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Abstract—Accurate inter-drone ranging is critical for collision
avoidance and swarm coordination but remains challenging on
lightweight platforms due to the limitations of monocular scale
ambiguity and LiDAR sparsity. Traditional sensor fusion methods
rely on bounding box detection, which frequently introduces
significant error by averaging background points into the depth
estimation, particularly when targets are small or distant. To
address this, we propose a Camera-Assisted Drone Ranging
System that augments low-resolution LiDAR with visual semantic
precision. Our framework integrates a robust targetless extrinsic
calibration pipeline with an instance segmentation model that
acts as a precise spatial filter, isolating foreground drone points
from background clutter. Experimental validation demonstrates
that this mask-based approach solves the bimodal depth distri-
bution issue inherent in bounding box methods. While standard
averaging estimators degrade to errors exceeding 5 meters at a
15-meter range, our proposed median-based segmentation frame-
work maintains a consistent error rate of less than 0.5 meters.
These results confirm that high-fidelity ranging is achievable
with low-cost, low-resolution sensors through improved semantic
filtering.

Index Terms—Drone, LiDAR, Camera, Segmentation, Rang-
ing, 3D Projection, Sensor Fusion

I. INTRODUCTION

As drones become more common in industrial and com-
mercial airspace, the ability for a drone to detect and measure
accurate distance to a nearby drone is beneficial for coop-
erative tasks such as collision avoidance, formation flying,
and swarm coordination [1]. A schematic of this inter-drone
relative ranging in a multi-UAV scenario is illustrated in
Fig. 1, where each drone determines the pairwise distance
(dij) to its neighbors. However, achieving this utilizing only a
single sensor is challenging, especially in environments with
complex texture or low visibility. Monocular cameras are
lightweight and excellent at identifying objects but struggle
to estimate the real distance accurately due to scale ambiguity
[2]. On the other hand, 3D LiDARs provide low-error distance
measurements but often heavy or expensive for drones [3].
Another issue is that lightweight LiDARs have low resolution,
leaving large gaps between laser beams that can easily miss a
small, floating target like a drone.

The fundamental issue of LiDAR ranging system is the
foreground and background ambiguity caused by low resolu-
tion point cloud. Integrating camera with LiDAR able to add
semantic understanding to the sparse point cloud, usually by
performing object detection on the top of the captured image

to provide bounding box around the target, and all point clouds
inside that box are then averaged to find the distance. However,
this approach is problematic for drones due to their irregular
shape and the empty space between frame, propellers, etc.
The rectangular bounding box inevitably includes background
points. Given the sparsity of LiDAR data, the system might
capture ten points on the wall and only two on the drone
resulting inaccurate distance estimation.

Fig. 1. Inter-drone Relative Ranging System in Multiple Drone Scheme

To address these challenges, this paper proposes a Camera-
Assisted Drone Ranging System that leverages visual semantic
precision to overcome LiDAR sparsity. This paper present
a comprehensive, end-to-end framework to find and tuning
extrinsic calibration parameters between LiDAR and camera,
performing drone localization in 3D space, projecting 3D point
cloud to the 2D image, and finally extracting more accurate
distance measurement from the filtered point cloud. Unlike the
traditional bounding box detection, The framework incorporate
instance segmentation model to generate a pixel-level mask
of the target drone as the foreground and background filter
mechanism. This ensures even if only a few laser beams hit
the target, they are still isolated from the background noise.
The successful implementation of this system demonstrates



that robust sensor fusion is achievable using low-resolution
LiDAR when augmented by monocular vision. Consequently,
the key contributions of this paper are summarized as follows:

1) Robust Calibration Pipeline: Outline the necessary
steps to perform targetless sensor calibration and ensure
accurate projection.

2) Mask-based Point Cloud Selection: Demonstrate how
replacing bounding boxes with segmentation masks able
to improves the performance.

3) Experimental Validation: Evaluate the system in real-
world setups, providing clear metrics on how this
method precisely selecting the corresponding point
clouds and extracting the distance values through low-
resolution point clouds.

II. METHODOLOGY

A. Sensors Integration & Calibration

Fig. 2. Camera and LiDAR sensors mounting.

To ensure optimal field-of-view (FOV) overlap, the monoc-
ular camera is rigidly mounted directly on top of LiDAR
using a custom 3D-printed bracket as shown in Fig. 2. This
vertical displacement minimizes horizontal parallax, ensuring
that objects visible to the LiDAR are centrally located in
the captured frame. Since the camera and LiDAR operate
at different frequencies, synchronization performed through
Robot Operating System (ROS) node, matching the closest
timestamps between the LiDAR scanned point clouds and the
camera frames as shown in Fig. 3(a). This step is critical to
prevent data mismatch and errors during the calibration data
collection.

The targetless calibration pipeline [4] started with data
preprocessing to enhance the distinctiveness. Histogram equal-
ization is applied to both the grayscale camera images and
the LiDAR intensity points. This normalization mitigates the
impactof varying lightning conditions and ensures edges or
textures are statiscally comparable across both modalities.

Following the preprocessing step, initial alignment performed
by identifying the corresponding features in the 2D image and
the 3D point cloud utilizing Super Glue and optimized using
Perspective-n-Point (PnP) solver wrapped in a RANSAC loop.

For the final refinement, the Normalized Information Dis-
tance (NID) method employed to maximizes the mutual in-
formation between the camera and LiDAR. The algorithm
voxelizes the point cloud and iteratively adjusts the extrinsic
parameters (rotation R and translation t) to minimize the NID
metric. This cross-modal optimization allows the system to
fine-tune the alignment even in environments with repetitive
textures, resulting in a robust extrinsic matrix Text that accu-
rately maps 3D LiDAR points to the 2D image plane.

B. Visual 2D Drone Segmentation

The visual preception serves as the primary guidance system
for the proposed drone ranging system. In the framework
specifically Fig. 3(b), this stage processes the capture RGB
frames in ROS segmentation node from the synchronization
node. The framework integrate segmentation model to generate
instance level pixel mask, localizing drone spatial occupany
within the 2D image plane, distinguishing the target drone
from complex and cluttered environment backgrounds. To
achieve this, we utilize lightweight instance segmentation net-
work YOLOv8-seg [5] fine-tuned with custom drone dataset.

The core of this module is the generation of a pixel-level
binary mask, denoted as M , rather than a standard bounding
box. As depicted in Fig 3(b), the segmentation model classifies
every pixel pu,v as either foreground/drone or background.
This distinction will assist low-resolution LiDAR fusion by
creating a tight silhouette that adheres strictly to the drone’s
morphology, the segmentation mask effectively removes this
negatives space ensuring that the fusion pipeline ignores the
background noise that typically confuses standard detection
algorithms.

C. 3D LiDAR Point Cloud Projection

In parallel with the segmentatino processs, geometric trans-
formation perfromed to map the 3D spatial information from
synchronized LiDAR data onto 2D image plane. As illustrated
in Fig. 3(c), the raw point cloud generated by the LiDAR is
initially defined in its own local coordinate system, L. To align
this data with the visual feed, each point PL = [xl, yl, zl, 1]

T

is first transformed into the camera coordinate system, C,
using the extrinsic calibration matrix Text. This transformation
accounts for the rotation (R) and translation (t) offsets between
the vertically stacked sensors, mathematically expressed as:
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Once transformed into the camera frame, the 3D points are
projected onto the 2D image plane using the pinhole camera
model. This step utilizes the camera’s intrinsic matrix K,



Fig. 3. Proposed framework for Drone Ranging System. (a) Camera frame and LiDAR data sampling synchronization. (b) Drone pixels segmentation in 2D
frame. (c) Point cloud projection from 3D-to-2D space. (d) Projected point clouds selection through drone mask.

which encapsulates the focal lengths (fx, fy) and the principal
point (cx, cy). The relationship between a point in the camera
frame PC and its corresponding pixel coordinates (u, v) is
given by:

s
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The result of this projection is visualized in Fig. 3(c), where
the LiDAR scan lines are overlaid onto the RGB frame. Points
that outside the camera’s FOV are mathematically clipped and
excluded. The remaining points create a sparse depth map
registered to the visual features. In the visualization, these
points are color-coded by distance (heatmap), illustrating how
the 3D structure of the environment such as the building, walls,
and the target drone is directly mapped onto the 2D pixel grid.

D. Drone Point Cloud Depth Extraction

The final process are extract projected points data and
estimate a robust relative distance to the target drone. Intially,
the projection overlays the entire LiDAR scan onto the image,
creating a depth map that includes not only the target drone
but also the backround and other objects. To isolate the target
drone, a logical conjunction performed between the projected
points and the binary segmentation mask M generated from
the AI model. Let the set of all projected points be denoted
as Pproj = {(ui, vi, zi)}Ni=1, where (ui, vi) are the pixel
coordinates and zi is the depth. The subset of valid drone
points, Ztarget, is defined as the collection of depth values zi
for which the corresponding pixel coordinates fall within the
foreground of the mask:

Ztarget = {zi | M(ui, vi) = 1} (3)

This masking process transforms the noisy scene from
Fig. 3(c) into the filtered and target-specific cluster of point
cloud shown in Fig. 3(c). By strictly enforcing this semantic
constraint, effectively filtering scanned point cloud from Li-
DAR. However, due to the low resolution of the LiDAR and
the complex geometry of the drone, the set Ztarget may still
contain outliers especially from slight calibration misalign-
ments [6] that allow background pixels to bleed into the mask
edges. Thus, to derive an accurate scalar distance dest, The
framework estimate the distance by statiscally extracting the
median value of corresponding points in the target drone:

dest = median(Ztarget) (4)

This statistical filtering ensures that the reported distance re-
mains stable and accurate, effectively representing the drone’s
visible surface based on point clouds in Fig. 3(d).

III. EXPERIMENT AND RESULTS

A. Experiment Setup

The experiment and framework evaluation are deployed
on Lattepanda Sigma connected with logitech webcam and
Velodyne-32 LiDAR on the top of Ubuntu OS. The system
mainly utilize ROS environment for integrating sensors, col-
lecting the synchronized data, data processing, and visual-
ization. It also incorporate Pocket AI RTX A500 GPU to
process intensive computation such as segmentation model
inference, point cloud matrix multiplication and projection,
etc. The experiment of drone ranging system then conducted
with real hexacopter drone as the target object in the indoor
environment.

B. Performance Analysis

The framework performance then evaluated through 2 key
metrics: error rate of ranging system and uniformity of filtered



points, with variety of drone positioned at 5m, 10m, and 15m.
The error rate metric used to validate overall accuracy of
the system and empirically demonstrate the chosen statistical
approach is superior compared to other aggregation method.
Meanwhile, the uniformity of the final projected points in 2D
plane is performed to validate that using a segmentation mask
creates a more stable point coulds distribution over bounding
boxes.

Fig. 4. Comparison of distance absolute error from different aggregation
method.

The Fig. 4 presents a quantitative comparison of absolute
ranging error across statistical approach (mean, minimum,
median) with drone target distances of 5m, 10m, and 15m.
The data reveals that the mean estimator degrades severely as
the distance increases, reaching an error of over 5 meters at the
15m mark. Similarly, the minimum estimator shows a steady
increase in error, likely susceptible(grey line) to sensor noise
or misalignments. In contrast, the proposed median estimator
demonstrates robustness, maintaining a consistently low error
rate (¡0.5m) across all tested distances.

Fig. 5. Uniformity of filtered points based on bounding box and segmentation.

Then Fig. 5 illustrates depth distribution uniformity of the
filtered point clouds, contrasting the traditional bounding box
method with the proposed segmentation mask. As the target
distance increases to 10m and 15m, the Bounding Box method
yields a highly dispersed, bimodal distribution where the
majority of points align with the distant background rather than
the drone. Conversely, the proposed segmentation method con-
sistently produces a tight, unimodal cluster centered precisely

at the ground truth distance. This confirms that the semantic
mask effectively acts as a spatial filter, isolating valid drone
surface.

CONCLUSION

By replacing traditional bounding box detection with pixel-
level instance segmentation, we successfully eliminated the
background noise that compromises distance estimation in
low-resolution point clouds. Our experimental results confirm
that the proposed mask-based spatial filtering, combined with
a robust median estimator, ensures high depth uniformity and
resilience against sensor outliers. The system achieved better
ranging performance (error < 0.5 m) at distances up to 15
meters, significantly outperforming baseline methods which
exhibited errors over 5 meters due to background interference.
This work demonstrates that semantic-aware sensor fusion
can effectively compensate for hardware limitations, offering
a scalable solution for precise relative localization in multi-
drones networks.
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