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Abstract—Optical Camera Communication (OCC) has devel-
oped as a viable substitute for radio-frequency wireless systems
by utilizing light-emitting diodes (LEDs) and image sensors for
data transmission. To improve data throughput, robustness, and
multi-user capability, recent OCC systems increasingly adopt
multiple LED transmitters and hybrid modulation schemes such
as Hybrid On–Off Keying and Orthogonal Frequency-Division
Multiplexing (OOK–OFDM). However, accurately detecting and
locating multiple LEDs in real time in a variety of settings is
still a big problem, especially when the lighting is low or the
LEDs are moving. This paper discusses the creation of a deep
learning-based automatic multiple LED detection framework
for a hybrid OOK–OFDM OCC system. A unique dataset
is created with a global shutter camera that has controlled
exposure to record realistic changes in distance, orientation,
motion blur, and modulation patterns. A semi-supervised, model-
assisted labeling strategy is used to quickly make high-quality
annotations for both OOK and OFDM transmitters. An AI-based
object detection model is trained on this dataset to accurately
find and categorize multiple LED transmitters at the same time.
The experimental results show that the training behavior is
stable, the generalization is strong, and the detection performance
is accurate even in difficult imaging conditions. The suggested
method gives hybrid OCC systems a reliable perception front-
end and lets them communicate with multiple LEDs in real time
in changing environments.

Index Terms—OOK, OFDM, OCC, Detection

I. INTRODUCTION

Optical Camera Commuication (OCC) is a next-generation
wireless technology that utilizes the light sources such as
Light-Emitting Diode (LED) as data transmitting medium and
paired with camera or image sensors to process captured
images as received data. OCC is based on the wireless
communication category of the Visible Light Communication
(VLC) family. The distinction however, lies in the usage of
camera instead of photodiode as receiver, normally used in the
laser communication systems. Researches are developing OCC
as alternative technology to the already highly congested radio
frequency (RF) communication network. However, to establish
connection between transmitter and receiver of OCC system
the communication link must be line of sight (LoS). Other
important consideration is the camera frame rate to support
the effective data throughput of OCC system. Every captured
image frames from the camera will define how much of data
throughput can be extracted from them.

By using multiple LEDs in OCC systems, we can increase
the overall data throughput, reduce the outage probability in
case of view blockage, and multiple access for the users.
Each LED can be defined as independent transmitter. This
concept is derived from the Multiple-Input Multiple-Output
(MIMO) method, which leverages the multiple nodes each of
the transmitter and receiver side. Compared to single LED, the
use of Multiple LEDs can set the data channel into parallel data
streams which effectively increase the throughput into multi-
fold of the LED counts. In this method the camera will detect
each LED separately and count as different data stream. The
second advantage of multi-LED is the mitigation of outage
errors due to the view blockage. By utilizing different LED
on the transmitting side, the camera can have more options to
receive data compared to only one single LED as light source.
The configuration of multi-LED can also provide the Multi-
user or Multi-Access to the users. The separate LED can acts
as single entity of OCC node that work entirely independent
with other LEDs. The camera should be able to differentiate
these multiple LED to be capable of the Multi-User feature [1].
Recently, the Hybrid On-Off Keying Orthogonal Frequency-
Division Multiplexing (HOOK-OFDM) concept is explored
by researchers to enhance the performance of current OCC
version.

Incorporation of Artificial Intelligence (AI) algorithm is
required to enable the multiple LED in OCC system. This au-
tomates the processing and keep the system works seamlessly
in real-time. The real-world images captured by the camera has
a large variant so it is difficult to solve the decoding process
by just calculating the received images in direct approach
decoding method. For the sake faster LED detection the AI
is used on OCC system such as the Convolutional Neural
Network (CNN) or the You Only Look Once (YOLO) AI mod-
els. Building dataset is essential for AI enhanced Automatic
Multiple LED Detection for HOOK-OFDM OCC system. The
dataset is utilized to train models to detect multiple LED setup
simultaneously and find out the variations of many different
kind of LED images captured by camera. The variance of
image data can be due to distance, scale, viewing angle, motion
blur, camera exposure, and lens focus [2].

The technical limitation of conventional method for Au-
tomatic Multiple LED Detection for HOOK-OFDM OCC
system forces the designer to build robust and high perfor-



mance AI model. The complexity of the decoding process
in the hybrid modulation and multiple LED configuration
requires the system to be AI enhanced. The image capture
of OCC receiver must be able to process the single frame shot
of the image of the multiple LED detected by the camera.
This will be resource intensive in the conventional decoding
system, therefore implementing the AI model will significantly
enhance the performance. In the real-world scenario, the OCC
system will have to be able to handle multiple LEDs that trans-
mitting data simultaneously with highly variate size, distance,
orientation, and brightness values. With the AI-based model
for multi-LED detection, the system will be able to localize
multiple LED simultaneously, separate closely arranged LEDs
and flexibly increase effectiveness in dense OCC system.

II. RECENT WORKS

Optical Camera Communication (OCC) leverages image
sensors and the rolling shutter effect to enable low-cost optical
wireless links but suffers from low frame rates and challenging
channel conditions. Hybrid modulation schemes combining
On-Off Keying (OOK) for low-rate identification and Rolling-
Shutter OFDM (RS-OFDM) for high data throughput have
been studied to enhance achievable rates and BER perfor-
mance over conventional single-modulation schemes in OCC.
However, in hybrid systems where OOK coexists with OFDM
(or ACO-OFDM), fixed intensity thresholds become unreliable
under low SNR—particularly over longer distances—due to
interference between waveform components, causing a hybrid
threshold conflict that undermines simple demodulation [3].
These limitations are amplified in multi-LED scenarios requir-
ing real-time localization and modulation classification, moti-
vating recent works that apply deep learning–based detection
and classification to jointly localize LEDs, mitigate optical
channel effects, and decode hybrid OOK–OFDM signals ro-
bustly [4].

Automatic detection and localization of LED transmitters
is a foundational challenge in optical camera communication
(OCC) systems, as accurate ROI extraction directly impacts
communication reliability, throughput, and bit error ratio
(BER). Traditional OCC detection methods are computation-
ally lightweight but struggle under varying illumination, mo-
tion blur, and multiple simultaneous transmitters, motivating
the adoption of more robust approaches. Recent research has
explored the utilization of deep learning-based object detection
models to address these limitations, leveraging convolutional
neural networks (CNNs) to localize LEDs under complex
backgrounds and dynamic environments.

Recent research has increasingly adopted deep learning-
based object detection models to address limitations of tra-
ditional ROI extraction. Sun et al. [5] proposed an end-to-
end LED detection and recognition architecture based on the
YOLOv5 object detector to localize LED arrays and mitigate
motion blur in vehicle-to-vehicle OCC, demonstrating real-
time detection and improved LED status recognition accuracy
in complex scenes. Similarly, Cheng et al. [6] developed

a lightweight deep learning pipeline combining LED detec-
tion and segmentation specifically tailored for OCC, yielding
higher detection accuracy and inference speed across various
communication distances. Recent work has also explored novel
detection and classification frameworks based on YOLOv8
have been shown to achieve high symbol recognition accu-
racies under color-based modulations, indicating the effective-
ness of modern CNN detectors in OCC contexts [7].

Despite these advances, the limited availability of standard-
ized LED-centric datasets remains a bottleneck for generalized
model training in detection and deep learning research. The
E-VLC dataset provides synchronized event camera and frame
camera data for visible light communication and localization
tasks across diverse environmental settings, offering a potential
benchmark for LED detection and localization approaches [8].

These developments collectively underscore the trend to-
wards integrating deep learning-based object detection, track-
ing, and classification in OCC systems to enable robust,
real-time multiple LED detection suitable for hybrid modu-
lation schemes such as OOK-OFDM. However, challenges re-
main in improving detection under varying lighting conditions,
handling multiple simultaneous transmitters, and developing
comprehensive datasets that support both localization and
decoding tasks in diverse real-world environments.

III. LED DATASET DEVELOPMENT

In this paper we establishes a specialized dataset designed
for the robust detection of Optical Camera Communication
(OCC) transmitters in high-speed, mobile environments. The
development process is divided into a rigorous data collection
phase, which simulates realistic channel conditions, and a
semi-supervised labeling phase designed to maximize anno-
tation efficiency for multi-class detection.

A. Data Collection

We captured data using a global shutter camera with the
exposure locked to 22 µs. This low exposure removes back-
ground light, making the transmitters appear as bright shapes
on a dark background. The dataset includes two types of
transmitters: a 16x16 LED matrix for OOK modulation (OOK
tx) and a rectangular LED with three extra corner LEDs for
OFDM modulation (OFDM tx). To make sure the camera can
always see the transmitters, even when they send ”off” signals,
we used an anchor strategy. For OOK tx, we programmed the
corner LEDs to stay on. For OFDM tx, the three extra LEDs
act as permanent markers.

To ensure the model works well on a moving drone, we
recorded continuous videos instead of taking single photos.
Data collection process varied in several ways such as distance,
camera angle, blinking patterns, and motion blur. The camera
was maneuvered from close-range views to long-range views
and subjected to angular tilts to introduce different perspective
distortion. Simultaneously, the transmitters cycled through
various modulation patterns. This approach ensures the model
learns to generalize the spatial features of both the OOK tx and



OFDM tx classes, preventing overfitting to static, front-facing
orientation

B. Labeling Method

A model-assisted active learning pipeline was employed to
annotate the dataset efficiently, beginning with the manual
curation of an initial reference subset. This subset was care-
fully balanced to include equal distributions of both transmitter
classes OOK tx and OFDM tx. The annotation protocol strictly
defined the bounding boxes to enclose the implied geometric
area of the transmitters, for the OOK tx class, the box
encompasses the 16x16 grid area defined by the corner anchors
and for the OFDM tx class, the box encloses the rectangular
main LED and its three auxiliary anchors. This consistent
labeling strategy trains the model to recognize the complete
physical extent of the transmitter even when the modulated
data payload is not visible.

To maximize the utility of the limited reference subset,
extensive data augmentation was applied during the prelim-
inary training phase. Geometric transformations, including
perspective warping and rotation, were heavily utilized to
simulate the spatial orientation of a drone relative to the trans-
mitter. Additionally, synthetic image composition techniques
were employed to combine multiple transmitter instances into
single frames, forcing the model to learn context-independent
features. A lightweight object detection model was then trained
on this augmented reference set to establish a baseline learner
capable of generating preliminary bounding box predictions
for both classes.

The final labeling stage utilized this baseline model to
automatically predict annotations for the remaining unlabelled
dataset. Rather than creating annotations from scratch, human
verifiers only needed to validate the class classification (OOK
tx, OFDM tx) and refine the bounding box dimensions. This
semi-supervised workflow significantly reduced the manual
labor required, ensuring high-quality ground truth labels while
maintaining strict class consistency across the entire dataset.

IV. DETECTION MODEL DEVELOPMENT

Over the years, numerous object detection model has been
proposed. Mainly, the object detection model can be catego-
rized into two groups: single-stage and double-stage detection.
The double stage detection performs better than the single-
stage model due to the additional steps when predicting the
object class and location. However,the double-stage model has
significantly slower computes compared to the single-stage
model. The popular model of double-stage model are R-CNN
and Fast R-CNN.

Due to the computation speed issue in double-stage model,
the single-stage model is chosen to perform the LED detection.
The YOLO model is the most popular single-stage model in
the world. The YOLO has evolved since several years ago with
the most recent one is the YOLO12, meaning the version 12 in
official YOLO model family. Moreover, in most YOLO family,
they have varying model size that usually can be classified into

nano, medium, large, or extra-large depending on the number
of layers in the YOLO model.

For this work, the LED object detection is performed in
a resource-constrained device. Hence, the size of the model
should be small enough to run in such device with suitable
speed. Due to the varying options of YOLO models, we
choose to use some of the most recent YOLO model where
each model uses only the smallest size variant, the nano.
In this work, we use YOLO version 5 to 12 by using the
implementation from Ultralytics [9].

V. EXPERIMENT RESULTS

Based on the developed system, we conduct a detailed
assessment of our work using several quantitative metrics.
These metrics are applied to rigorously validate the AI model’s
capability to detect the LED matrix. The evaluation is per-
formed directly on diverse image data where the LED matrix
appears under varying conditions, ensuring that the model’s
performance is reliable and consistent in realistic scenarios.

A. Dataset

In this work, we collected dataset of around 40,000 images
of LED with three classes of tx, OOK tx, and OFDM tx.
The 40,000 images are taken using the similar camera settings
but taken in multiple different environment and distance. The
composition of environment and distance are not proportional
to add more variance in the data.

B. Model

Based on the Table I, it is clear that the model YOLOv9n
and YOLOv11n are the fastest in inference time in terms of
processing speed, meaning that the model is small enough
and fit well with the requirements for the LED detection. The
model YOLOv9n is better in the mAP@0.95 where the model
has advantage of 0.001 than the YOLOv11n. Therefore, for
the object detection model, the YOLOv9n is chosen as the
main model to perform the task.

Based on Figure 1, it showing the overall metrics related
to the training results of the proposed detection model. We
can analyze that the LED matrix detection model’s training
losses for bounding box regression (box loss), classifica-
tion (cls loss), and distribution focal loss (dfl loss) decrease
steadily and smoothly over 100 epochs. This indicates stable
optimization without divergence or oscillation and suggests
that the model is continually improving its fit to the training
data. The smoothing curves closely follow the raw results,
reinforcing that the overall trend is a consistent reduction in
error across all three training loss components.

On the validation side, the box, classification, and dfl losses
start higher than their training counterparts but also decrease
over time, then plateau, which is typical of a model that is
learning meaningful features rather than memorizing the data.
The validation curves show more noise and spikes, especially
for the classification loss, but the general downward trend
and eventual stabilization imply that overfitting is limited
and that the model generalizes reasonably well to unseen



TABLE I
EVALUATION OF VARIOUS YOLO MODEL TRAINING PERFORMANCE

Model name Inference Time (ms) mAP@0.50 mAP@0.95
YOLOv5n 1.0 0.829 0.533
YOLOv8n 1.1 0.829 0.534
YOLOv9n 0.7 0.829 0.532

YOLOv10n 1.3 0.829 0.534
YOLOv11n 0.7 0.829 0.531
YOLO12n 2.2 0.83 0.534

Fig. 1. Training result.

LED matrix samples. The narrowing gap between training and
validation losses near the end of training further supports this
interpretation.

The metric plots indicate that the model rapidly reaches
high performance for LED matrix detection, with precision
quickly climbing and stabilizing around a high value, while
recall slightly drops from an initially inflated value to a more
realistic but still strong level. The mAP@50 and mAP@50–95
metrics both increase throughout training and converge to
relatively high plateaus, showing that the model is accurate
across different IoU thresholds, not just at the easiest one.
Overall, these curves suggest that the trained AI model can
reliably localize and classify LEDs in the matrix with good
balance between precision and recall and robust performance
across varying localization tolerances.

As shown in Figure 2, its visualizes the ground-truth an-
notations for the LED matrix and associated objects across a
sequence of low-light frames. Each frame contains bounding
boxes and class label which is ofdm tx, indicating the ex-
pected positions of the LED-based transmitters. This layout
confirms that the dataset captures consistent spatial placement
of the LEDs while still including background clutter and
darkness, which makes the detection problem non-trivial.

As for the model’s predictions are shown in Figure 3,
the predicted bounding boxes and class labels for the same

Fig. 2. Validation Labels Data.

frames, now overlaid with confidence scores (e.g., tx 0.3). The
predictions align closely with the ground-truth box locations,
and the model repeatedly detects all visible LED elements
across frames, demonstrating strong spatial consistency. Even
with relatively modest confidence values, the repeated correct
detections in every frame indicate that the model has learned a



Fig. 3. Validation Prediction Results.

robust representation of the LED transmitters under challeng-
ing illumination conditions.

Comparing labels and predictions side by side highlights
that the model not only localizes the LED matrix accurately
but also maintains stable classification performance over time.
The dense clustering of blue predicted boxes around the
true LED positions suggests minimal localization error and
limited false positives in the surrounding dark background.
This qualitative validation supports the quantitative metrics
from training, showing that the LED matrix detection network
generalizes well and is suitable as a perception front-end for
communication or control tasks involving LED-based trans-
mitters.

VI. CONCLUSION

This paper introduced an AI-driven automatic multiple LED
detection framework for hybrid OOK–OFDM Optical Camera
Communication systems. A specialized OCC dataset was
created utilizing low-exposure global-shutter imaging to record
authentic variations in distance, orientation, motion blur, and
modulation patterns. A semi-supervised labeling strategy was
implemented to effectively produce uniform annotations for
both OOK and OFDM transmitters. Using this dataset, a
deep learning-based object detection model was trained and
tested. It showed stable convergence, strong generalization,
and accurate localization and classification of several LED
transmitters in difficult low-light and dynamic situations. The
experimental findings validate that the proposed methodology
delivers a resilient and scalable perception front-end for hybrid
OCC systems, facilitating dependable multiple LED detection
appropriate for real-time and mobility-sensitive communica-
tion contexts.
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