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Abstract—Accurate positioning is crucial for autonomous navi-
gation of unmanned aerial vehicles (UAVs), as it provides reliable
pose information to the perception and planning-control modules.
However, when global navigation satellite system (GNSS) signals
are unavailable or degraded, the accumulated drift of dead-
reckoning and inertial estimates significantly reduces localization
accuracy, especially in complex 3D environments. To address this
issue, this paper proposes a simulation-based sensor fusion based
simultaneous localization and mapping (SLAM) framework for
robust UAV positioning without relying on GNSS. The framework
directly utilizes sequential 3D LiDAR scans to estimate the
UAV pose and incrementally build a dense map of the environ-
ment, while high-resolution camera streams provide contextual
information for the segmentation task. In addition, a modular
simulation pipeline is constructed to support configurable sensor
models, flight trajectories, and scene geometries, enabling sys-
tematic evaluation under GNSS-denied scenarios. The proposed
approach is validated using a simulation experiments on a
complex environment, and the results demonstrate that the 3D
LiDAR SLAM system achieves accurate and stable localization
in the simulation environment.

Index Terms—UAY, Simultaneous Localization and Mapping,
Segmentation, Sensor Fusion, Deep Learning

I. INTRODUCTION

Recent research on UAV SLAM and navigation has grad-
uvally shifted to reliably operating in GPS-denied or degraded
environments [1]. This shift reflects the growing demand
for autonomous aerial systems capable of maintaining robust
situational awareness and precise localization in complex
scenarios such as urban areas, indoor spaces, or disaster zones
where satellite signals are unavailable. Advances in vision-
based perception, multi-sensor fusion, and deep learning have
further accelerated this trend, enabling UAVs to navigate with
increasing autonomy and resilience [2].

Recent surveys on UAV-based SLAM illustrate that many
of the sensing modalities, such as cameras, LiDAR, radar,
and IMUs, are now being combined with the aim of solv-
ing key challenges like aggressive motion, large-scale 3D
environments, and dynamic scenes [3],[4],[S]. However, their
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Fig. 1. The 3D map illustrates the environment reconstructed using the SLAM
algorithm, where LiDAR data was fused with estimated poses to generate an
accurate spatial representation. The 3D map results demonstrates how the
algorithm effectively captures structural details and spatial consistency as the
UAV navigates through the scene.

performances still depend heavily on the structure of the
environment, the quality of sensor calibration, and careful
algorithm design. Indeed, recent works have illustrated that the
combination of complementary modalities allows for enhanced
localization accuracy and robustness in cluttered indoor, urban,
and agricultural scenarios [6],[7],[8].

Furthermore, the works related to UAV navigation in con-
fined indoor spaces prove that the integration of LiDAR,
cameras, and IMUs, possibly enhanced by deep learning,
allows for more reliable mapping and obstacle avoidance
in GPS-denied conditions [9]. However, challenges persist
in achieving real-time performance, maintaining long-term
consistency, and handling dynamic elements across diverse
environmental conditions [10],[11].

As one of the key challenge in implementing effective multi-
sensor fusion lies in achieving precise extrinsic calibration
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between sensors, which allows their data streams to mutually
complement each other for reliable task performance [12].
This can be accomplished either by developing a controlled
environment for the calibration process or by employing tar-
getless extrinsic calibration methods in standard environments
[13], [14]. Both approaches successfully yield the necessary
extrinsic parameters for the sensors involved.

Fig. 2. Warehouse scene environment.

To support rapid development and evaluation of such sensor-
fusion SLAM systems, there is an increasing interest in high-
fidelity simulation platforms that offer realistic multi-modal
sensor data and complex 3D environments [15]. On some re-
cent platforms, such as end-to-end UAV SLAM simulators and
telepresence-based UAV simulation frameworks, have made
synthetic datasets, configurable sensor suites, and ground-truth
trajectories available, thus enabling systematic benchmarking
of SLAM pipelines before their deployment on real hardware
[16],[15],[17]. However, most of the existing tools tend to
target specific sensing configurations or application scenarios;
therefore, there is still a need for more versatile simulated UAV
platforms that are specifically targeted at integrated sensor-
fusion-based SLAM research.

Fig. 3. Sensor fusion integrated drone 3D design.

The simulation provides a practical means to achieve real-
time performance, agile maneuvering, high-resolution sensing,
and reduced development cost. There are several available
simulator environment and platform such as ROS-Gazebo,
Airsim-W, XTDrone, and SmrtSwarm, but these tools ex-
hibit limitations in faithfully replicating complex real-world
conditions. Developed by NVIDIA, the Isaacsim platform is
introduced. In particular, it leverages PhysX, Integrated ML
support, and ROS2 support to create a real-time, interactive
framework that offers a dynamic and visually realistic virtual
environment [18]. By using this framework, we developed a
end-to-end LiDAR-SLAM simulation using drone and virtual
environment inside of the Isaacsim software itself.

II. METHODOLOGY

For our implementation, we used NVIDIA Isaacsim soft-
ware as the main framework to develop the UAV-based
LiDAR-SLAM algorithm. There are several other software
that support our simulation, such as PegasusSimulator, PX4-
Autopilot, ROS2, etc. Furthermore, for the SLAM algorithm,
we take reference from MOLA as one of the robust and
modular SLAM algorithm [19].

A. Simulation Software

The main software used for developing the simulation
is called Isaac Sim which is NVIDIA’s robotics simulation
platform built on Omniverse, used to design, test, and train
Al-powered robots in physically realistic 3D environments
with photorealistic rendering and accurate physics. It supports
importing robots and environments from standard formats such
as URDF, MICF, and CAD, and provides built-in tools for
sensor simulation (cameras, LiDAR, IMU), control, motion
planning, and synthetic data generation for perception models.

B. Simulation Environment

Several key features of the Isaac Sim platform were uti-
lized in this implementation, including the scene environment,
robotic models, various sensors, and PhysX-based physics
simulation. These components collectively enable the simula-
tion to closely replicate real-world scenarios, ensuring realistic
interaction dynamics and sensor responses.
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Fig. 4. Overall SLAM system architecture.

The warehouse scene template in NVIDIA Isaac Sim pro-
vides a realistic industrial environment for UAV simulation
and SLAM testing, featuring modular assets like warehouse
buildings, shelving units, racks with stacked boxes, human-
form workers and structural columns as shown in Figure
2. This template also supports robotics research by offering
customizeable layouts through extensions like warehouse cre-
ator for procedural wall/column placement, making it ideal
for validating multi-sensor fusion algorithms in GPS-denied
warehouse scenarios typical of autonomous drone navigation.

The 3D-designed drone implementation utilizes Universal
Scene Description (USD) assets in Isaac Sim, featuring a
modular quadrotor frame with articulated propellers called Iris
drone from PegasusSimulator [20], RealSense D455 camera,



Fig. 5. On-simulation rviz2 visualization.

and Velodyne LiDAR sensors positioned for optimal sensor
fusion coverage, all scaled to real-world metrics with PhysX-
enabled rigid bodies and joint drives for realistic flight dy-
namics as shown in Figure 3. The accompanying ROS2 data
pipeline, integrates several sensors data streams through (Li-
DAR and Camera), fuses them via tf2 transforms into a unified
/odom frame, feeds into LIDAR SLAM nodes (MOLA), and
publishes /map and /pose estimates for downstream navigation.
This end-to-end pipeline enables rapid prototyping of multi-
sensor SLAM for UAVs in warehouse environments, bridging
simulation with real-time ROS2 middleware for seamless
transition to hardware deployment.

Fig. 6. 3D map results.

C. Overall Algorithm Architecture

The overall architecture of the proposed algorithm consists
of several components, as illustrated in Figure 4. The system
begins with UAVs equipped with two sensors which are a
stereo camera and a 3D LiDAR that continuously publish
their data to the ROS2 data pipeline. The implemented SLAM
algorithm, MOLA (Modular System for Localization and
Mapping), processes the LiDAR point cloud data to perform
simultaneous localization and mapping. The output from the
MOLA SLAM module is then published back to the ROS2
pipeline for visualization using the RViz2 plugin. Additionally,
based on Isaac-ROS library, using the image data from D455
Intel Realsense camera, we also implemented segmentation
algorithm to accurately classify the human-form object inside
of simulation. Lastly, the UAV’s motion is controlled through

the PX4-Autopilot library, which interfaces with an external
joystick controller.
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Fig. 7. 2D representation of the UAV’s simulated flight path.

Once the simulation begins, the UAV can be manually
controlled using an external joystick to scan the entire en-
vironment. As the UAV navigates through the scene, the
LiDAR sensor continuously collects point cloud data from
different viewpoints, which can be visualized in real time using
RViz2, as shown in Figure 5. All collected data are stored and
integrated within the MOLA SLAM framework. Upon com-
pleting the scanning process, the MOLA algorithm generates
a comprehensive 3D map of the simulated environment.

III. RESULTS AND DISCUSSION

After executing the simulation and deploying the SLAM
algorithm within the developed simulation environment, we
evaluated its performance based on the quality of the generated
3D map, the reconstructed UAV trajectory and segmentation
mask. The quality of the 3D map served as a measure of
the algorithm’s mapping accuracy and spatial consistency,
while the trajectory analysis allowed us to assess localization
stability and drift behavior as the UAV scanned the entire
simulated environment.

A. Simulation Results

Based on the 3D map results shown in Figure 6, the SLAM
model demonstrates sufficient capability in reconstructing the
overall environment within the simulation. The generated
map clearly captures key structural elements, including the
factory shelves, multiple boxes, and the surrounding walls that
define the boundaries of the scene. The spatial environment
consistency across the scene indicates that the algorithm is able
to maintain reliable pose estimation throughout the scanning
process. Minor dissimilarity appear at the edges of some
objects such as the boxes in the middle of the factory, which



Fig. 8. D455 intel realsense camera image stream.

may be attributed to sensor noise or limitations in depth
perception during fast UAV motion.

During the overall scene scanning process in the simulation,
the SLAM algorithm simultaneously recorded the UAV’s tra-
jectory based on the odometry data it generated. This trajectory
data, shown in Figure 7, confirms that the UAV successfully
covered the entire factory environment during the mapping
task. The trajectory visualization reveals that the flight path
maintained consistent coverage across different regions with
minimal deviation from the planned route. This indicates that
the SLAM algorithm provided stable pose estimation and
effective spatial awareness throughout the scanning process.

As for the texture information, we implemented the segmen-
tation based on the image data from D455 Intel Realsense
camera attached together with LiDAR sensor on the top of
the UAVs. We feed those images stream as shown in Figure 8
directly to Isaac ROS based segmentation model. The segmen-
tation model then will resulting a new image which contain
the segmentation mask of the human-form object inside of the
simulation scene as shown in Figure 9.

For texture information, we implemented semantic segmen-
tation using image data from the Intel RealSense D455 camera,
which is attached together with the LiDAR sensor on the
top of the UAV. These image streams, as shown in Figure 8§,
are directly fed into an Isaac ROS-based segmentation model,
which generates a segmentation mask for human-form objects
within the simulation scene, as illustrated in Figure 9. The
generated segmentation mask precisely localizes human-form
objects within the simulation environment.

IV. CONCLUSION AND FUTURE WORK

In this study, we implemented a SLAM algorithm for UAV
applications within a controlled simulation environment using
Isaac Sim. The proposed system successfully generated an
accurate map of the entire warehouse scene and effectively
documented each UAV’s translational and rotational move-
ments throughout the operation via several graphs explained
before.

In contrast, implementing SLAM using only LiDAR point
clouds presents limitations in recognizing objects within the
scene. Although LiDAR data provides high geometric accu-
racy, it lacks textural and semantic information necessary for

Fig. 9. Segmentation result.

reliable object identification. Therefore, integrating LiDAR
and camera data enables a more comprehensive understanding
of the environment. This cooperative approach leverages the
precise geometric mapping of LiDAR and the rich visual
details from the camera. The point cloud captures the structural
layout, while the camera data, processed through segmentation
algorithms, distinguishes individual objects, which is human
on this simulation. Both algorithms have been tested and
validated within the developed simulation environment.

In future work, we plan to extend the current simulation-
based implementation to real-world environments to evaluate
the algorithm’s performance under practical conditions. Ad-
ditionally, we aim to integrate LiDAR and camera data into
a unified, feature-rich map that combines accurate geometric
information with detailed visual features for enhanced environ-
mental understanding. Furthermore, we intend to incorporate
segmented dynamic objects within the scene such as UAVs,
ground robots, and other moving entities to enable more
comprehensive perception analysis.
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