly into the training, validation, and test
sets. All images were converted to a uniform resolution of
250 x 250 pixels via bilinear interpolation, and pixel values

Fig. 1.

Sample images from the dataset

were normalized from the original [0, 255] range to [0, 1] for
compatibility and uniformity with deep learning classification
models.

B. Dataset Preprocessing

We decided to re-split the dataset to ensure balanced image
distribution across the training, validation, and test subsets.
Even though the authors tried to balance the dataset. Still, the
dataset had a severe class imbalance and inconsistent image
counts across folders. As a result, this could bias the model
toward the majority classes. To ensure a fair evaluation, we re-
split the dataset using stratified random sampling, ensuring that
each subset contains images from all 33 classes. We have split
the combined dataset into 70% for training, 15% for validation,
and 15% for testing. After re-splitting, the dataset contains
2,697 training images, 578 validation images, and 578 test
images. This strategy ensures a balanced dataset split, enabling
accurate model training and unbiased performance estimation
across all classes.

We balanced the training data set by ensuring that each
class contained exactly 1000 images. We used an augmenta-
tion function that introduces variation via random horizontal
flipping, rotations of 0°, 90°, 180°, or 270°, and small random
color enhancements to create different augmented images. For
each class, all original images were copied to the output folder,
then the number of available images was counted, and the
augmentation was repeated in a loop until 1000 images were
obtained. The process ensures class balance, preventing model
bias against large classes and improving training stability and
performance. Fig. 2 shows a comparison of sample images
before and after balancing the training data. The first displays
the original, imbalanced image counts per class, and the
second shows the augmented, balanced version. This illustrates
how the data augmentation helps to create a more uniform
class distribution.

Fig. 2 shows a comparison of sample images before and
after balancing the training data. The first one displays the
original, imbalanced image counts per class and the second
one shows the augmented and balanced version. This illus-
trates how the data augmentation helps to create a more
uniform class distribution.

To further augment the training set, we applied different
approaches. We combined data augmentation techniques, in-
cluding random flips along the vertical and horizontal axes,
rotations (0°, 90°, 180°, 270°), random resizing with cropping

Dataset Distribution Before and After Resplitting

Before Resplitting
2500 After Resplitting
. 2000
= 1500
S 1000
500
Tréin Wal clatlon Telst
Dataset Split
Fig. 2. Dataset Distribution
TABLE 1
DATA AUGMENTATION TECHNIQUES AND PARAMETERS
Technique Parameter

Random crop + resize
Random horizontal flip
Random vertical flip
Random rotation
Brightness jitter
Contrast jitter
Saturation
CutMix patch

Output size = 128 x 128, Scale = (0.8, 1.0)
Probability p = 0.5
Probability p = 0.5
Degrees = 0, 90, 180, 270
Factor = 0.8-1.2
Factor = 0.8-1.2
Factor = 0.8-1.2
Patch size = random 30% of image area

to a uniform 128128 resolution, and color jitter with bright-
ness, contrast, and saturation modifications.

Additionally, a CutMix-based method was applied. Such
augmentations increased intra-class diversity, reduced over-
fitting, and ensured equal sample counts across all classes,
ultimately improving model generalization. The generated
dataset was verified to ensure that all classes had the desired
number of samples.

C. Applied Deep Learning Models

EfficientNet-B0: EfficientNet-BO is a baseline model which
is trained using ImageNet-1k. EfficientNet-BO was devel-
oped using neural architecture search using MBConv blocks,
squeeze, and excitation optimization to optimize accuracy
and efficiency. This model has about 5.5 million parameters.

QOriginal Dataset Resplitted
(33 classes, Training Dataset

Random Balanced Dataset
Augmentation (1000 images per
imbalanced)

class)

Horizontal Flip

Rotation (0°, 90°,
180°, 270%)

Color
Enhancement

11

Fig. 3. Class Imbalance Handling Pipeline

EfficientNet-BO uses significantly fewer parameters and com-
putations compared to traditional CNNs while offering state-
of-the-art accuracy. It is an excellent option for mid-sized
dataset because of its efficiency and scalability. To ensure
faster training the model was resized to 128x128 without
sacrificing sufficient resolution for feature extraction.

ResNet18: ResNet18 is a deep residual learning-based con-
volutional neural network of 18 layers. It effectively solves the
vanishing gradient problem, allows gradients to flow directly
through identity mappings and enables deeper networks to
train efficiently by utilizing skip connections. This model is a
powerful tool for image classification tasks and can be further
extended to more complex versions like ResNet34, ResNet50,
etc. According to stability and generalization power, ResNet
architectures are strong baselines for image classification tasks.
Use of ResNet-18 allowed one to verify how increased depth
influences performance on the given dataset, especially when
the number of samples per class is limited.

ResNet34: It is a member of the Residual Networks family.
The skip connections allow the network to bypass one or
more layers. This mitigates the vanishing gradient problem for
very deep networks. The model, as its name suggests, has 34
layers and contains about 21.8 million parameters. This offers
balance between performance and resource usage. It is an
extension of ResNet18 architecture. According to stability and
generalization power, ResNet architectures are strong baselines
for image classification tasks. Use of ResNet-34 allowed one
to verify how increased depth influences performance on the
given dataset, especially when the number of samples per class
is limited. Resnet-34 is a robust, interpretable model which can
generalize well across image domains.

MobileNetV2: MobileNetV2 uses inverted residuals and
linear bottlenecks in a bid to maximize efficiency by re-
ducing multiply-add operations. It consists of depth wise
separable convolutions and narrow intermediate layers, thus
enabling high accuracy with low computational complex-
ity.MobileNetV2 is commonly used for tasks like image
classification, object detection, and semantic segmentation.
MobileNetV2 is more suitable to be deployed on resource-
constrained or real-time systems, e.g., edge or mobile devices.
It was selected as it is light in terms of architecture and fast in
inference, making it a viable for efficient model deployment
in the future.

DenseNet-121: For addressing the challenges like vanishing
gradients, feature reuse, and parameter efficiency in deep
learning, DenseNet-121 is a commonly used model which is
a variant of the Dense Convolutional Network. It performs
very well on tasks like image classification, object detection,
and semantic segmentation. Each layer of DenseNetl21 re-
ceives input from all preceding layers. DenseNet121 has 121
layers, including dense blocks and transition layers, which
makes it efficient computationally without losing accuracy.
The DenseNet-121 model excels in the task of learning de-
tailed visual information, especially in cases where inter-class
variation is subtle.

DenseNet169: DenseNet169 is the extension of densenet-

Original Datasel Dataset Respliting Class Balancing

Model Training | Data Loaters i Data Avgmeniation (Train}

Walidatinn and Model

. * Final Testing and Evaluation
Selection

Fig. 4. Complete Pipeline Overview

121.By increasing the number of dense blocks and tran-
sition layer, densenetl2] shows deeper hierarchical feature
extraction. The dense connectivity pattern stays stable which
provides enhanced gradient flow and improved generalization.
To check whether the additional dense layers improved classi-
fication accuracy or not, the deeper structure like DenseNet169
was chosen. Its enhanced capacity makes it suitable for
datasets which contain intricate and overlapping visual fea-
tures.

We applied different deep learning models under the unified
training pipeline to evaluate their performance. By using
ImageNet pretrained weights, all models were initialized using
the same data preprocessing, augmentation, and optimization
methods.This consistent setup guaranteed that performance
arose primarily from architectural differences rather than from
training inconsistencies. We fine tuned each model by using
the Adam optimizer with a learning rate of 1e-4, cross-entropy
loss, batch size of 32, and early stopping on validation loss to
prevent overfitting.

III. RESULTS AND ANALYSIS

We implemented transfer learning through training a total
of 6 foundational models spanning 4 different architectures
on our dataset, focusing on smaller models for optimal
deployability on a wide range of ROVs (Remote Operated
Vehicles), even those with less on-board computational
resources. In this section, we will describe the performance
of the models and the reasoning behind deciding on
EfficientNetBO to be the best model as well as the convergence
behavior. In all of our evaluations we use macro values so
that classification performance is valued equally for all classes.

A. Inference Performance Analysis

Precision: Precision is the measure of how many predic-
tions of a model were true out of all the predictions for a
particular class. It is calculated as :

Precision — TP)
recision = 5= ()
where:
o TP = True Positives (correctly predicted positive in-
stances)
« FN = False Positive (negative instances incorrectly

predicted as positive)

Macro precision: Macro precision is the average precision
across all classes regardless of class imbalance. This is done
by giving equal weights to each class during averaging. Macro
precision is calculated as:

c
1
Macro Precision = ° ; Precision; 2)

where:

o C' = number of classes
« Precision; = precision for class ¢

The trained models Resnet18, DenseNet121, EfficientNetB0,
MobileNetv2, Resnet34, DenseNet169 achieved macro preci-
sion scores of 83.41%, 87.82%, 86.76 %, 85.95%, 84.65%,
84.38% respectively on the test set. We can see that
DenseNet121 was the most precise in classifying the biota
which is closely followed by EfficientNetBO0, trailing by just
1%.

Recall: Recall is used to measure how many actual instances
of a class are being recognized or classified by the model.
Calculation of recall is done by :

TP
Recall = ———— 3)
TP + FN

where:

e TP = True Positives (correctly predicted positive in-
stances)

o« FN = False Negatives (positive instances incorrectly
predicted as negative)

Macro Recall: Macro recall is the equal weighted average of
recall across all of the classes. It is calculated as:

c
1
Macro Recall = ° ; Recall; 4)

where:

e C = number of classes
¢ Recall; = recall for class ¢

The highest macro recall score achieved is 87.77% by
EfficientNetB0, leading by 1.5% from DenseNet169 which
has a macro recall score of 86.21%. Resnet18, DenseNet121,
MobileNetv2, ResNet34 achieved scores of 84.60%, 86.08 %,
85.98% and 85.83% respectively.

F1 Score: F1 score is used to quantify the balance between
precision and recall of a class. It is the harmonic mean of the
two which is calculated as:

F1 Score — 9 - Prec.is.ionoRecall)
Precision + Recall

where:

e Precision =
are correct)

Tprps (Proportion of predicted positives that

o Recall = s (proportion of actual positives correctly
identified)

e TP = True Positives, FP = False Positives, FN = False
Negatives

Macro F1 Score: The equal weighted average of F1 score
for all the classes is known as the Macro F1 score which is
defined as:

C
1
Macro F1 = o ; F1 Score; (6)

where:

e (' = number of classes
e F1 Score; = F1 score for class ¢

EfficientNetB0 leads in terms of Macro F1 score with a score
of 86.06% . The rest of the models, Resnetl8, DenseNet121,
MobileNetv2, ResNet34 and DenseNet169 are trailing with
Macro F1 scores of 82.64%, 85.63%, 84.07%, 84.40% and
84.15% respectively.

For model performance, we have chosen the Macro F1
score to be the deciding factor since our dataset is severely
imbalanced and the Macro F1 scores captures the models’
classification performance better than just the accuracy score.
Accuracy score can be heavily skewed by a higher number of
samples in the common classes which all of the models do a
good job of classifying.

For our goal of having models be potentially hosted on
ROVs (Remote Operated Vehicle), we also need to prioritise
models that are lightweight, resource efficient and have fast
inference performance. We have tested models of varying
parameter counts and architectures to decide what type of
model performs well while having a small footprint. From
Table III we can see that the smallest model out of the 6
models is MobileNetv2 with a parameter count of 3.5 million
and size of 13.6MB. However, its macro F1 score trails
behind the second smallest model here, EfficientNetB0 by
2% . The EfficientNetB0 model has 5.3 million parameters
and a footprint of 21.4MB, but performs the best in terms of
macro F1 score. We think that EfficientNetB0 strikes a good
balance between being performant and being less resource
intensive.

ROC-AUC: ROC-AUC or Receiver Operating
Characteristics-Area Under Curve represents the area
under the ROC curve which plots true positive rate and false
positive rate of classes at various thresholds. This helps us

TABLE 11
PERFORMANCE METRICS OF DIFFERENT MODELS
Model Accuracy | Precision (Macro) | Recall (Macro) | F1 (Macro)
ResNet18 0.9187 0.8341 0.8460 0.8264
DenseNet121 09118 0.8782 0.8608 0.8563
EfficientNetB0O 0.9066 0.8676 0.8777 0.8606
MobileNetV2 0.9066 0.8595 0.8598 0.8407
ResNet34 0.9187 0.8465 0.8583 0.8440
DenseNet169 0.9273 0.8438 0.8621 0.8415

TABLE III
MODEL PARAMETER COUNT AND SIZE
Model Parameters (Millions) | Size (MB)
ResNet18 11.7 46.0
DenseNet121 8.0 323
EfficientNetBO 5.3 21.4
MobileNetV2 3.5 13.6
ResNet34 21.8 87.3
DenseNet169 14.1 57.4

measure a model’s ability to differentiate between classes.
The ROC-AUC score is calculated by:

1
ROC-AUC = / TPR(FPR) dFPR @)
0

where:
o TPR (True Positive Rate) = Recall = g
o FPR (False Positive Rate) = g
e TP = True Positives, FN = False Negatives, FP = False
Positives, TN = True Negatives
Macro ROC-AUC: This is the weighted average of the ROC-
AUC score for all the classes. This is calculated by:
M ROC-AUC = S ROC-AUC 8
acro - = ; - i (8)
where:
e C = number of classes
¢« ROC-AUC; = ROC-AUC for class 7 (typically computed
using one-vs-rest)

The EfficientNetB0 achieved a very high ROC-AUC score of
99.3% signifying the model’s ability to distinguish between
classes. Fig. 5 visualizes the ROC-AUC scores at various
thresholds of the top 6 classes in terms of sample count in
the test set.

] F
0.8

0.6 4

ROC Curves (Top 6 classes by support)

True Positive Rate

0.4

—— Prawns - Shrimps - Mysids (AUC=0.99)
Tube worms (AUC=1.00)

—— Sea urchins (AUC=1.00}

—— Attached Stony coral (AUC=1.00)

—— Bony fishes (AUC=0.98)

0.0 4 —— Squat lobsters (AUC=1.00)

0.2 1

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Fig. 5. ROC-AUC of EfficientNetB0O

Training vs Validation Accuracy

1.0

0.8 4

Accuracy

0.7 1

— Train Acc
0.6 4 val Acc

T
10 12

Q_
N
IS
o
o

Training vs Validation Loss

1.6 —— Train Loss

144 val Loss

1.2 1

1.0 1

0.8

Loss

0.6

0.4+
0.2

0.0

(b)
Fig. 6. Training Convergence. (a) Accuracy, (b) Loss

B. Convergence Analysis

The EfficientNetBO model reaches convergence very early
in the training loop as evident from Fig. 6. The classification
performance on the validation set reaches a plateau after the
second epoch. The model continues training until epoch 14 as
we have set the patience for our early stop mechanism to be
10. Since, in the past 10 epochs the validation loss does not
improve, the best model weights are restored and training is
halted.

This behavior can be attributed to the limited availability
and variability of images in the dataset. The model learns what
it could very early on from the dataset.We can see in Fig. 6,
any training afterwards causes overfitting as seen from the
accuracy and loss differences.

IV. CONCLUSION

This study presented a deep-learning-based multi-class clas-
sification system for the identification of deep-sea biota.
This was done via training the models using the Deepdive
dataset. The dataset, although lacking in some respects, was
an excellent choice for this work, as it included images of
various species. We developed a robust pipeline that addressed
the challenges we faced, such as class imbalance. There was
extensive use of data augmentation techniques. Our approach
to systematically processing data before training ensured that
the models were trained on high-quality data. The ImageNet
dataset is used to train the foundational models for our transfer
learning. The lack of rare species data in the ImageNet dataset
also makes it harder to fully capture the features of the marine

organisms, resulting in poor classification performance for
those species. The species’ environment is also not consid-
ered when classifying. In the future, our work will focus
on overcoming the stated limitations and also experimenting
with several key methodologies. We plan to address the
class imbalance in our dataset and improve the visual quality
using image enhancement methods. We intend to incorporate
Explainable AI (XAI) methods to make our system more
transparent, rather than simply acting as a black box. This will
improve model interpretability, helping the user make valuable
decisions. Depending on data availability, we also plan to
include environmental metadata to make the system more
robust. Then, to improve deployability, we will use knowledge
distillation techniques to produce smaller, faster models with
minimal loss of accuracy. The successful implementation of
systems like ours will pioneer new approaches and take this
discipline in a new direction. These tools will become indis-
pensable in the near future for assisting researchers with large-
scale habitat mapping and identification, thereby contributing
to the preservation and understanding of unexplored deep-sea
ecosystems.

REFERENCES
[1] NOAA Ocean Exploration, “Why ocean exploration matters.”
https://oceanexplorer.noaa.gov/why-exploration-matters/, Aug. 2024.

Published: August 13, 2024.

[2] C.Pasca Palmer, “Marine biodiversity and ecosystems underpin a healthy
planet and social well-being,” UN Chronicle, vol. LIV, May 2017.

[3] J.Li, Y. Ouyang, H. Wang, D. Wu, and Y. Pan, “Deepseanet: An efficient
uie deep network,” Electronics, vol. 14, no. 12, pp. 2411-2411, 2025.

[4] V. Lopez-Vazquez, J. M. Lopez-Guede, D. Chatzievangelou, and
J. Aguzzi, “Deep learning based deep-sea automatic image enhancement
and animal species classification,” Journal of Big Data, vol. 10, no. 1,
2023.

[5S] G.Long, W. Song, X. Liu, Z. Fang, J. An, K. Liu, Y. Huang, and X. He,
“Automated recognition of deep-sea benthic megafauna in polymetallic
nodule mining areas based on deep learning,” Ecological Informatics,
vol. 90, p. 103319, 2025.

[6] J. Feng and T. Jin, “Ceh-yolo: A composite enhanced yolo-based
model for underwater object detection,” Ecological Informatics, vol. 82,
p. 102758, 2024.

[7] P. Saravanan, “Efficient underwater image classification with enhanced
yolov5 and bearded dragon optimization (beardyolo),” Journal of Theo-
retical and Applied Information Technology, vol. 103, no. 12, 2025.

[8] K. H. Iyer, C. M. Marnor, D. W. Schmid, and E. H. Hartz, “Detecting
and quantifying deep sea benthic life using advanced object detection,”
Frontiers in Marine Science, vol. 11, 2025.

[9] G. Joshita Reddy, K. Reddy, S. Ruthvik Athota, S. J. Narayanan, B. Pe-
rumal, and G. Kumar Nayak, “Deepseavision: Enhanced detection and
classification of underwater species,” IEEE Access, vol. 13, pp. 173347
173367, 2025.

