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Abstract—Unmanned Aerial Vehicle (UAV) Free-Space Optical
(FSO) is the next generation technology in wireless communica-
tion systems. The high bandwidth potential of FSO communica-
tion is not without flaw, the optical wave is easily distorted by
channel conditions and must have accurate tracking. To improve
reliability, error correction must be applied. In this paper, FPGA-
based error correction architecture is proposed to comply with
the UAV FSO system. The design is based on Reed-Solomon (RS)
code and Line Product Code (LPC). The proposed system utilizes
the parallel processing and pipelining of Euclidean Processor
in decoding unit, which increases data throughput significantly.
Our design also offers low resource usage on the FPGA board,
effectively reducing power consumption. Performance test shows
BER of 10, data rate at 8.921 Gbps, and power consumption
at 1.6 W.

Index Terms—Error Correction, FPGA, RS, LPC, Euclidean
Processor, parallel processing, UAV, FSO

I. INTRODUCTION

UAV FSO communication system is a promising wireless
technology that offers the users greater data bandwidth, higher
security, and unlicensed frequency spectrum. Compared to
the radio frequency (RF) systems, the FSO has more spec-
trum efficiency and lesser interference to neighboring channel
frequency. Currently, the RF spectrum is highly congested
due to the increasing number of wireless devices in network
[1] [2]. The internet infrastructure must follow the ever-
growing demands of user connections which results in higher
requirement of data bandwidth in core network. The fastest
current technology in RF-based system is the 6G radio that
utilizes the mmWave frequency. However, in the near future
to fulfill this requirement will be very difficult due to network
congestion and the already limited RF spectrum [3] [4].

The UAV FSO communication system can be a solution we
need to provide alternative of RF-based network. The FSO is
based on optical wave medium for transmitting data on the air.
Main advantage of this media is the longer range coverage
due to lightwave property and its capability to bring more
data on transmitting medium. One great example of current
FSO company is the SpaceX with its Starlink product. The
Starlink is a constellation of FSO network in the Low Earth

Orbit (LEO) satellite communication. It utilizes the FSO as
the main backhaul network link in LEO, in order to cover
all of the earth surface user connections. The SpaceX focuses
the FSO technology in the satellite-to-satellite and also the
space-to-ground communication network [5].

One of the downsides of FSO communication is the optical
wave susceptibility to distortion caused by the channel con-
dition in the air. The atmospheric turbulence (AT) is a major
issue in FSO that causes unpredictable changes in channel
characteristics due to the nature of environmental effect such
as wind gusts, temperature, humidity, sun rays, smoke debris,
and others. The AT is a random event that can be describe
in Probabilistic Distribution Function (PDF), therefore the
designer can at least do some mitigation technique to reduce
the data corruption while in transmission by predicting it from
the PDF analysis [6] [7].

The writer proposes an architecture of error correction (EC)
technique to be implemented on the UAV FSO communication
system. The EC is designed and implemented using Field-
Programmable Gate Array (FPGA) platform, so we can exploit
the low level hardware programming and the low latency
processing due the nature of FPGAs. The EC design is based
on the Reed-Solomon (RS) code and Line Product Code (LPC)
that are combined together to enhance the reliability of FSO
system. RS code is known to have capability to correct burst
error that occur frequently in the case of FSO communication.

Ethernet Clock Domain Ethernet
UDP Send 1= XGMII Crossing g Frame Buffer —I
FSO Frame Parallel RS Scra\mbler_>
Constructor Error Correction LPC

SFP+ Tx ]
SFP+ Rx

FSO Frame Parallel RS LPC
’_ Reassembly < Error Correction 7 Scrambler <
. Ethernet Clock Domain Ethernet (J
UDP Receive 14— XGMII Crossing Reassemble

Fig. 1. FPGA FSO error correction main architecture.



LPC is additional layer of the design to improve the bit error
using the basis of bit disparity. The main system architecture
is shown in Figure 1.

The Error Correction main architecture is divided into sev-
eral parts: Ethernet Interface, FSO Frame Constructor, Parallel
RS Channel Coding, LPC, and SFP+ Transceiver. The FPGA is
compiled in Verilog language with modular hierarchy, increas-
ing the system programmability and scalability in the future.
The challenges to design our architecture is the clock domain
management between each module to be able to work together
flawlessly and the buffer manipulation to control the data and
prevent overwrites or data mistiming. Our proposed design is
the parallel processing Euclidean Calculator Unit to evaluate
the Greatest Common Divisor (GCD) value. The proposed
design introduces ping-pong memory buffer technique to the
GCD calculator to increase throughput. The GCD calculator is
constructed on a hardware wired parallel logics that increases
the data throughput per clock cycle.

II. METHODOLOGY

A. System Overview

The FPGA FSO error correction implementation is con-
ducted on AMD Xilinx Kintex Ultrascale XCKUO060 devel-
opment board. In the testbed experiment we utilize the GTH
Transceiver that can support up to 16 Gbps data rate on the
physical SFP+ interface port. The FPGA acts as the EC and
FSO modem device that receives data from Ethernet based
interface user terminals. The experiment is done using pair of
FPGA boards to emulate communication scenario between 2
FSO terminals. The SFP+ port of the FPGA supports 10 Gbps
data rate, so the Ethernet interface on the user terminals must
comply the speed by installing XGMII supporting Ethernet
card or simply PCle 10 Gbps NIC. Test environment on
the terminals is controlled and monitored by Python code
which mainly send and receive traffic of UDP Packets. The
SFP+ modules used are industry standard 10 Gbps speed
module, 1270/1330 nm bidirectional pair wavelength, single
mode fiber, and supports long range up to 10 km [8] [9]. The
experimental testbed setup is shown in Figure 2.
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Fig. 2. FPGA FSO error correction testbed experimental setup.

B. Main Architecture

The design consists of FPGA Tx and Rx parts. The FPGA
Tx main function is to encode the data before transmission
to the FSO channel, in this experimental setup is fiber optic
connection link. The encoding process include Ethernet data
parsing, clock domain crossing, adaptive memory manage-
ment, data checksum, parallel pipelined RS code error correc-
tion, interleaving, bit scrambling, LPC, and line coding. The
user can use Ethernet connection (preferably SFP+ NIC) from
their terminal to the FPGA system. The Ethernet data parsing
process manages the data from terminal Ethernet packets to be
converted into FSO frames. In this part, there is clock domain
crossing to ensure clock synchronization and bit-width adjust-
ments to match the data size. The checksum adds additional
protection to data with error detection. We implement CRC
based checksum for this design. The channel coding is based
on high density parallel RS code error correction. The encoded
data will produce parity symbols that is used as decoding
component at the Rx side. The interleaver and scrambler pre-
process the encoded data before LPC and line coding. The
line coding process is based on Line Product Code (LPC), to
ensure the clock synchronization at Rx side and bit disparity.

C. Reed-Solomon Error Correction Code

Reed-Solomon (RS) code is the main error correcting code
that is used in the FPGA system. This allows the UAV FSO
system to locate and correct any errors occurring at the receiver
side. The RS code processes the original message data from
terminal unit and results in adding protective element to the
data array known as the parity symbols. The parity symbols
calculation is derived mainly from the Galois Field (GF)
numeration and polynomial arithmetic [10] [11]. The RS block
diagram is shown in Figure 2.

Dn >C) >
A

Output

Yy

Au

Input

so

Control
Fig. 3. FPGA FSO error correction Reed-Solomon encoder block diagram.

The parity symbols are essential in the decoding process
of RS code. It is used as decoding element where the orig-
inal message and the parity is combined in the Syndrome
Calculator Unit to find out the Syndrome. The Syndrome is
an evaluated polynomial function, usually in a polynomial of
16 term, that shows the characteristic of error of the original
signal. However, if the value of Syndrome is zero then it means
the original data is not corrupted at all.

The Euclidean Processing Unit is GCD calculator taking
Syndrome as input and produces Delta and Omega functions



as output. Delta function is description of error locator value
which later is processed in the Chien Search module. Omega
function is the indicator of error magnitude or error value to
revert the error on the received message. Omega function is
processed at the Forney module in the decoder. The Euclidean
Processor performs the GCD calculation which involve several
multiplication and division steps in order to reduce the term
of the polynomial. In case of our system, the GCD calculation
requires 16 steps due to the 16 term polynomial of the
Syndrome.

Chien Search and Forney module is parallel module that
search the error location from received message index and
also precisely provide the correct magnitude to revert the error
symbol. The Chien-Forney algorithm utilize the multiplication
and division module in the FPGA fabric logic.

D. Cyclic Redundancy Check

Cyclic Redundancy Check (CRC) is widely used checksum
method to detect error on the received data packets. The CRC
is important module in our system to make sure the decoder
can find out error by sending flag signal to the user. The
implementation of CRC on the FPGA FSO Error Correction
system uses the short CRC-16 for the Header data and CRC-
32 for the long stream of Payload data. To comply with the
requirement of multi-gigabit data, the implementation of CRC
is in highly parallel arrangement and using the high-speed
transceiver clock.

E. Line Product Code

Line Product Code (LPC) is additional layer of error
correction method to increase system reliability. The LPC
is based on the Hamming code with combination of data
matrix instead of just bit operations. LPC adds protective
bits and maps the data bits into new matrix that later be
sent to the communication channel. The effect of LPC is
increased bit disparity which results in better coding gain and
DC balance on the physical layer. Commonly, the LPC is used
in conjunction with Scrambler module. The scrambler module
is implemented using the Pseudo-Random Binary Sequence
(PRBS). This will add the disparity bits by scrambling the
common data which are usually ASCII based text that have
repeating characters.

FE. Clock Domain Crossing

The clock domain crossing is important module in the
FPGA fabric to handle the data transfer from each modules.
The variants of different clock frequency in the system requires
this feature to ensure program stability. The implementation
includes asynchronous asymmetric First-In First-Out (FIFO)
buffer and Finite State Machine (FSM). The async FIFO
captures the data asynchronously and sort out the output
following the requested reading clock. The FSM is the trigger
control for the clock domain crossing. It ensures the correct
state sequence and reduces trigger confusion for the FPGA
fabric logic.

G. Adaptive Buffer Memory

The adaptive buffer memory is used in the system to support
the pipeline architecture that we implemented. Since the data
is always continuous, the adaptive buffer will queue the data
and process the ready packet to the decoder. On top of that,
we implemented double layer FIFO for the adaptive buffer
to increase the efficiency. The double layer provides continue
runtime which activate the FIFO alternately in the processing.
This method is also known as the ping-pong FIFO.

H. Proposed Decoder Design

At the Rx part, the process is inversion of encoding
algorithm however more complexity in the channel coding
function. The decoding process requires four-step unit process
consists of Syndrome calculation unit, Euclidean processing
unit, Chien search, and Forney algorithm. The syndrome
calculation extract all the syndrome values out of the received
data. The syndrome values are required for the Euclidean
processing. Our design proposed a new approach for the
Euclidean Processing by implementing highly parallel compo-
nent architectures and modification on the concurrent process,
so that the calculation is faster and has more throughput.
The Euclidean processor unit is GCD algorithm that can be
implemented to RS code. The proposed decoder architecture
is shown in Algorithm 1.

Algorithm 1: Proposed parallel processing Euclidean
Unit Decoder.

Initiate:

A < constant;

B + syndrome;

C +0;

D <+ 1;

if B > ¢ then
GF Division:
Q + A/B;
Update Registers:
T+ A—(Q=*B);
Ty <+ C —(Q = D);
Register Transfer:
A+ B;
B+ T1;
C « D;
D+ T2;

else
Output Results:

delta + B;
omega < D,

end
return 0;

III. TEST RESULTS

The performance of the UAV FSO FPGA error correction
system is evaluated by several metrics. The data rate, Bit
Error Rate (BER), power consumption, and resource usage.
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Fig. 4. FPGA FSO error correction testbed scenario.
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Fig. 5. FPGA FSO waveform signal analysis.

The structure of the FSO Frame and Ethernet packets is also
monitored in the testing. The monitoring is conducted by
utilizing the debug monitor from the AMD Vivado based on
JTAG protocol. Each monitoring capture indicates a window
of captured data on 1 time cycle.

A. Testbed Scenario

The channel coding system performances are verified using
3 monitoring tools: Python, Wireshark, VIVADO Integrated
Logic Analyzer (ILA). The VIVADO ILA works similarly
as logic analyzer testbench device. It is used to observe the
logic signals on the SFP and/or the Ethernet port interfaces.
Wireshark captures the Ethernet base traffic in the form of
TCP/IP data packets, in the testing case we use UDP packets.
The timing and counter of the packets can be tracked using
Wireshark. It tracks down the packets based on the related
MAC addressed that can be filtered by the program. At the user
end, Python is used to generate and receive UDP packets. The
Python code will calculate BER and data rate using counter
of received packets. The testbed experiment scenario shown
in Figure 4.

The testbed scenario consists of pair of transmitter part and
receiver part. Input to the transmitter is an Ethernet packet

driven by user’s laptop or PC terminal connected to the FPGA
error correction system board. Preferably, the user terminal
should support 10 Gbps speed by installing PCle SFP+ NIC
to the system. The user should install the specified UDP packet
generator program in their PC and make the IP static to be
able to connect to the FPGA board. To monitor the direct
signal analysis on the FPGA board, the user terminal should
connect to FPGA board using JTAG interface to run the debug
monitoring. The debug monitor is a real-time analysis tool
proprietary to the AMD Xilinx.

B. Data flow Waveform Analysis

The data flow can be divided into 4 major parts: Ethernet
Frame, FSO Frame, RS Encoding, and LPC Coding. The data
from the user terminal is defined by Ethernet Frame which
contains the UDP testing packet from the Python. The XGMII
protocol is used as Ethernet handler for the FPGA fabric logic
and uses 64-bit width data stream. The Ethernet Frame must
be converted into FSO Frame before encoding process. The
clock domain crossing and adaptive buffer memory modules
are used together to generate the FSO Frame from the Ethernet
interface.



The Ethernet Frame comply the standard of TCP/IP protocol
stack which starts with Preamble, followed by MAC header,
IP, UDP, and the Payload itself. The FPGA system will strip
out the Ethernet Preamble when first detect the data egress, and
capture all the data starting the MAC header. In our design, the
MAC header is treated differently with the rest of the packets.
It is considered as essential header data, so the RS coding
is separated and use different shorter RS(16,32) setup. This
means the data path for the MAC header is conditioned to
be higher parity density compared to the payload for stronger
error correcting capability. The captured signal waveform is
shown in Figure 5.

The process of encoding up until decoding requires the
FPGA latency at 3.9 us. The Ethernet UDP Packets are sent at
controlled interval from the Python UDP program. The FSO
Framer module converts the data into channel coding. The
minimum latency is required to ensure FIFO clearance before
next cycle occur.

C. Resource Utilization

The Kintex Ultrascale XCKUO060 development board re-
source utilization shows the optimized usage of logic gate
transistors and other component modules. The summary is
generated using the utilization reporting feature from the Vi-
vado implementation results. The parallel pipelining euclidean
processing error correcting system shows the summary of LUT
usage of 30.03 %. The Flip-flop (FF) and Block Random
Access Memory (BRAM) shows usage of 2.66 and 2.04 %
respectively. The Mixed-mode Clock Manager (MMCM) is
used as the clock management module for the entire FPGA
fabric, it shows usage of 16.67 % from the Kintex Ultrascale.
The resource utilization report data is shown in Table I.

TABLE 1
FPGA RESOURCE UTILIZATION

Resource Used Available | Utilization %
LUT 99609 331680 30.03
LUTRAM 595 146880 0.41
FF 17642 663360 2.66
BRAM 22 1080 2.04
10 3 520 0.58
MMCM 2 12 16.67

D. Power Consumption

The Kintex Ultrascale XCKUO060 development board power
consumption shows a total chip usage of 1.377 W. The device
static power consumption shows 0.635 W with dynamic power
consumption takes 0.743 W. The system Clocks consume
0.214 W is the 2nd biggest draw of power from overall system.
The MMCM module is the largest module that draws the
power from the FPGA. The proposed design can be concluded
to be low power consumption and suitable for portable deploy-
ment. The 1.377 W power draw means roughly, using a 10,000
mAh battery can provide power up to 7 hours runtime. This
is critical consideration especially the experiment scenario on
flying UAV drone or UAV with FSO communication system.
The FPGA power consumption is shown in Figure 6.
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Fig. 6. FPGA FSO power consumption analysis from implementation report.

IV. CONCLUSIONS

FPGA implementation of UAV FSO error correction system
can results in a robust and power efficient prototyping platform
for research and development. FPGA is also considered cost
effective solution for the area of high-speed communication
prototyping compared to the CPU based platform or ASIC
based device. Our implementation can show multi-gigabit
throughput thanks to the FPGA innate ability to process data
in concurrent and parallel pipelining program and hardware
architecture. The FPGA also has an advantage in the repro-
grammability, so any changes needed during the research can
be applied easily. Our proposed decoder introduce a solution to
complex hardware network of the Euclidean GCD Processor
by implementing parallel processing structure that combine
concurrent programming paradigm and smart ping-pong buffer
technique. The FPGA resource utilization shows that low
transistor usage in the FPGA fabric, so effectively decreasing
the overall power consumption of the error correction system.
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