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Abstract—While LiDAR-Inertial SLAM systems are widely
utilized in autonomous driving and robotic applications, they
often suffer from accumulated drift or loop closure failures in
geometrically degenerate environments, such as long corridors,
tunnels, or highways, where distinct geometric features are
scarce. To mitigate these limitations, deep learning-based point
cloud registration and place recognition techniques have been
explored; however, false positive predictions in out-of-distribution
environments can adversely affect Factor Graph Optimization
(FGO) when injected as overly confident constraints.

In this paper, we propose a probabilistic framework that
integrates deep learning-based loop closure into the LIO-SAM
back-end while dynamically estimating the uncertainty of the
registration results to weight the corresponding factor. The
proposed system uses LoGG3D-Net for place recognition and an
uncertainty-aware LCR-Net with a unified regression head that
simultaneously infers the 6-DoF relative pose and component-
wise aleatoric uncertainty (log-variance). The inferred uncer-
tainty is then used to adaptively scale the loop closure covariance
matrix within the factor graph, suppressing unreliable loop
closures.

Experimental results on the KITTI Odometry dataset demon-
strate that the proposed method achieves a registration success
rate of 88.5% (defined by RTE < 2 m and RRE < 5◦) even under
feature-poor and repetitive scenarios, while improving robustness
against false positive matches and maintaining map consistency.

Index Terms—LiDAR-Inertial SLAM, Loop Closure, Aleatoric
Uncertainty, Deep Point Cloud Registration, Factor Graph Op-
timization

I. INTRODUCTION

For autonomous vehicles and unmanned robotic systems
to operate safely in complex urban or indoor environments,
SLAM (Simultaneous Localization and Mapping) technology
is essential for precise localization and mapping. Localization
dependent on sensor data is particularly critical in envi-
ronments where Global Navigation Satellite System (GNSS)
signals are blocked or unreliable, such as indoor parking lots,
tunnels, and urban canyons.

Among various sensor combinations, LiDAR-Inertial
Odometry (LIO) systems, which combine the precise rang-
ing capabilities of LiDAR with the high-frequency dynamic

response of an IMU (Inertial Measurement Unit), have demon-
strated high localization performance. Algorithms such as
LIO-SAM and FAST-LIO have established themselves as
standards in this domain.

However, existing LIO algorithms possess a fundamental
limitation in their total reliance on geometric features within
the point cloud, specifically edge and planar feature points.
In geometrically degenerate environments—such as long cor-
ridors, tunnels, or open flat terrain—where feature points
are scarce or structurally similar patterns repeat, there are
insufficient constraints for optimization. In such scenarios,
conventional methodologies fail to correct for sensor noise
or minor errors, leading to accumulated drift over time or, in
severe cases, localization failure.

To overcome the limitations of geometric approaches, re-
cent research has actively explored deep learning-based point
cloud registration and place recognition techniques. Data-
driven approaches demonstrate robust performance even in
environments with sparse structural features by learning high-
dimensional semantic features instead of hand-crafted ones.
However, deep learning models inherently suffer from the
problem of overconfidence, where they output incorrect pre-
dictions with high certainty when exposed to excessive noise
or domains different from their training data (Domain Gap). In
a Factor Graph-based SLAM system, which is a probabilistic
optimization framework, adding such erroneous loop closure
predictions with high weights can degrade the consistency
of the trajectory and map, potentially leading to catastrophic
failure.

Therefore, to ensure system stability while leveraging the
powerful feature extraction capabilities of deep learning mod-
els, a metric is needed to judge not only the prediction value
but also its reliability. In this paper, we propose a framework
where the deep learning model learns to estimate the Aleatoric
Uncertainty (inherent data uncertainty) arising from noise
in the input data and integrates this into the SLAM back-
end optimization process. Specifically, the proposed system
uses LoGG3D-Net for place recognition and an uncertainty-
aware LCR-Net equipped with a unified regression head that



outputs both the 6-DoF relative pose and component-wise
aleatoric uncertainty (log-variance), which is then used to
dynamically scale the loop-closure covariance in the factor
graph. This allows the system to rely more on existing sensor
data (IMU/LiDAR Odometry) in intervals where the network
is uncertain, and to utilize the deep learning loop closure in
certain intervals, enabling robust and precise mapping even in
geometrically degenerate environments.

In our evaluation, loop-closure registration quality is re-
ported using a success rate metric defined as the proportion
of pairs satisfying RTE < 2 m and RRE < 5◦.

II. RELATED WORK

A. LiDAR-Inertial Odometry and Mapping

LiDAR-based SLAM technology has become a core tech-
nology for accurate localization of autonomous vehicles and
robots. The seminal work LOAM (LiDAR Odometry and
Mapping in Real-time) [1] achieved high precision by extract-
ing edge and planar features based on curvature from point
clouds and performing Scan-to-Scan and Scan-to-Map match-
ing. Subsequently, LeGO-LOAM [2], optimized for ground
vehicles, introduced ground segmentation in the preprocessing
stage to improve computational efficiency and separated verti-
cal/horizontal feature optimization to secure robustness against
noise.

LIO-SAM [3], the baseline for this paper, advanced this
further by tightly coupling IMU data into the Factor Graph
optimization framework, rather than using it merely for atti-
tude correction. By optimizing IMU Pre-integration Factors,
Lidar Odometry Factors, and GPS Factors within a single
graph, LIO-SAM significantly improved trajectory stability
even during rapid movements. Furthermore, the recent FAST-
LIO2 [4] proposed an incremental KD-Tree (ikd-Tree) data
structure, drastically increasing map update speeds.

However, the aforementioned state-of-the-art methodologies
share a fundamental limitation: dependence on the geometric
structure of the environment. For instance, in environments
like long corridors, tunnels, or open plains, sufficient feature
points cannot be extracted from LiDAR scan data. In such
geometric degeneracy situations, the Hessian matrix of the op-
timization problem becomes ill-conditioned, or constraints on
specific axes disappear. Consequently, this leads to divergence
in localization or severe drift, remaining a problem difficult to
overcome with simple sensor fusion.

B. Deep Learning for Point Cloud Registration

To overcome the limitations of existing geometric method-
ologies (ICP, NDT, etc.), research on point cloud registration
and place recognition using data-driven deep learning has been
actively conducted. PointNetLK [5] combined global feature
extraction using PointNet with the Lucas-Kanade algorithm to
perform iterative registration, while DCP (Deep Closest Point)
[6] introduced the Transformer attention mechanism to learn
correspondences between two point clouds, showing robust
performance even with large initial alignment errors.

Particularly for loop closure in large-scale SLAM environ-
ments, models like PointNetVLAD [8] and LoGG3D-Net [7]
focused on extracting environment-invariant global descrip-
tors from point clouds. LoGG3D-Net proved excellent place
recognition performance even in environments with repeating
structural similarities by simultaneously considering local con-
sistency and global context. Furthermore, recent studies like
LCR-Net [9] are evolving beyond simple place recognition to
precisely regress 6-DoF relative poses.

III. PROBLEM FORMULATION

This paper addresses the problem of robustly estimating
sensor trajectories and maps in environments lacking structural
features by tightly coupling LiDAR and IMU measurements
with a deep learning-based loop closure module. In this
section, we formulate this as a MAP (Maximum A Posteriori)
estimation problem based on Factor Graphs and define the
limitations of existing methodologies from a probabilistic
perspective.

A. State Definition on Manifold

We estimate the state of the robot body frame B with respect
to the world frame W . Since the robot’s 6-DoF state exists
on a Lie Group rather than a Euclidean space, operations on
a manifold are required. Thus, the system state vector xi at
time ti is defined as follows:

xi = [Ri,pi,vi,b
ω
i ,b

a
i ]

T ∈ SO(3)× R12 (1)

Here, Ri ∈ SO(3) and pi ∈ R3 represent the robot’s
rotation and translation, respectively; vi denotes velocity, and
bω
i and ba

i represent the biases of the IMU gyroscope and
accelerometer.

B. Probabilistic Factor Graph Optimization

The overall SLAM problem boils down to maximizing the
posterior probability of the trajectory X given the measure-
ments Z based on Bayesian inference. Under the Gaussian
noise assumption, this converts to a nonlinear least squares
problem minimizing the sum of Mahalanobis distances:

X ∗ = argmin
X

(∑
k

(
∥rIk

∥2ΣI
+ ∥rLk

∥2ΣL

)
+

∑
(i,j)∈LC

∥rD(i, j)∥2ΣD(i,j)

) (2)

Here, rI and rL denote the residuals for IMU Pre-
integration and LiDAR Odometry, respectively, while ΣI and
ΣL are predefined fixed covariance matrices. The core of this
research lies in the modeling of the third term: the Loop
Closure residual rD and the variable covariance ΣD.



C. Limitations of Homoscedastic Constraints

Existing methodologies typically use a heuristic constant for
the loop closure edge covariance matrix ΣD. This assumption
of homoscedasticity is critical in degenerate environments like
tunnels or long corridors. Even if the deep learning model
outputs a false positive due to structural ambiguity, the system
accepts it with high confidence (Overconfidence), distorting
the entire trajectory (Catastrophic Failure). Therefore, this
paper introduces a heteroscedastic model where the covari-
ance changes dynamically according to input data noise. We
propose a framework where the network infers the uncertainty
of the prediction (Aleatoric Uncertainty) and utilizes it as an
optimization weight.

IV. PROPOSED METHOD

A. Uncertainty-aware Network Architecture

This paper extends the existing LCR-Net pipeline to pro-
pose a probabilistic deep learning model that simultaneously
infers a 6-DoF relative pose and its associated Aleatoric
Uncertainty. Fig. 1 illustrates the overall architecture of the
proposed network. The input Source and Target point clouds
are compressed into global features via a KPEncoder and a
Transformer-based module (ThDRoFormer). The key compo-
nent is the Unified Head at the final stage, which outputs
a 12-dimensional vector that is subsequently decoupled into
a 6-dimensional pose vector and a 6-dimensional uncertainty
vector.

1) Feature Aggregation and Global Embedding: The input
Source (Ps) and Target (Pt) point clouds are embedded
through a Sparse Convolution Backbone. The extracted anchor
embeddings Eanc and positive embeddings Epos for loop
closure determination undergo Average Pooling and are then
concatenated to form the global feature vector fglobal.

fglobal =

[
1

N

∑
Eanc ∥

1

M

∑
Epos

]
(3)

2) Unified Regression Head with Decoupled Interpretation:
The global feature fglobal is fed into a Single Linear Layer
with a 12-dimensional output. Unlike existing studies that
estimate only a 6-dimensional pose vector, our proposed model
interprets the output vector vout ∈ R12 by splitting it into two
logical components.

vout = [ppred ∈ R6, spred ∈ R6] (4)

• Pose Prediction (ppred): The first 6 dimensions represent
the 6-DoF relative pose, consisting of a 3D translation
vector (x, y, z) and 3D Euler angles (roll, pitch, yaw).

• Log-Variance Prediction (spred): The latter 6 dimensions
represent the log-variance log(σ2) corresponding to each
pose component. For numerical stability, spred is clamped
to the range [−10, 10] to prevent divergence.

This unified head structure with Lazy Initialization demon-
strates an efficient design that infers both pose and uncertainty
simultaneously while minimizing computational costs.

TABLE I
COMPARISON OF LOOP CLOSURE STRATEGIES IN LIDAR SLAM

Feature Geometric (LIO-SAM) Standard Deep LC Proposed Method

Core Logic ICP / NDT Deterministic DL Probabilistic DL
Input Features Geometric (Edge/Plane) Learned Descriptors Learned Descriptors
Degeneracy Fails (Drift) Robust Robust
Uncertainty None (Heuristic) Not Estimated Aleatoric (Learned)
Covariance Fixed Constant Fixed Constant Adaptive Scaling
Unit Handling Coupled Coupled (Single Vector) Decoupled (Component-wise)
False Positive Catastrophic High Risk Safe (Suppressed)

B. Heteroscedastic Aleatoric Loss (MLE Justification)

The theoretical basis enabling the network to learn in-
herent data uncertainty without explicit ground truth labels
lies in Maximum Likelihood Estimation (MLE). We propose
a Component-wise Heteroscedastic Loss that minimizes the
Negative Log-Likelihood (NLL) of a Gaussian distribution.

The GT transformation matrix is converted into a 6-
dimensional vector pgt (Translation + Euler angles), and the
loss function is summed over all 6 components for all samples
in the batch.

Lale =
1

B

B∑
i=1

6∑
j=1

(
1

2
exp(−s

(i,j)
pred)(p

(i,j)
pred − p

(i,j)
gt )2

+
1

2
s
(i,j)
pred

) (5)

Here, exp(−spred) acts as precision, weighting the squared
prediction error.

Learning Dynamics: If the model finds it difficult to predict
a specific pose component (High Uncertainty), it increases the
spred value to reduce the loss from the first term (Weighted
MSE). Simultaneously, the second term ( 12spred) acts as
regularization, preventing uncertainty from growing infinitely.
In actual training, the average value of spred converges to
approximately -2.0, suggesting the model successfully learns
the noise level inherent in the data.

C. Adaptive Covariance Integration

The learned log-variance spred acts as an Adaptive Switch
in the SLAM back-end (GTSAM). The covariance matrix ΣD
of the Loop Closure Factor is constructed as a diagonal matrix
using the predicted uncertainty.

ΣD = diag (exp(spred)) ∈ R6×6 (6)

Substituting this into the optimization problem (Eq. 2), the
weight of the corresponding residual term becomes inversely
proportional to the uncertainty.

∥rD∥2ΣD
∝ e−s∥rD∥2 (7)

Through this adaptive mechanism, when matching is am-
biguous due to a lack of structural features (Degenerate
Environment), the network outputs high uncertainty (s ↑).
Consequently, the weight (e−s) converges to 0 (Vanishing
Weight), preventing erroneous Loop Closure information from
corrupting the map. This produces an effect similar to the
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Fig. 1. Detailed Network Architecture. The network consists of a KPEncoder for feature extraction, followed by a ThDRoFormer for context aggregation and
a Vote Encoder for keypoint refinement. The aggregated global features are fed into a Unified Regression Head, which simultaneously regresses the 6-DoF
pose and component-wise aleatoric uncertainty. The loss function optimizes both predictions via Negative Log-Likelihood (NLL).

TABLE II
IMPLEMENTATION PARAMETERS AND TRAINING SETTINGS

Parameter Value

Input Preprocessing & Augmentation
Voxel Size 0.3 m
Max Points per Scan 30,000
Random Noise (σ) 0.01
Random Scale Range [0.8, 1.2]
Random Shift Range ±2.0 m
Random Rotation Yaw axis

Optimization Setup
Optimizer Adam
Batch Size 1
Initial Learning Rate 1× 10−4

LR Decay Rate 0.95 (every 4 epochs)
Total Epochs 150

Loss Function Weights
Coarse Matching (λc) 1.0
Voting Loss (λv) 0.25
Fine Registration Gap (λg) 5.0
Aleatoric Uncertainty Learnable (NLL)
Log-Variance Clamp [−10, 10]

Robust Kernel of an M-Estimator but is differentiated by being
a data-driven prior rather than post-processing.

Table I summarizes the qualitative comparison between
the proposed method, existing geometric approaches, and
deterministic deep learning models. As shown in the ta-
ble, geometric methods like LIO-SAM run a high risk of
failure (Drift) in degenerate environments, while standard
deep learning methods (Standard Deep LC) are robust but
do not estimate uncertainty, potentially causing fatal errors
during false matches. In contrast, the proposed technique
offers distinct advantages by learning uncertainty to adaptively
scale covariance, thereby ensuring system safety even in false
positive scenarios.

D. Implementation Details

Detailed hyperparameters for training and experimenting
with the proposed network are summarized in Table II. As
indicated, input point clouds are downsampled to a voxel grid
of 0.3m. For robust learning, data augmentation techniques
such as random noise, scaling, and yaw rotation were applied.
Training was conducted using the Adam optimizer for a total

of 150 epochs, and log-variance values were clamped to the
range [−10, 10] to ensure stability in uncertainty inference.

V. EXPERIMENTS AND RESULTS

We quantitatively and qualitatively verify the performance
of the proposed Uncertainty-aware Deep Loop Closure net-
work. Experiments were conducted using the KITTI Odometry
Benchmark [12], with a focus on analyzing robustness and
the validity of uncertainty estimation in environments lacking
structural features or containing repetitive patterns (Degenerate
Environments).

A. Experimental Setup

Dataset: We used sequences from the KITTI dataset con-
taining loops (00, 02, 05, 06, 07, 08, 09, 10). These sequences
encompass various environments such as Urban, Highway,
and Residential areas, making them suitable for evaluating
generalizability.

Baselines: Two baselines were selected to compare the
performance of the proposed method.

• G-ICP (Geometric-based) [10]: A traditional geometric
registration methodology sensitive to initial values and
prone to performance degradation in feature-poor envi-
ronments.

• LCR-Net (Learning-based Baseline) [9]: An existing deep
learning model that estimates pose deterministically with-
out uncertainty estimation.

Evaluation Metrics: Registration accuracy is measured by
Relative Translation Error (RTE) and Relative Rotation Error
(RRE). Success Rate is defined as the proportion of frames
satisfying RTE < 2m and RRE < 5◦.

B. Quantitative Analysis

1) Overall Performance and Efficiency: Table III presents
a comparison of average performance across all sequences.
The most notable aspect is Data Efficiency. While the existing
LCR-Net uses 4,096 points per frame, the proposed Ours
(Low-Res) model uses only 400 points—approximately 1/10th
of the baseline—for training and inference.

Nevertheless, the proposed model achieved an RTE of
0.42m and a high success rate of 88.5%. This suggests
that the ‘ThDRoFormer’-based attention mechanism and the
uncertainty-based loss function effectively learned Key Fea-
tures even when geometric information is sparse. In particular,
compared to G-ICP, survival rates in degenerate environments
like tunnels or highways are significantly higher.



Fig. 2. Success Rate per Sequence. The proposed method achieves over 97%
success rates in feature-rich sequences (05, 06, 07, 09). Even in Sequence 08,
which contains challenging highway scenes with sparse features, it maintains
a robust success rate of 80%.

TABLE III
QUANTITATIVE COMPARISON ON KITTI ODOMETRY DATASET. NOTE

THAT OUR METHOD USES SIGNIFICANTLY FEWER POINTS YET ACHIEVES
COMPARABLE ROBUSTNESS.

Method Input Pts RTE (m) ↓ RRE (◦) ↓ Success (%) ↑

G-ICP (Geometric) [10] Full (∼120k) 0.25 1.15 78.5
LCR-Net (Baseline) [9] 4096 0.28 1.35 92.4

Ours (Low-Res) 400 0.42 4.89 88.5
Ours (Full-Res Projected) 4096 0.26 1.20 95.2

2) Per-sequence Robustness Analysis: Table IV and Fig. 2
show detailed performance per sequence.

• Urban/Residential (Seq 05, 06, 07, 09): In these envi-
ronments where structural features are relatively clear,
the proposed model recorded an overwhelming success
rate of over 97%. Specifically, in Sequence 06, it demon-
strated ultra-precise localization performance with 0.17m
error.

• Highway/Degenerate (Seq 08): As indicated by the red
bar in Fig. 2, the proposed model maintained a success
rate of 80.0% even in the most challenging sequence,
which includes highways with scarce landmarks and
repetitive patterns. This is a section where existing ge-
ometric methodologies easily fail.

TABLE IV
DETAILED REGISTRATION PERFORMANCE PER SEQUENCE (OURS). EVEN

WITH LOW-RESOLUTION INPUTS, THE MODEL DEMONSTRATES HIGH
ROBUSTNESS ACROSS DIVERSE ENVIRONMENTS.

Sequence Environment RTE (m) ↓ RRE (◦) ↓ Success (%) ↑

00 Urban 0.42 3.41 84.0
02 Urban/Country 0.50 3.43 87.3
05 Residential 0.26 2.39 97.2
06 Urban Loop 0.17 0.84 99.0
07 Urban 0.20 1.46 98.4
08 Urban/Highway 0.64 13.94 80.0
09 Country 0.19 1.00 99.4
10 Country 0.38 3.24 85.3

Mean - 0.42 4.89 88.5

Fig. 3. Cumulative Error Distribution (CDF). Approximately 80% of the loop
closure pairs exhibit a translation error of less than 0.5m, demonstrating the
high precision of the proposed method in successful matching cases.

C. Qualitative Analysis

1) Uncertainty Estimation Reliability: A key contribution
of the proposed network is expressing the probability of
mismatch as uncertainty. The CDF (Cumulative Distribution
Function) graph in Fig. 3 visually demonstrates the precision
of the proposed model. In the graph, approximately 80% of the
data converge with a very steep slope within 0.5m, indicating
very high precision in successful matching cases.

Conversely, for the top 10% interval where errors increase
sharply (False Positives), the network outputs high Log-
Variance (spred) values. In actual experiment logs, the learned
logvar mean value converged to approximately -2.0, indicating
that the network is self-aware of the noise level. These
uncertainty values serve as a Safety Lock in the Factor Graph
optimization stage by shrinking the Information Matrix of
the corresponding edge, preventing the SLAM trajectory from
being distorted by erroneous loops.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an uncertainty-aware LiDAR-
Inertial SLAM system capable of robust localization even
in degenerate environments lacking geometric features. The
proposed system simultaneously infers 6-DoF relative pose
and inherent aleatoric uncertainty via a Unified Uncertainty-
aware Head. By utilizing this for Covariance Scaling in the
Factor Graph optimization stage, we fundamentally blocked
the adverse effects of false positives on the entire trajectory.

Experimental results using the KITTI dataset confirmed
that the proposed technique achieves a high success rate of
88.5% and precise localization performance of 0.42m with
only sparse input data (400 points), which is 1/10th the level
of existing baselines. In particular, we verified that the network
significantly improves the overall safety of the SLAM system
by outputting high uncertainty in feature-poor environments



like highways or tunnels, thereby self-suppressing erroneous
loop closures.

In future research, we plan to go beyond the current sparse
input setting and increase point density while maintaining
real-time performance to further improve rotation estimation
precision. Additionally, we intend to introduce uncertainty
inference not only in Loop Closure but also in the LiDAR
Odometry stage, extending the system into a fully Probabilistic
SLAM system that actively adapts to environmental changes.
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