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Abstract—The Integrated Sensing and Communication (ISAC)
is essential technology for the future 6G networks. By integrating
the sensing and communication, more efficient communication
systems can be achieved. At present, most ISAC systems are
proposed for Radio Frequency (RF). In this paper, we present a
novel idea to perform ISAC for Optical Camera Communication
(OCC). The proposed ISAC system combines a monocular
depth estimation method with the OCC system to perform
both communication and sensing in one-shot and end-to-end
manner. This method eliminates the need for sensor fusion with
LiDAR or RADAR to perform an accurate sensing. The proposed
method shows a centimeter-level localization accuracy in indoor
environment while maintaining OCC link.

Index Terms—6G Networks, Integrated Sensing and Commu-
nication, Monocular Depth Estimation, Optical Camera Commu-
nication, Optical Wireless Communication

I. INTRODUCTION

Over the years, demand for hyper-connectivity and ubiqui-
tous intelligence accelerates causing the telecommunications
industry to rapidly evolving toward the sixth generation (6G)
of wireless networks. A major research direction of this
evolution is Integrated Sensing and Communication (ISAC).
Traditionally, sensing and communication have been treated
as separate system requiring distinct hardware and spectral
resources. ISAC represents a paradigm shift by unifying these
two functions into a single system, thus enhancing hardware
efficiency, spectrum utilization, and overall network intelli-
gence [1], [2].

While the concept of ISAC is gaining significant traction,
the majority of current research and implementation efforts are
predominantly focused on the Radio Frequency (RF) domain
[3]. Numerous research has been published to perform ISAC
and optimize its system in RF domain. Differently, in Optical
Wireless Communication (OWC) domain, the ISAC method is
not as popular as in RF domain. In OWC, the ISAC mainly
proposed for Visible Light Communication (VLC) by relying
on the passive sensing [4]. In this system, the sensing is
achieved by analyzing the changes in light intensity or channel
impulse response on the receiver part. Based on the analyzed
pattern of light reflections or shadows, the system is able
to performhuman activity recognition or object detection and
tracking with centimeter-level accuracy.

Another method of ISAC for OWC is applied in a laser
communication system. An Optical Phased Arrays (OPA) is
utilized to establish the ISAC for OWC [5]. Essentially, an
OPA is a steerable lasers where the beam can be controlled
to focus only to certain direction, depending on user location,
and lock onto them to send the data. By taking the advantages
of OPA, the laser communication system can perform sensing
and communication in a single device without having to use
other device like LiDAR to perform the sensing.

Optical camera communication (OCC) is one type of OWC
where the transmitter is using LED and camera is used as the
receiver [6]. Technically, by using a camera, the ISAC can
be performed directly in OCC systems because the camera
provides the location and communication data embedded in
a single image frame. However, in the implementation, the
image used for decoding in OCC should be processed to
filter out noise and remain only the communication data.
During this processing steps, the image usually transformed
and thresholded to show only the LED lights and remove any
other objects. Hence, the sensing is difficult to perform since
the resulted image usually only in black and white images with
no other objects other than the LED. Moreover, performing
sensing and localization from a 2D images usually have a
lower accuracy in distance estimation.

That is why several research perform sensor fusion for
OCC to enhance the sensing and localization performance. A
LiDAR or RADAR that generates a 3D point cloud data can
be used to perform the sensing for localizing the presence and
position of the LED transmitter [7]. After localization using
such sensors, the communication part will start the decoding
process to retrieve the original data. Although this method
works well, it has several inherent downsides. First, by using
sensor fusion, it makes the system more complex due to the
usage of multiple sensor. Then, the overall system power
consumption might be increased. Finally, sensor like LiDAR
or RADAR is costly and usually much more expensive than
the camera for receiver part.

In this paper, we present a new method that simplifies
the sensing and communication method in OCC system. A
novel ISAC framework is proposed specifically designed for
OCC usage. Unlike traditional RF-ISAC or complex sensor-
fusion models, our proposed system leverages the visual data



inherently captured by the OCC camera receiver to perform
both communication and sensing simultaneously.

II. PROPOSED SYSTEM

The proposed ISAC system is established by integrating
monocular depth estimation model in the receiver of OCC
system. As such, there are two main components to establish
the main systems: OCC and monocular depth estimation
model. By integrating the aforementioned system, the ISAC
for OCC is established. This section covers the process to
establish ISAC for OCC and details of each module used in
the proposed ISAC for OCC method.

A. ISAC for OCC

The proposed ISAC for OCC solve issue mainly on the
receiver part of the OCC system. The proposed method
introduce a steps to perform the ISAC based on the com-
bination of monocular depth estimation and existing system
to generate both sensing and communication together at one
time, as shown in Fig. 1. The proposed method is started
by capturing the RGB image produced by the camera. Every
generated image frame is utilized for performing the sensing
and communication.

The image frame is copied into two data, one for sensing
and another for communication method. The image copy for
sensing is inserted into the monocular depth estimation model
to generate the estimated depth image of the scene. Based on
the generated depth image, each pixel refers to the estimated
distance between the object and the camera. Then, an object
detection and tracking is applied to detect the location of
the LED transmitter. Therefore, the position of the LED is
known both in 2D and 3D space, where the object detection
and tracking generates the 2D position and monocular depth
estimation generates the 3D position.

Then, the second image copy is utilized for the com-
munication module. The image is inserted into the image
preprocessing pipeline to change the image properties for
extracting the LED features. Then, the bits in the LED are
extracted by considering the LED is on or off. After receiving
the bits from LED, the demodulation process is continued to
recover the original data.

In the end of the method, both information of sensing and
communication are generated at the similar time. The retrieved
communication data and transmitter location are then utilized
to perform further technologies such as routing or topology
control in an OCC network. Fig. ?? and Fig. ?? shows the
original image captured by the camera and the resulted depth
map estimation from the monocular depth estimation model.
Based on the pixel value in the depth image, the distance of
the LED can be retrieved.

B. Optical Camera Communication

The OCC system considered in this paper is a MIMO-
COOK system. A 16 × 16 LED matrix is employed as the
transmitter. Meanwhile a global shutter camera is utilized

as the receiver. The modulation strategy is using MIMO-
COOK with Manchester coding and Reed-Solomon Forward
Error Correction (FEC) to ensure robust and reliable data
transmission. The OCC architecture utilized in this work
shown in Fig. 4.

1) Transmitter Design and Modulation: The transmitter
consists of an 16 × 16 LED matrix, where each individual
LED functions as an independent communication channel.
To address the inherent flickering issues and synchronization
challenges of standard OOK, the system utilizes Manchester
coding. Before modulation, the raw binary data is processed
using Reed-Solomon (RS) Forward Error Correction. RS codes
are block-based error-correcting codes that are particularly
effective at correcting burst errors—a common issue in OCC
channels due to motion blur, partial occlusion, or ambient light
interference. The RS encoder adds redundant parity symbols to
the data stream, allowing the receiver to detect and reconstruct
corrupted symbols without requiring re-transmission.

2) Global Shutter Reception and Demodulation: The re-
ceiver utilizes a high-speed camera equipped with a Global
Shutter sensor. This characteristic eliminates the spatial band-
ing (striping) effect typically seen in rolling shutter OCC. To
achieve data transmission, the system relies on frame-by-frame
temporal sampling:

• Synchronization: The camera’s frame rate (Fcam) must be
synchronized with the transmitter’s symbol rate (Rsym).
The camera operates at three times higher sampling rate
than the transmitter.

• ROI Extraction: For every captured frame, the system
detects the LED matrix and isolates the Region of Interest
(ROI).

• Manchester Decoding & FEC: The sequence of intensity
values from consecutive frames is analyzed to identify the
Manchester transitions (Low-to-High or High-to-Low).
Finally, the Reed-Solomon decoder processes the demod-
ulated bit-stream to correct errors and recover the original
data.

C. Monocular Depth Estimation

Monocular Depth Estimation is a fundamental computer
vision task that aims to predict the dense depth value of
each pixel from a single 2D RGB image. Formally, given
a single input image I ∈ RH×W×3, the objective is to
learn a mapping function f such that D = f(I), where
D ∈ RH×W represents the estimated depth map. Monocular
depth estimation is inherently an ill-posed problem. The model
is developed based on DepthAnything V3 model [8].

In the context of OCC, it is crucial to get the best accuracy
value for performing the depth estimation. The model is
developed to estimate the distance based on the single training
image. The DepthAnything V3 model is chosen for this work
because it is suitable for our purpose in ISAAC simulator in
Gazebo indoor environment.

A critical challenge in monocular depth estimation is scale
ambiguity. Recent SOTA methods, including ZoeDepth and



Fig. 1. Proposed method for ISAC for OCC system.

Fig. 2. Original image captured by the camera.

Fig. 3. Depth image from monocular depth estimation model.

Marigold, are focusing on recovering metric depth by incorpo-
rating camera intrinsic parameters or using affine-invariant loss
functions to align relative predictions with real-world scales.

III. PROSPECTS OF ISAC FOR OCC

The integration of Monocular Depth Estimation (MDE)
with Optical Camera Communication (OCC) represents a
significant progress for Integrated Sensing and Communication
(ISAC) systems, particularly for indoor 6G applications. By
leveraging the visual data inherent in the communication
channel, this proposed architecture offers unique advantages
over traditional RF-based or sensor-fusion approaches.

A. Hardware-Efficient Sensing

The most compelling prospect of this integration is the
achievement of sensing capabilities with effectively zero ad-

Fig. 4. Architecture of the OCC using OOK modulation.

ditional hardware cost because only using one camera.
Current Limitations are caused by traditional robotic or

autonomous systems typically require a dedicated sensor stack.
The OCC receiver (camera) transforms into a dual-function
device. It simultaneously decodes high-speed data from the
LED transmitter and calculates the precise distance to it. This
eliminates the need for expensive, power-hungry active sensors
like LiDAR, drastically reducing the weight, cost, and energy
consumption of mobile agents such as UAVs or AGVs.

B. Interference-Free Indoor Localization

RF-based ISAC systems suffer significantly in complex
indoor environments due to multipath fading, reflection, and
electromagnetic interference (EMI) from other devices. The
proposed optical ISAC system operates in the visible light
spectrum, which is immune to RF interference.

C. Semantic-Aware Communication

Unlike RF waves, which only detect physical reflections, a
camera can see the context clearly by capturing the image.
The integration allows for semantic-aware ISAC. The system
is smarter when using this method. The semantic allows the
model to recognize object other than the LED for knowing the
environment results in a better communication technology.

IV. FUTURE WORKS

While the proposed Monocular Depth Estimation-based
ISAC system demonstrates significant potential for indoor
applications, several avenues for optimization and expansion
remain. Future research will focus on enhancing the system’s
robustness, computational efficiency, and sensing resolution to
meet the rigorous demands of 6G networks.



A. Lightweight Neural Networks for Edge Deployment

The current deep learning models for depth estimation,
while accurate, are computationally intensive. To facilitate
deployment on resource-constrained edge devices, future work
will prioritize the development of lightweight depth estimation
model. The goal is to achieve real-time (more than 30 FPS)
simultaneous communication and sensing on low-power em-
bedded processors.

B. Robustness to Environmental Variability

Optical channels are susceptible to environmental noise,
including motion blur, ambient light interference, and occlu-
sion. Future research will incorporate temporal consistency
constraints into the learning framework. By analyzing video
sequences rather than individual frames, the system can en-
force geometric consistency over time, effectively filtering out
transient noise and improving the stability of both the data
link and the depth map during high-speed mobility. Anomaly
detection also possible to be integrated to the future system to
enhance the system robustness and reduce error [9].

C. Integration of Semantic Segmentation

Finally, we aim to evolve the system from purely geometric
sensing to semantic-aware ISAC. By integrating semantic
segmentation heads into the AI model architecture, the receiver
will not only estimate the distance to the transmitter but also
classify the surrounding environment. This context-awareness
will enable intelligent resource allocation to dynamically ad-
just and control the LED transmission based on the scene
condition.

V. CONCLUSION

This paper presented a novel framework for Integrated
Sensing and Communication (ISAC) specifically designed for
Optical Camera Communication (OCC) systems. By integrat-
ing a Monocular Depth Estimation model with a MIMO-
COOK communication architecture, we demonstrated that a
single camera receiver can perform data decoding and pre-
cise distance estimation. This approach effectively eliminates
the dependency on complex sensor fusion with LiDAR or
RADAR, offering a streamlined, cost-effective, and energy-
efficient solution for OCC system. The proposed method
utilizes the DepthAnything V3 model to achieve centimeter-
level localization accuracy while ensuring robust communi-
cation through Manchester coding and Reed-Solomon FEC.
Ultimately, this work establishes a foundation for pervasive op-
tical ISAC, paving the way for semantic-aware and hardware-
efficient mobile agents in future intelligent environments.
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