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Abstract—Fine-grained species classification is critical for pest
monitoring and biodiversity assessment, yet existing classifiers
treat all misclassifications equally regardless of taxonomic dis-
tance. When a classifier incorrectly predicts a species, it provides
no useful information—even though knowing the correct genus
or family could still enable appropriate action.

We propose MANTIS (Multi-granularity Adaptive Network
for Taxonomy-Informed Species classification), a hierarchical
classification framework that enables graceful degradation: when
species-level confidence is low, the model automatically falls back
to higher taxonomic levels (genus, family) where predictions are
more reliable.

Our approach uses a Graph Neural Network to model taxo-
nomic relationships, producing multi-granularity outputs from
a single forward pass. Experiments on a pest image dataset
(301 species) demonstrate that MANTIS achieves 93.5% species
accuracy (+0.67%) and 95.7% genus accuracy. More importantly,
for truly unknown inputs, MANTIS shows significantly better
graceful degradation at higher taxonomic levels: +2.4% for
family-level fallback and +4.1% for order-level fallback. This
demonstrates that hierarchical GNN learning produces more
discriminative embeddings at coarser taxonomic levels. MANTIS
is particularly suitable for real-world open-world deployment
where reliability at some taxonomic level is preferable to confident
but wrong species predictions.

Index Terms—Hierarchical Classification, Graph Neural Net-
works, Open-Set Recognition, Insect Classification, Taxonomy

I. INTRODUCTION

Automated monitoring of disease vectors such as
mosquitoes is critical for public health surveillance and
outbreak prevention. Deploying classification systems in
resource-limited settings—remote areas or developing
regions—requires models that provide reliable predictions
even when encountering unfamiliar species. However, the high
visual similarity between related species makes fine-grained
classification challenging, and state-of-the-art classifiers
inevitably make mistakes.

The critical issue is how these mistakes occur. Consider
a classifier that misidentifies Aedes albopictus (Asian tiger
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Fig. 1. Graceful degradation via hierarchical fallback. When species-level

confidence is low, MANTIS falls back to higher taxonomic levels (genus, fam-
ily, order) where predictions are more reliable. GraphS AGE-based embeddings
capture taxonomic relationships, enabling meaningful fallback predictions.

mosquito) as Culex pipiens (common house mosquito). These
species belong to different genera with distinct disease trans-
mission profiles and control strategies. Such a “distant mis-
take” renders the prediction useless for pest management.

Existing approaches to hierarchical classification [1], [2] fo-
cus on making “better mistakes”—ensuring that when wrong,
predictions fall within the same genus or family. While
valuable, these methods still output species-level predictions,
which may be confidently wrong.

We propose a fundamentally different approach: graceful
degradation. Instead of always predicting at the species
level, our model can choose to output predictions at coarser
taxonomic levels when uncertain. If species confidence is low
but genus confidence is high, the model outputs a genus-level
prediction. This mirrors how human experts operate—when
uncertain about exact species, they report the genus or family
instead of guessing (Fig. 1).

Our contributions are:

1) A hierarchical classification framework (MANTIS) that
produces multi-granularity outputs (species, genus, fam-
ily, order) from a single model.

2) A confidence-based fallback mechanism that automati-
cally selects the appropriate taxonomic level based on
prediction certainty.

3) Experimental validation on 301

species showing



+2.4%/+4.1% improvement in open-set fallback accu-
racy at family/order levels for unknown genera/families.

II. RELATED WORKS
A. Hierarchical Classification

Traditional approaches embed class hierarchies into the loss
function. Hierarchical Cross-Entropy (HXE) [1] weights mis-
takes by taxonomic distance, encouraging predictions within
the correct genus even when species is wrong. Conditional
Risk Minimization (CRM) [2] performs inference-time rerank-
ing using hierarchy information without retraining. Both meth-
ods improve mistake severity but still commit to species-level
predictions. Our approach differs by explicitly changing the
prediction level itself—falling back to genus or family when
confidence is low.

B. Open-Set Recognition

Open-set recognition (OSR) aims to reject unknown classes
during inference [3]. Approaches include threshold-based re-
jection [4], prototype learning [5], energy-based methods [6],
and virtual outlier synthesis [18]. Open-world detection [17]
extends this to object detection with contrastive clustering.
While OSR focuses on binary known/unknown decisions,
MANTIS provides partial answers by falling back to higher
taxonomic levels.

C. Selective Prediction

The idea of abstaining when uncertain has been explored
in reject option classifiers [7]. We extend this concept to
hierarchical settings—rather than binary accept/reject, we fall
back through taxonomy levels, providing partial but reliable
information.

D. GNNs for Classification

Graph Neural Networks [14] have been applied to zero-shot
learning by modeling class relationships [8], [9]. Prototypical
networks [15] use distance-based classification with learned
embeddings. We extend these ideas to hierarchical classifi-
cation, using GraphSAGE [11] to propagate taxonomy-aware
information.

E. Contrastive Learning

Supervised contrastive learning [16] improves upon self-
supervised methods [13] by incorporating label information.
Metric learning approaches [19] learn embeddings where
similar samples are close. We adopt hierarchy-aware margins
in our contrastive loss, encoding taxonomic distances into the
embedding space.

III. METHOD
A. Problem Formulation

For an input image x, we seek to produce predictions across
labels at multiple taxonomy levels £ € L: species Yspecies, ZENUS
Ygenus> 1amily Yramily, and order yorger- These labels follow a
strict hierarchy: each species belongs to exactly one genus,
each genus to one family, and each family to one order.
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Fig. 2. MANTIS architecture. An input image is processed by Swin-T
backbone (Fpackbone € R768) and projected to 256-d embedding space
(Zimg)- The taxonomy graph with N = 541 nodes produces embeddings
via GraphSAGE (Ziax). Classification is performed via cosine similarity at
each taxonomy level, enabling graceful degradation from species to order.

Crucially, during inference, we may encounter samples from
unknown classes at any level:
o Unknown-Species (U1): Species not in training set, but
genus is known.
o Unknown-Genus (U2): Genus not in training set, but
family is known.
¢ Unknown-Family (U3): Family not in training set, but
order is known.
For such cases, we aim to provide the most specific correct
prediction possible.

B. Overview

MANTIS consists of three components: (1) a visual back-
bone that extracts image features, (2) a taxonomy-aware GNN
that models hierarchical relationships, and (3) a multi-level
classification head with confidence-based fallback. Fig. 2
illustrates the overall architecture.

C. Architecture

Let £ = {species, genus, family, order} denote the set of
taxonomy levels. Given an input image x € R3*448x448 "¢
extract features using a Swin Transformer [10] backbone. We
choose Swin-T over vanilla ViT because its shifted window



mechanism provides effective local feature aggregation, which
is crucial for fine-grained insect classification where subtle
morphological details (e.g., wing venation, antenna shape)
distinguish closely related species.

Frackbone = SwinT(x) € R768 0

1) Image Projection: The backbone features are projected
to a 256-dimensional embedding space via a two-layer MLP:

2img = MLP(fbackbone) S ]R256 (2)

where MLP : 768 — 512 — 256 with LayerNorm, GELU
activation, and dropout.

2) Taxonomy Graph: We encode the taxonomy as a di-
rected graph G = (V,€) where N = |V| = 541 nodes
(301 species + 194 genera + 37 families + 9 orders), with
edges £ connecting each taxon to its parent. All nodes are
initialized with learnable embeddings and updated through
GraphSAGE [11]:

h{**) = o (W® . CONCAT (h{"), AGG({h{} },.c NW)}

3)

After K = 2 layers of message passing, we obtain taxonomy

embeddings Z, € RV 256

3) Cosine Similarity Classification: Classification logits at

each taxonomy level ¢ € £ are computed via scaled cosine
similarity:

Zimg * L}

ye=——",

pe = softmax(y¢) )
-

where Zg C Ztax are the embeddings for level ¢, and 7 =
0.1 is the temperature parameter following contrastive learning
practices [13].

4) Loss Function: We train with the MANTIS loss, com-
bining cross-entropy supervision at each taxonomy level with
auxiliary regularization terms:

Lyviantis = Lcg + Laux @)

where the cross-entropy term aggregates losses across all
taxonomy levels:

Lee =Y M- CEFe, ) (6)
teL

with weights A\, = a”~9 where D is the maximum depth, d,
is the depth of level ¢, and o = 0.5. This exponential decay
assigns higher importance to finer-grained levels while still
supervising coarser levels.

The auxiliary loss L,y includes three terms:

Eaux = Alﬁhier + /\2£com + )\SEreg (7N

5) Hierarchical consistency loss: Ly Supervises coarser
levels using aggregated logits:

Lhier = CE(}A’genus; ygenus) +0.5- CE(yfamilya yfamily) (®)

6) Contrastive loss: Lo enforces margin-based separation
with hierarchy-aware margins:

Leow = »_max(0,sim(2;,2;) — (1 — my;)) 9)
1,
where m;; € {0.2,0.5,1.0} for same-genus, same-family, and
different-family pairs respectively.

7) Regularization loss: L., encourages intra-genus cohe-
sion in label embeddings:

Z sim(z;™, ™)

1,j€EG

1
Lreg=1— — (10)
¢ |G|

where G denotes species pairs within the same genus.

D. Graceful Degradation at Inference

The key innovation is the fallback mechanism. Given con-
fidence threshold 6, we select the finest taxonomic level with
sufficient confidence:

species  if max(pspecies) > 0

output = gem'ls el?f max(Pyenus) 2 0 (11
family  elif max(pgamiyy) > 0
order otherwise

This enables graceful degradation: uncertain species pre-
dictions are replaced with more reliable genus/family predic-
tions, providing actionable information rather than confident
mistakes.

IV. EXPERIMENTS
A. Dataset and Setup

We evaluate on iNat-Pests, a curated subset of iNatural-
ist [12] focusing on pest-relevant insect species (Fig. 3). The
dataset contains approximately 91,000 images spanning a 4-
level taxonomy: 9 Orders — 37 Families — 194 Genera —
301 Species (known classes). The selected orders include agri-
cultural pests (Lepidoptera, Coleoptera, Orthoptera), disease
vectors (Diptera, Hemiptera), and structural pests (Blattodea,
Hymenoptera). For open-set evaluation, we additionally hold
out 9 species (Ul), 9 genera (U2), and 3 families (U3) from
training (Fig. 4).

We use Swin-T pretrained on ImageNet [21] as the visual
backbone. Images are resized to 448x448. The GNN has 2
layers with hidden dimension 256. We train for 50 epochs
using AdamW [24] optimizer with learning rate 5 x 10~° and
cosine decay.

B. Main Results

Table I compares MANTIS with the baseline (standard
Swin-T with species-only classification). For fair comparison,
we derive baseline’s genus/family accuracy by looking up the
predicted species’ taxonomy.

MANTIS outperforms the baseline at all taxonomic levels.
At 448x448 resolution, it achieves 93.49% species accuracy
(+0.67%) and 95.68% genus accuracy.
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Fig. 3. Representative images from each taxonomic order in the iNat-Pests
dataset.
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Fig. 4. Open-set split: 301 known species for training with three unknown
test sets (U1: unknown species, U2: unknown genera, U3: unknown families).

TABLE I
CLASSIFICATION ACCURACY ON 301 KNOWN SPECIES
Method H Species Genus Family Order
Baseline 92.82%  95.15%  97.31%  98.14%
MANTIS || 93.49% 95.68% 97.57% 98.37%
A +0.67%  +0.53%  +0.26%  +0.23%

C. Error Quality Analysis

Beyond raw accuracy, we analyze the quality of errors.
Table II shows error distribution by taxonomic distance:

TABLE II
ERROR QUALITY ANALYSIS: TAXONOMIC DISTANCE OF

MISCLASSIFICATIONS.
Error Type H Baseline MANTIS
Same Genus (good) 38.89% 41.94%
Same Family 23.93% 25.81%
Same Order 11.54% 8.76%
Different Order (bad) 25.64% 23.50%
TABLE III

OPEN-SET GRACEFUL DEGRADATION: ACCURACY AT HIGHER TAXONOMIC
LEVELS FOR TRULY UNKNOWN INPUTS (MODELS TRAINED ON 301

SPECIES).
Fallback Task | Baseline MANTIS A
Ul: Unknown Sp. — Genus 54.65% 54.39% -0.26%
U2: Unknown Gen. — Family 66.18% 68.61% +2.43%
U3: Unknown Fam. — Order 31.20% 35.31% +4.11%
TABLE IV
CALIBRATION COMPARISON ON SPECIES-LEVEL PREDICTIONS.
Metric H Baseline MANTIS
ECE ({ better) 0.0440 0.0342
Mean Confidence 0.9715 0.9318
Conf. on Unknowns 0.9961 0.9367

MANTIS makes taxonomically closer errors: 41.94% of
mistakes fall within the same genus (vs. 38.89% for baseline).
This means when MANTIS is wrong, the prediction is still
more useful—belonging to a closely related species rather than
a distant one.

D. Open-Set Graceful Degradation

The key result is how models handle unknown inputs.
Table III shows accuracy when predicting at higher taxonomic
levels for unknown classes:

MANTIS shows significantly better graceful degradation
for higher-level fallbacks (Fig. 5). When encountering un-
known genera (U2), MANTIS achieves 68.61% family-level
accuracy (+2.43%). For unknown families (U3), the improve-
ment is even larger: 35.31% order-level accuracy (+4.11%).
This demonstrates that hierarchical GNN learning produces
more discriminative embeddings at higher taxonomic levels,
enabling more reliable fallback predictions.

Interestingly, for unknown species within known genera
(U1), both models perform similarly (~54%). This is expected
since both models have learned genus-level representations
from training data containing other species of the same genus.
However, for higher-level fallbacks (U2, U3), where models
must generalize to entirely unseen genera or families, the
hierarchical GNN structure provides substantial benefit.

E. Calibration and Confidence Analysis

Table IV compares calibration quality [23] between models:
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better hierarchical representations.
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Fig. 6. Fallback curve: accuracy vs. confidence threshold. Higher thresholds
yield higher accuracy on confident predictions while triggering more fallbacks
to coarser taxonomic levels.

MANTIS shows better calibration (ECE: 0.034 vs. 0.044)
and, critically, lower confidence on unknown sam-
ples (93.7% vs. 99.6%). This realistic uncertainty enables
threshold-based filtering: at 7 = 0.9, MANTIS flags 4.81% of
samples as uncertain (vs. only 0.74% for baseline), with both
models achieving high accuracy on their respective confident
predictions.

The baseline’s overconfidence (99.6% on unknowns) makes
it unsuitable for threshold-based deployment—unknown sam-
ples pass through as “confident” predictions.

Fig. 6 shows the trade-off between prediction confidence
threshold and accuracy. As the threshold increases, fewer sam-
ples are predicted at the species level, but accuracy on those
predictions improves. At 6 = 0.9, both models achieve near-
perfect accuracy on their confident predictions, but MANTIS
identifies 6.5x more uncertain samples for fallback (4.81%
vs. 0.74%).

F. OOD Detection with Energy Score

We further enhance MANTIS with Virtual Outlier Synthesis
(VOS) [18] fine-tuning to improve out-of-distribution detec-
tion. Table V compares OOD detection performance using
energy score [6] (AUROC, higher is better):

VOS fine-tuning substantially improves energy-based OOD
detection, particularly for Ul (+4.19%) and U2 (+4.26%)
unknown classes. This enables reliable rejection of unknown
samples before fallback, complementing the graceful degrada-
tion mechanism.

OOD DETECTION PERFORMANCE (AUROC) USING ENERGY SCORE.

TABLE V

Method [ u U2 U3

Baseline 83.58%  84.55%  94.04%

MANTIS + VOS || 87.77% 88.81% 94.19%

A +4.19%  +426%  +0.15%
TABLE VI

DIRECT FALLBACK VS. TAXONOMY LOOKUP (7 = 0.7)

Baseline MANTIS + VOS
Task Direct  Lookup Direct Lookup
Ul—Genus 2594%  30.69% | 36.16%  35.21%
U2—Family || 27.24%  40.00% | 46.90%  45.19%
U3—Order 34.02%  26.00% | 35.26%  26.94%
TABLE VII
ABLATION STUDY ON KEY COMPONENTS.

Metric H Base +GNN  +Loss Full

Known Classes

Species 92.82  93.19 93.36  93.49

Genus 95.15 9541 95.55  95.68

Family 97.31 97.44 97.51 97.57

Order 98.14  98.24 98.30  98.37

Open-set Fallback

Ul — Genus 54.65 5448 54.52 54.39

U2 — Family || 66.18  67.52 68.14  68.61

U3 — Order 31.20  33.55 3443 3531

G. Direct Hierarchical Fallback

Beyond taxonomy lookup from predicted species, we evalu-
ate direct fallback: when confidence < 7, predict at the parent
level using its dedicated logits. Table VI shows results at
T=0.T:

Critically, for baseline, direct fallback degrades perfor-
mance vs. lookup (e.g., U2: 27.2% vs. 40.0%), meaning its
genus/family embeddings are not discriminative enough for
direct prediction. In contrast, MANTIS consistently improves
with direct fallback, demonstrating that hierarchical GNN
learning produces meaningful embeddings at every taxonomic
level. The MANTIS + VOS model achieves 46.90% family
accuracy on U2 unknowns via direct fallback, outperforming
baseline’s lookup by +6.9%.

H. Ablation Study

Table VII presents the incremental impact of each architec-
tural component:

Each component contributes incrementally: GNN embed-
dings improve taxonomic consistency, multi-level loss enables
explicit supervision at each level, and L, further encourages
hierarchically coherent representations.

Fig. 7 shows the training dynamics. MANTIS converges
smoothly and maintains consistent improvement across all
taxonomy levels throughout training.
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Fig. 7. Learning curves during training. MANTIS shows stable convergence
with consistent accuracy improvements at species, genus, and family levels.

TABLE VIII
COMPUTATIONAL OVERHEAD COMPARISON.

Model H Parameters Latency (ms)
Baseline (Swin-T) 27.715M 5.78 + 0.11
MANTIS 28.56M 591 £+ 0.08
Overhead +2.9% +2.2%

1. Overhead Analysis

We benchmark inference latency on an NVIDIA RTX
3090 GPU with Intel i9-13900K CPU, using 448 <448 input
images and batch size 1. Results are averaged over 100 runs
(Table VIII). The GNN component adds minimal overhead:
+2.9% parameters (27.75M — 28.56M) and +2.2% latency
(5.78ms — 5.91ms), making it practical for real-time deploy-
ment.

V. CONCLUSION

We presented MANTIS, a hierarchical classification frame-
work with graceful degradation for species identification.
Unlike existing methods that always predict at species level,
MANTIS can fall back to genus or family when uncertain,
providing reliable predictions at some taxonomic level.

Key results show that: (1) MANTIS achieves 93.5% species
accuracy with taxonomically closer errors (41.9% intra-genus
vs. 38.9%); (2) for unknown genera/families, MANTIS shows
+2.4%/+4.1% improvement at family/order-level fallback; (3)
better calibration (ECE: 0.034 vs. 0.044) enables MANTIS to
identify 6.5x more uncertain samples for fallback.

Current threshold selection requires validation data with
known/unknown class distribution. The hierarchical fallback
assumes a well-defined taxonomy, which may not exist for all
domains. Real-world deployment faces additional challenges
including inter-genera domain shift from field-captured spec-
imens with varying conditions [26]. Future work will explore
adaptive threshold selection, alternative backbone architec-
tures (e.g., ConvNeXt, larger Swin variants), visual attention
analysis (e.g., Grad-CAM) to verify that learned features
align with expert-identified morphological keys [26], extension
to other hierarchical domains beyond biological taxonomy,
and integration with active learning for continuous model
improvement.

[1]

[2]

[3]

[4]
[5]

[6]
[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

REFERENCES

L. Bertinetto, R. Mueller, K. Tertikas, S. Samangooei, and N. A.
Lord, “Making better mistakes: Leveraging class hierarchies with deep
networks,” in Proc. IEEE/CVF CVPR, 2020, pp. 12506-12515.

S. Karthik, J. Mena, and Z. Akata, “No cost likelihood manipulation at
test time for making better mistakes in deep networks,” in Proc. ICLR,
2021.

W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult,
“Toward open set recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 7, pp. 1757-1772, 2012.

A. Bendale and T. E. Boult, “Towards open set deep networks,” in Proc.
IEEE/CVF CVPR, 2016, pp. 1563-1572.

G. Chen, P. Peng, X. Wang, and Y. Tian, “Adversarial reciprocal points
learning for open set recognition,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 44, no. 11, pp. 8065-8081, 2021.

W. Liu, X. Wang, J. Owens, and Y. Li, “Energy-based out-of-distribution
detection,” in Proc. NeurlPS, 2020, pp. 21464-21475.

C. Chow, “On optimum recognition error and reject tradeoft,” IEEE
Trans. Inf. Theory, vol. 16, no. 1, pp. 41-46, 1970.

X. Wang, Y. Ye, and A. Gupta, “Zero-shot recognition via semantic
embeddings and knowledge graphs,” in Proc. IEEE/CVF CVPR, 2018,
pp. 6857-6866.

M. Kampffmeyer, Y. Chen, X. Liang, H. Wang, Y. Zhang, and E. P.
Xing, “Rethinking knowledge graph propagation for zero-shot learning,”
in Proc. IEEE/CVF CVPR, 2019, pp. 11487-11496.

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proc. IEEE/CVF ICCV, 2021, pp. 10012-10022.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. NeurIPS, 2017, pp. 1024-1034.

G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard,
H. Adam, P. Perona, and S. Belongie, “The iNaturalist species classi-
fication and detection dataset,” in Proc. IEEE/CVF CVPR, 2018, pp.
8769-8778.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in Proc. ICML, 2020,
pp- 1597-1607.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. ICLR, 2017.

J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot
learning,” in Proc. NeurIPS, 2017, pp. 4077-4087.

P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learn-
ing,” in Proc. NeurIPS, 2020, pp. 18661-18673.

K. J. Joseph, S. Khan, F. S. Khan, and V. N. Balasubramanian, “Towards
open world object detection,” in Proc. IEEE/CVF CVPR, 2021, pp.
5830-5840.

X. Du, Z. Wang, M. Cai, and Y. Li, “VOS: Learning what you don’t
know by virtual outlier synthesis,” in Proc. ICLR, 2022.

F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified
embedding for face recognition and clustering,” in Proc. IEEE/CVF
CVPR, 2015, pp. 815-823.

D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified
and out-of-distribution examples in neural networks,” in Proc. ICLR,
2017.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE/CVF CVPR,
2009, pp. 248-255.

H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” in Proc. ICML, 2021, pp. 10347-10357.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of
modern neural networks,” in Proc. ICML, 2017, pp. 1321-1330.

I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in Proc. ICLR, 2019.

J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

J. Park, D. I. Kim, B. Choi, W. Kang, and H. W. Kwon, “Classification
and morphological analysis of vector mosquitoes using deep convolu-
tional neural networks,” Sci. Rep., vol. 10, no. 1, pp. 1-12, 2020.



