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Abstract—Cell-free massive MIMO (CF-mMIMO) can enable
MEC by providing seamless, high-quality connectivity through
macro-diversity. While existing studies often assume uniform
task models, this paper investigates a heterogeneous MEC envi-
ronment where users have class-specific workloads, computation
densities, and multi-step deadlines. We propose a learning-based
framework for joint resource allocation, optimizing local CPU
frequency and uplink transmit power to minimize energy while
meeting hard deadlines. Simulations with two traffic classes
(XR and IoT) show that applying our framework significantly
improves deadline satisfaction and the energy-reliability tradeoff
compared to a heuristic baseline.

Index Terms—Cell-free massive MIMO, mobile edge comput-
ing, heterogeneous traffic classes, deep reinforcement learning

I. INTRODUCTION

Cell-free massive multiple-input multiple-output (CF-
mMIMO) has recently attracted significant attention as a
promising architecture for computation offloading in mobile
edge computing (MEC) systems, owing to its macro-diversity,
uniform service quality, and flexible resource coordination
across distributed access points. Leveraging these advantages,
a growing body of work has investigated joint communication—
computation resource allocation for CF-mMIMO-enabled
MEQC, including our prior work in [1]. However, most existing
studies adopt a uniform task model, where task profiles are
drawn from the same distribution for all users, i.e., there
is no task-based user differentiation in terms of workload,
computation density, or latency requirements.

Such uniform assumptions substantially limit practical rel-
evance because real MEC deployments must concurrently
support heterogeneous services (e.g., latency-critical XR/AR
and industrial IoT) whose task sizes, processing densities,
arrival patterns, and deadline requirements differ markedly
across users. Moreover, for several applications the dead-
line naturally spans multiple slot durations, so a task may
persist across consecutive decision steps until completion or
expiration, introducing temporal correlation through remaining
workload and remaining time budget. This multi-step dead-
line structure makes resource allocation fundamentally more
challenging than the commonly assumed per-slot completion
model, and it calls for evaluation frameworks and policies
that can capture class-specific QoS behavior rather than only
averaged outcomes.

II. SYSTEM MODEL

We consider a CF-mMIMO-enabled MEC system with A/
single-antenna access points (APs) jointly serving K single-
antenna users (UEs) in the uplink. In this conference version,
all APs participate in serving each UE (no clustering). Time
is slotted with index ¢ € {1,2,...} and step duration At (set
to 1 ms in our simulator). A new UE/AP topology and large-
scale fading realization are initialized at the beginning of each
episode, while small-scale fading varies across time steps.

Let gmk(t) = +/Bmk hmk(t) denote the uplink chan-
nel from UE k to AP m, where [(,,; captures large-scale
fading and h,,,(t) ~ CN(0,1) is Rayleigh fading. With
maximum-ratio combining across APs, the CPU forms an
effective uplink SINR, SINR(¢), for UE k (including inter-
user interference). The achievable uplink rate is modeled as
Rip(t) =W ( ) logy (1 4 & (t)), where W is the system
bandwidth.

At the beginning of each episode, each UE k is assigned
an application class ¢; € {1,...,C} (fixed over the episode).
Each class c is associated with a task profile distribution over
(1) input size 7" (bits), (ii) computation density C' (cycles/bit),
and (iii) hard deadline D (seconds). Tasks arrive periodically
according to the UE class: if P, denotes the class-dependent
period (in steps), UE k generates a new task at steps t &€
{1,1+ P, ,1+ 2P,,...}, truncated near the episode end.
Each arriving task for UE k is characterized by

gp = (T3, ¢y, Dp), ()
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where n indexes the task arrivals of UE k. The tuple
(Ty, Cp, DY) is drawn from a class-dependent distribution
D, , enabling heterogeneous workloads and deadlines across
users and time. For instance, XR/AR and video analytics
typically involve larger input sizes and higher computation
intensity with stringent latency constraints, whereas industrial
IoT tasks are often lighter but may exhibit different (often
less demanding) timing requirements depending on the con-
trol/monitoring function.

A task may require multiple time steps to finish. Let Q(¢)
denote the remaining (unprocessed) bits of UE k’s current task
at the beginning of step ¢, and let dy(¢) denote the remaining
deadline budget (seconds) for that task. At each step ¢, UE k
chooses: (i) a local CPU scaling factor o (t) € [0, 1] and (ii) a



transmit power factor 7y, (¢t) € [0, 1], where py(t) = ng (¢)ppRe>.
Only the time window

Tk(t) = min{At, dk(t)} (2)

is usable for the current task in step ¢ (if di(t) < At, the
deadline expires within the step).

With maximum local CPU frequency f;"** (cycles/s), the
allocated frequency is f1°°(t) = ay(t) f@*. The number of
bits locally processed within 7y (¢) is

() fi2°(t) }
Cr(1) ’

where C(t) is the cycles/bit of the current task. The local
energy follows a DVFS model:

E¢(t) = ¢ BI°(1) Ci(t) (f1°(1)) )

where ¢ is the chip-dependent effective switched capacitance.

After local processing, the remaining bits are Q™™ (t) =
Qr(t) — Bl°°(t). The edge server has total computation ca-
pacity fCTV (cycles/s). In our implementation, the CPU allo-
cates resources proportionally to the instantaneous offloaded
demand:

BYe(t) = min{Qk(t), 3)
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with a small € > 0. Accordingly, the edge service rate (bits/s)
is given by

CPU (t)

p CPU (5)

edge I? Py (t)
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Within the time window 7% (), we adopt a pipelined transmit—
compute abstraction: the number of bits that can be both
transmitted and executed is approximated by the harmonic-
combination throughput

7 (t)
S (t) = —
Ry (t)+e +
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and the number of offloaded-and-executed bits is given as
B () = min{Qi™ (1), ST (1)} ®

The transmission time spent on these bits is ti'(¢t) =
B (t) /(R (t) + ¢€), and the corresponding offloading energy
is

EQT(t) = pi(t) i (1) = me ()P ¢ (1) ©

Total per-step energy is Ey(t) = Ei°°(t) + E2%(t).
The remaining task bits evolve as

Qult+1) = Q™ (t) — B (1),

and the remaining deadline budget updates as dy(t + 1) =
di(t) — At. A task is successful if it completes before the
deadline, i.e., Qr(t + 1) < 0 while di(t + 1) > 0. If the
deadline expires (i.e., dx(t + 1) < 0) and the task is not
complete, then only the unprocessed remainder is dropped
immediately.

(10)

Over an episode of T steps, the goal is to minimize
the total energy while meeting application deadlines under
heterogeneous task arrivals:

T K
min E Eo(t
{ar(t), (1)} [Z Z k(1)

t=1 k=1
st. 7 <D™ Vk, vn,
0 < ak(t) < ].7 0 < nk(t) < 17 Vk, Vt,
(11)

The problem in (11) is difficult to solve via conventional
convex optimization since the uplink rate is a non-linear SINR
function coupled across users, the hard-deadline constraints
depend on sequential task evolution, and the system dynamics
are driven by stochastic, heterogeneous task arrivals. To obtain
an adaptive policy with low online complexity, we adopt a
multi-agent deep deterministic policy gradient (MADDPG)
[2], which naturally handles continuous actions (DVFS and
power control) under decentralized execution, while exploiting
centralized training to capture inter-user coupling through
shared wireless and edge resources.

III. MADDPG-BASED JOINT RESOURCE ALLOCATION
FOR HETEROGENEOUS MEC

To address heterogeneous task arrivals, time-varying chan-
nels, and hard deadlines, we formulate the proposed joint re-
source allocation as a cooperative partially observable Markov
decision process (POMDP). Each user k € {1,..., K} acts
as an agent that selects continuous control variables at ev-
ery time step ¢ based on local observations, while train-
ing is performed using MADDPG under centralized-training
decentralized-execution (CTDE) to handle the strong coupling
induced by shared wireless and edge resources.

a) Local observation: Since tasks may span multiple
time steps, agent k observes the status of its current task
and channel quality. We define the local observation as a
compact vector o (t) = {Qk(t)7 Ri(t), o(t), Bk(t)}7 where

Qx(t) is the normalized remaining bits of the current task,
R (t) is the normalized cycles/bit, 8k (t) = tg rem(t)/(Dk +€)
is the remaining-deadline ratio, and By(t) is a the total
large-scale channel gain from all APs to user k, ( By (t) =
St Bk (1)):

b) Action: At each time step ¢, user k selects a continu-
ous action ax(t) = [au(t), mi(t)], 0<ar(t) <1,0<
nk(t) < 1, where ay(t) controls the local DVFS frequency
allocation and 7 (t) controls the uplink transmit power for
offloading.

¢) Reward: The reward is designed to minimize energy
while enforcing hard-deadline reliability under heterogeneous
arrivals. Let Fj(t) be the per-step energy (local computing
plus offloading), and define normalized energy Ek(t) =
min{ Ey (t)/(E™®* + ¢€),1}. Let the normalized progress be
pr(t) = (Qr(t) — Qr(t + 1)) /(QIM* + €) and the remaining
fraction be 7y (t) = Qr(t + 1)/(QIM* + ¢). We use an event-
based term to reflect task outcomes and an urgency-shaped



TABLE I
HETEROGENEOUS TASK PROFILES USED IN THE SIMULATION (PER

ARRIVAL).
Class ¢ Task size T' (kbits)  Cycles/bit C'  Deadline D (ms)
XR [20, 80] 300, 800 (10, 20]
IoT [5,20] 100, 500 [3,5]

penalty to discourage carrying large remaining workload close
to the deadline:

1 (t) = wp pr(t) — we Ex (t) + ws (1)

. 12
— wy chall(t) — Wy, Wk(t) Tk(t)ﬁ. ( )

where I;"°(¢) indicates that the current task completes within
its deadline, I*1!(¢) indicates deadline expiration with unfin-
ished bits, and 71 (t) = 1 — tgrem(t)/(Dy + €) increases as
the deadline approaches. Finally, we adopt a cooperative global
reward shared by all agents, i.e., 7(t) = & Zle r(t), to en-
courage coordination to reduce total energy while maintaining
deadline compliance across heterogeneous users.

The actor network is a fully-connected feedforward neural
network with two hidden layers of 1024 neurons each, using
ReLU activations. The final actor head uses a sigmoid squash-
ing function, and the outputs are linearly mapped to satisfy
the action bounds. The critic is a centralized fully-connected
network that takes the concatenated joint state-action vector
of all agents as input, passes it through three hidden layers
of 1024 neurons with ReL.U activations and outputs a single
scalar value estimate. We employ layer normalization in both
actor and critic networks for stabilizing the training.

IV. PERFORMANCE EVALUATION

We consider a CF-mMIMO-enabled MEC uplink with
M = 100 single-antenna APs serving K = 10 single-
antenna users using MRC combining. The system bandwidth
is W = 20 MHz, the uplink transmit power is bounded by
pPma* = (0.1 W, and the receiver noise power is computed
using a noise figure of 9 dB. Time is slotted with step duration
At = 74, = 1 ms, and each episode spans 1" = 200 steps (with
400 episodes). The users’ maximum local CPU frequency
and the edge CPU capacity are set to f;"** = 1 GHz and
fCPYU = 100 GHz, respectively. Each user belongs to one of
two application classes (XR or IoT), drawn with probabilities
pxr = 0.4 and pror = 0.6; task parameters are sampled
per arrival as summarized in Table I (uniformly within the
indicated ranges).

As a baseline, we consider a low-complexity heuris-
tic that fully utilizes local computation while allocat-
ing uplink transmit power via fractional power control
based on the aggregate large-scale gain as pp(t) =

max (er\r{:1 Bmk)iv

Pi ,omaXiefi,., K}(Z%:} Bmi)iv ’
acting pathloss disparities.

Fig. 1 compares the MADDPG policy with a heuristic for
XR and IoT users. Fig. 1(a) shows the learned policy im-
proves success rates, ensuring reliability. Fig. 1(b) highlights

Vk, with v = 1, counter-

B MADDPG BKS§ Heuristic
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1.0} 0.959

Average success rate

XR IoT

(a) Average task success rate (deadline satisfaction).
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Average normalized energy
s s

10°

XR IoT

(b) Average normalized energy per task-generation.

Fig. 1. Heterogeneous MEC performance comparison between MADDPG
and the heuristic baseline.

the average normalized energy (per-class energy per task-
generation opportunity, normalized by the maximum per-user
energy per step), showing a significant reduction versus the
baseline. Overall, the learned joint control achieves a superior
energy-efficiency tradeoff compared to the heuristic.

V. CONCLUSION

We investigated joint resource allocation for CF-mMIMO
MEC network with heterogeneous tasks and multi-step dead-
lines. By modeling class-specific requirements, our learning-
based policy adaptively balances energy efficiency and reliabil-
ity. Results show our approach outperforms heuristic baselines
in both reliability and normalized energy across heterogeneous
application classes. Future research will explore richer service
mixes with dynamic AP clustering and fronthaul constraints,
as well as cooperative multi-satellite edge computing.
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