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Abstract—Reliable point-cloud segmentation models are criti-
cal for robotics and autonomous applications. However, existing
models often lack sufficient robustness in real-time environ-
ments, leading to significant performance degradation due to
the fact that the data quality varies based on distance, sensor
noise, or partial visibility. This work presents a comprehensive
study of widely used segmentation architectures—Point CNN,
Dynamic Graph CNN (DGCNN), and Point Transformer—on
the ShapeNet Part dataset by applying three data distortions
(density drop, Gaussian jitter noise, and spherical occlusion). Ex-
perimental results show that while all models achieve competitive
accuracy on clean data, their resilience varies substantially under
corruption, with Point Transformer consistently demonstrating
the highest robustness, PointCNN showing moderate degradation,
and DGCNN being most sensitive to noise and occlusion. These
findings highlight the importance of robustness as a core evalu-
ation dimension for 3D perception models and provide practical
guidance for designing and selecting architectures suitable for
deployment in noisy or dynamically changing environments.

Index Terms—Point-cloud segmentation, model robustness, 3D
perception, real-time applications

I. INTRODUCTION

3D point-cloud segmentation has become a foundational
technology for many real-world applications such as robotics,
autonomous navigation, AR/VR, and object part recognition
because point clouds offer a flexible, sensor-agnostic represen-
tation of 3D geometry. As sensor technologies spread and laser
scanning or depth-sensing becomes mainstream, point clouds
are increasingly common in scenarios where data quality is
not guaranteed: objects may be far away (leading to sparsity),
sensors may introduce jitter or noise, and occlusion or partial
visibility may hide important geometry. Under such variable
conditions, robustness of segmentation models is critical: a
model that works well on pristine registered data may fail
when applied to real-world, noisy, sparse, or partially observed
point clouds.

Despite recent progress in deep learning methods for
point cloud segmentation, most architectures have focused on
achieving high performance under “clean” conditions, leaving
their behaviour under real-world distortions unexplored. For
instance, traditional clean-data performance often degrades
significantly when point clouds contain noise or outliers [1].
Moreover, existing models primarily focus on clean, high-
quality datasets, such as ShapeNet Part and S3DIS, which
contain uniformly sampled, complete point clouds with min-

imal noise. As a result, their dependability in real-time ap-
plications characterised by sparse, noisy, or partially occluded
point clouds remains predominantly unverified [2] [3]. While
some studies have explored robustness in classification tasks
or under limited corruptions, these evaluations are typically
inconsistent across architectures, making fair comparison dif-
ficult [1] [4]. Recent efforts have begun addressing robustness
in point-cloud processing. PointASNL [2] demonstrated that
adaptive sampling combined with local-nonlocal operations
can significantly mitigate the impact of noise and outliers,
improving performance on both classification and segmenta-
tion tasks under corrupted real-world point clouds. Overall,
there is a clear gap between high benchmark performance
and real-world reliability, which points to a controlled, sys-
tematic evaluation framework. Such a framework would allow
multiple segmentation models to be assessed under uniform
corruptions, including density reduction, Gaussian jitter, and
occlusion, to quantify robustness, reveal architectural failure
modes, and provide actionable guidance for real-time deploy-
ment.

In this paper, we address this gap by conducting a robust-
ness evaluation of three representative segmentation models
(PointCNN, DGCNN, and Point Transformer) on a standard
part-segmentation dataset (ShapeNet Part). We apply three
realistic types of corruption (density drop, Gaussian jitter, and
occlusion) at multiple severity levels to simulate real-world
distortions such as sparsity due to distance, sensor jitter, and
partial visibility. By systematically measuring performance
across these conditions, we aim to reveal how different archi-
tectures degrade under data corruption, identify which models
are more robust to which perturbations, and provide insights
and recommendations for deploying point-cloud segmentation
in real-world or real-time applications.

II. RELATED WORK

Early deep models for point sets introduced architectures
that operate directly on unordered point clouds. PointNet
[5] proposed per-point MLPs with symmetric pooling to
handle permutation invariance, enabling both classification
and part segmentation. Subsequent works introduced local
and geometric operators to capture neighbourhood structures.
PointCNN [6] learnt X-transformations to enable convolution-
like operations on irregular points, while DGCNN [7] used dy-



namic graph constructions and EdgeConv to explicitly model
local edges. More recently, transformer-style models (Point
Transformers) exploited self-attention and learnt positional
encodings to capture long-range context and deliver strong
segmentation performance on large scenes.

Robustness of 3D models has attracted growing attention.
Sun et al. [8] introduced ModelNet40-C to quantify degra-
dation under a range of corruptions, showing large gaps
between clean and corrupted performance. Efforts such as
PointCloud-C [9] expand this idea to shape/segmentation
testbeds (ShapeNet-C), providing standardized corruptions
(density drop, jitter, occlusion, etc.) for fair model compar-
isons. These benchmarks reveal that strong clean accuracy
does not imply robustness to realistic perturbations.

Several works explicitly target robustness in 3D processing.
PointASNL [2] introduced adaptive sampling and nonlocal
modules to reduce sensitivity to noise and outliers in raw point
clouds. For segmentation with noisy annotations, methods such
as PNAL [10] proposed point-wise confidence selection and
cluster-wise label correction to improve training under label
corruption. Overall, robustness-oriented methods either change
input sampling, augment local/nonlocal feature aggregation,
or incorporate noise-aware training/label correction strategies.
However, most of these methods were evaluated under limited
corruption types or on classification tasks, leaving a gap for
systematic, head-to-head segmentation robustness comparisons
across standard architectures.

While prior studies have investigated architectural inno-
vations for point-cloud segmentation and explored limited
robustness conditions, a comprehensive comparison of diverse
model families under multiple real-world corruption types
remains largely missing. In this work, we address this gap
by systematically evaluating three representative segmentation
models under control distortions that commonly occur in
practical 3D sensing environments. This unified robustness
evaluation framework highlights how different architectures
degrade under data sparsity, sensor noise, and partial visibility,
offering novel perspectives on their reliability for real-time and
safety-critical applications.

III. METHODOLOGY

This section describes the dataset, corruption framework,
model selection and evaluation protocol to assess the robust-
ness of three benchmark point-cloud segmentation models.

A. Datasets and Models

To evaluate robustness under realistic 3D sensing condi-
tions, we use the ShapeNet Part dataset, a standard benchmark
for part-level segmentation. It contains 16,881 3D shapes from
16 object categories (e.g., chairs, lamps, airplanes), annotated
with 50-part labels in total. Each object is represented by 2048
points sampled from the mesh surface. For each shape, the task
is to label each point with its corresponding part category. We
follow the official train/test split and report results on the held-
out test set. We evaluate three established point-based neural
network architectures:

Level 1 (75%)

Original Level 2 (50%) Level 3 (25%)

Level 2 (0=0.03)  Level 3 (0=0.05)

Level 2 (R=0.2) Level 3 (R=0.3)

Fig. 1: Point cloud after density reduction, Gaussian noise
injection and spherical occlusion

e PointCNN [6]: A convolutional framework that learn
an X-transformation to permute and weight neighboring
points, enabling a generalization of grid CNNs to irregu-
lar point sets. PointCNN reports competitive accuracy on
benchmarks.

e DGCNN (Dynamic Graph CNN) [7]: A graph-based
model that constructs a k-NN graph on the point cloud at
each layer and applies the proposed EdgeConv operation
to capture local geometric relations. DGCNN proved
effective for both classification and segmentation tasks.

o Point Transformer [11]: A transformer-like network using
self-attention on point neighborhoods. Designed for 3D
data, it achieves state-of-the-art results (e.g. 86.6% mloU
on ShapeNet Part) by capturing both local and global
context.

Each model is implemented and trained on the clean
ShapeNet Part training set. The reported baseline accuracies
(clean test mloU) are around 83-85% for these models,
confirming good performance on the unmodified data.

B. Corruption Protocol

To assess robustness, we generate corrupted versions of the
ShapeNet Part test set under three categories of distortions.
These mimic real sensor artifacts:

« Density Drop: For each object, we randomly drop points
so that only 75%, 50%, or 25% of the original points
remain. This emulates distant or low-resolution scans
where the point cloud density is reduced.

o Gaussian Noise: We add independent Gaussian noise to
each point’s (x,y,z) coordinates. Specifically, we sample
noise from A(0,02) with ¢ = 0.01,0.03, or 0.05. This
creates slight random displacements of points, reflecting
typical depth-sensor noise.
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Fig. 2: Number of point cloud after applying sparse, noise and occlution

o Occlusion: We remove all points within a random sphere
of a given radius. Concretely, for each test object, we
select a random center in the object’s bounding volume
and delete all points within radius » = 0.1,0.2, or 0.3.
This creates a spherical hole in the point set.

The visualisation diagram of three distinct data corruption
techniques applied on a 3D point cloud of an airplane object
is illustrated in figure 1.

Figure 2 shows the comparison of how different corruption
types affect the number of points in a ShapeNet part point
cloud. Gaussian noise (left) does not change the point count,
since it only perturbs coordinates while keeping all points. In
contrast, density-based sparsification (middle) directly reduces
the number of points according to the sampling ratio, dropping
from the full 2048 points down to 512 at the highest severity.
Occlusion (right) also lowers the point count, but more grad-
ually: removing points within a spherical region reduces the
cloud from 2048 to 1703 as the occlusion radius increases.

C. Evaluation Metrics

We measure segmentation performance using the mean
Intersection-over-Union (mloU) over all part classes, a stan-
dard metric for part segmentation. For each shape, IoU is
computed per part category, then averaged across the parts
present in the shape. Finally, we average the shape-level loUs
over the test set. Higher mloU indicates better segmentation
quality.

To quantify robustness, we will report the absolute mloU
values at each corruption level and, optionally, a relative
performance drop (e.g., percentage change from clean). In
some research, the mean Corruption Error (mCE) metric
was used by normalising error against a baseline model, but
here we mainly focus on direct comparison of mloUs across
models and conditions. Apart from the intended corruption,
we carefully ensure that the evaluation conditions (number of
points, normalisation) align with the clean-data setting..

IV. RESULTS AND DISCUSSION

This section presents high-level quantitative results. We
first establish a baseline performance using clean data to
contextualise the degradation. On the clean ShapeNet Part
test set, Point Transformer achieves the highest reported
mloU (around 86.6%), PointCNN (around 86.1), and DGCNN
achieves around 85.7%. This confirms that all four models are
competitive on the standard task, with differences of only a
few percent in clean accuracy. All models’ accuracy degrades
as more points are dropped. Adding jitter to point coordinates
generally degrades features for all models. We observe that
segmentation accuracy falls steadily as noise increases. The
spherical occlusion (removing a local region) has a strong
impact, as it removes entire parts of an object. We observe
that occlusion with a large radius (0.3) can dramatically reduce
accuracy, especially for parts near the occluded region.

Table I shows that all models maintain high accuracy until
the most severe drop, at which Point Transformer (85.4)
exceeds PointCNN (84.2) and DGCNN (82.1). Table II shows
a similar pattern: at o = 0.05, the Transformer’s mloU (83.1)
is far higher than DGCNN (76.1) and PointCNN (75.3). Table
IIT highlights the largest disparity: even with large occlusions,
Point Transformer stays near 86.0 mloU, whereas PointCNN
and DGCNN fall to 83.2 and 79.8. These tables confirm the
narrative trends. For example, Table I indicates that under a
25% density drop, DGCNN loses ~ 3.6 mloU points from
baseline while Point Transformer loses only ~ 1.2. Likewise,
Table III shows DGCNN suffers a ~ 5.9-point drop under
severe occlusion, compared to ~ 0.6 for the Transformer.
Overall, the data make clear that Point Transformer consis-
tently tops the performance across corruptions, PointCNN is
second, and DGCNN is most affected.

In summary, a key quantitative observation is that Point
Transformer consistently has the best robustness profile among
the three. The transformer’s attention mechanism does help
maintain longer-range context, mitigating some local loss.



TABLE I: Evaluation under density drop corruption

Model Key Features mioU
Clean | Level 1 (75%) | Level 2 (50%) | Level 3 (25%) | A(Clean — Level 3)
PointCNN Convolution-based 86.1 84.1 84.2 84.2 -1.9
DGCNN Graph-based 85.7 85.5 85.0 82.1 -3.6
Point Transformer | Transformer-based 86.6 86.4 86.1 85.4 -1.2

TABLE II: Evaluation under Noise conditions

Model Key Features mioU
Clean | Level 1 (75%) | Level 2 (50%) | Level 3 (25%) | A(Clean — Level 3)
PointCNN Convolution-based 86.1 83.6 80.2 75.3 -10.8
DGCNN Graph-based 85.7 84.5 80.7 76.1 -9.6
Point Transformer | Transformer-based 86.6 86.5 85.1 83.1 -3.5

TABLE III: Evaluation under occlusion conditions

Model Key Features mioU
Clean | Level 1 (75%) | Level 2 (50%) | Level 3 (25%) | A(Clean — Level 3)
PointCNN Convolution-based 86.1 84.1 84 83.2 -29
DGCNN Graph-based 85.7 80.2 80.6 79.8 -5.9
Point Transformer | Transformer-based 86.6 86.6 86.3 86 -0.6

All models experience accuracy degradation as corruption
severity increases, but the magnitude of the drop depends on
the architecture. These observations imply that real-world 3D
perception systems might prefer local-aggregation networks or
incorporate augmentation strategies to handle sensor artefacts.

V. CONCLUSION

This work presented a robustness evaluation of three
widely used point-cloud segmentation models—PointCNN,
DGCNN, and Point Transformer—under realistic corruptions
that simulate sparsity, sensor noise, and occlusion. Across
all conditions, the Point Transformer consistently showed the
highest resilience, maintaining strong performance even at
severe corruption levels, while PointCNN exhibited moderate
degradation and DGCNN suffered the largest drops, especially
under heavy noise and occlusion. These results highlight
how architectural choices, such as attention-based feature
aggregation versus graph-based neighbourhood construction,
directly influence robustness. Our results show that robustness
should be a key factor in evaluating 3D vision models. Future
research should look into corruption-aware training and hybrid
architectures to make models even more stable in real-world
settings.
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